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Abstract

Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable

consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by

breaking the linkage between selected and nearby neutral variants. Bias in favor ofG or C alleles duringgene conversionmay instead

promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased

gene conversion (gBGC). Less recognized is that these two processes may—when balanced—promote genetic diversity. Here, we

investigatehowgBGCandmutationbias shapegeneticdiversitypatterns inwoodwhitebutterflies (Leptidea sp.). This constitutes the

first in-depth investigation of gBGC in butterflies. Using 60 resequenced genomes from six populations of three species, we find

substantial variation in thestrengthofgBGCacross lineages.Whenmodeling thebalanceofgBGCandmutationbiasandcomparing

analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As

alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show

that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection.

Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.
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Introduction

The neutral theory of molecular evolution postulates that the

majority of genetic differences within and between species

are due to selectively neutral variants (Kimura 1983; Jensen

et al. 2019). Consequently, the level of genetic variation

within populations (h) is expected to predominantly be deter-

mined by the effective population size (Ne) and the mutation

rate (m) according to the following relationship: h¼ 4 Nem.

Indeed, differences in life-history characteristics (as a proxy

for Ne) have been invoked as explanations for the interspecific

variation in genetic diversity among animals (Romiguier et al.

2014). In addition, among butterflies, body size is negatively

associated with genetic diversity (Mackintosh et al. 2019).

Lewontin (1974) noted that the range of observed values of

Ne estimated from genetic diversity measures is smaller than

the range of census population sizes, Nc (Lewontin’s paradox;

Lewontin 1974; Kimura 1983; Nevo et al. 1984; Frankham

1995). Lower Ne compared with Nc may be caused by more
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efficient selection and subsequently reduced genetic diversity

in large compared with small populations (Corbett-Detig et al.

2015). In particular, selection affects the allele frequency of

linked neutral sites (commonly referred to as linked selection

or genetic draft) and reduces their diversity (Maynard Smith

and Haigh 1974; Charlesworth et al. 1993).

However, linked selection in itself is not necessarily the so-

lution to Lewontin’s paradox. It has been noted that Ne¼Nc is

true only for a population in mutation–drift equilibrium

(Galtier and Rousselle 2020). Furthermore, changes in popu-

lation size may amplify the effects of linked selection and the

relative importance of selection and demography is an ongo-

ing debate (Corbett-Detig et al. 2015; Coop 2016; Kern and

Hahn 2018; Jensen et al. 2019). This debate concerns the fate

and forces affecting an allele while segregating in a popula-

tion. Although this is important for resolving Lewontin’s par-

adox, it only addresses variation in Ne, which is but a part of

the puzzle of genetic diversity. As noted above, variation in

the occurrence of mutations also influences genetic diversity.

The general pattern observed is a negative relationship be-

tween mutation rate and Ne among species (Lynch et al.

2016). This may be explained by a selective pressure for re-

ducing the overall mutation rate resulting from the distribu-

tion of fitness effects of new mutations being dominated by

deleterious mutations (Eyre-Walker and Keightley 2007;

Lynch et al. 2016). However, mutation rates vary only over

roughly one order of magnitude in multicellular eukaryotes

(Lynch et al. 2016) and appear less important than Ne for

interspecific differences in genetic diversity.

Genetic diversity can also vary among genomic regions.

The determinants of such regional variation are currently de-

bated, but variation in mutation rate (Hodgkinson and Eyre-

Walker 2011; Smith et al. 2018) and linked selection have

both been considered (Cutter and Payseur 2013; Corbett-

Detig et al. 2015). Higher rates of recombination are expected

to reduce the decline in diversity experienced by sites in the

vicinity of a selected locus. Begun and Aquadro (1992)

showed for example that genetic diversity was positively cor-

related with the rate of recombination in Drosophila mela-

nogaster. Their finding validated the impact of selection on

linked sites, previously predicted by theoretical work

(reviewed in Comeron 2017). Since then, multiple studies

have found a positive association between recombination

rate and genetic diversity (Begun and Aquadro 1992;

Nachman 1997; Kraft et al. 1998; Cutter and Payseur 2003;

Lohmueller et al. 2011; Langley et al. 2012; Cutter and

Payseur 2013; Mugal et al. 2013; Burri et al. 2015; Corbett-

Detig et al. 2015; Wallberg et al. 2015; Martin et al. 2016;

Pouyet et al. 2018; Talla, Soler, et al. 2019; Castellano et al.

2020). The positive correlation between diversity and recom-

bination may, however, be caused by factors other than se-

lection on linked sites. Recombination may for instance be

mediated towards regions of higher genetic diversity (Cutter

and Payseur 2013), or have a direct mutagenic effect

(Hellmann et al. 2005; Arbeithuber et al. 2015; Halldorsson

et al. 2019). Additionally, analytical evidence suggests that the

interplay between mutation bias and a recombination-

associated process, GC-biased gene conversion (gBGC), can

increase nucleotide diversity (McVean and Charlesworth

1999). GC-biased gene conversion in itself will—like direc-

tional selection—reduce diversity of segregating variants. If

we additionally consider the long-term effect of gBGC and

the concomitant increase in GC content, then genetic diver-

sity may rise as a consequence of gBGC through increased

mutational opportunity in the presence of an opposing mu-

tation bias (McVean and Charlesworth 1999; Vogl and Mikula

2021). To fully understand the effects of recombination on

genetic diversity, we must therefore consider both gBGC and

opposing mutation bias, in addition to the much more recog-

nized influence of linked selection. In other words, what re-

lationship do we expect between recombination and genetic

diversity in the presence of nonadaptive forces such as gBGC

and mutation bias?

To understand the mechanistic origins of gBGC, we must

first consider gene conversion, a process arising from

homology-directed DNA repair during recombination. Gene

conversion is the unilateral exchange of genetic material from

a donor to an acceptor sequence (Chen et al. 2007). A re-

combination event is initiated by a double-strand break which

is repaired by the cellular machinery using the homologous

chromosome as template sequence. If there is a sequence

mismatch within the recombination tract, gene conversion

may occur (Chen et al. 2007). Mismatches in heteroduplex

DNA are repaired by the mismatch-repair machinery (Chen

et al. 2007). Importantly, G/C (strong, S, three-hydrogen

bonds) to A/T (weak, W, two hydrogen bonds) mismatches

can have a resolution bias in favor of S alleles resulting in

gBGC, a process that can alter base composition and genetic

diversity (Nagylaki 1983; Marais 2003; Duret and Galtier

2009; Mugal et al. 2015). Direct observations of gBGC are

restricted to a small number of taxa, such as human

(Arbeithuber et al. 2015), baker’s yeast (Saccharomyces cer-

evisiae) (Mancera et al. 2008), collared flycatcher (Smeds et al.

2016), and honey bees (Kawakami et al. 2019). Indirect evi-

dence exists for a wider set of species, including arthropods

such as brine shrimp (Artemia franciscana) and butterflies

from the Hesperidae, Pieridae, and Nymphalidae families

(Eyre-Walker 1999; Perry and Ashworth 1999; Meunier and

Duret 2004; Muyle et al. 2011; Pessia et al. 2012; Gl�emin

et al. 2015; Galtier et al. 2018).

The strength of gBGC can be measured by the population-

scaled parameter B¼ 4 Neb, where b¼ ncr is the conversion

bias, which is dependent on the average length of the con-

version tract (n), the transmission bias (c), and the recombi-

nation rate per site per generation (r) (Gl�emin et al. 2015;

Mugal et al. 2015). This means that we can expect a stronger

impact of gBGC in larger populations and in genomic regions

of high recombination. Nagylaki (1983) showed that we can
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understand gBGC in terms of directional selection, that is, the

promotion of one allele over another. This leads to a charac-

teristic derived allele frequency (DAF) spectrum, in which an

excess of W!S alleles- and a concomitant lack of S!W

alleles, are segregating at high frequencies in the population.

Nevertheless, the overall number of S!W polymorphism is

expected to be higher in most species because of the widely

observed S!W mutation bias, partially caused by the hyper-

mutability of methylated cytosines in the 50-CpG-30 dinucleo-

tide context (Lynch 2007). Preventing the fixation of

ubiquitous and possibly deleterious S!W mutations have

been proposed as one of the ultimate causes for gBGC

(Brown and Jiricny 1987; Birdsell 2002; Duret and Galtier

2009). However, although gBGC reduces the mutational

load it may also confer a substitutional load by favoring del-

eterious W!S alleles (Duret and Galtier 2009; Gl�emin 2010;

Mugal et al. 2015). This effect has led some authors to de-

scribe gBGC as an “Achilles heel” of the genome (Duret and

Galtier 2009; Mugal et al. 2015). Detailed analysis of a larger

set of taxonomic groups is needed to understand the preva-

lence and impact of gBGC. There is also limited knowledge

about the variation in the strength of gBGC within and be-

tween closely related species (Borges et al. 2019).

Here, we investigate the dynamics of gBGC in butterflies

and characterize the effect of gBGC on genetic diversity. We

use whole-genome resequencing data from 60 individuals

from six populations of three species of wood whites (genus

Leptidea). Wood whites show distinct karyotype- and demo-

graphic differences both within and among species (Dinc�a

et al. 2011; Lukhtanov et al. 2011; Dinc�a et al. 2013;

Lukhtanov et al. 2018; Talla, Johansson, et al. 2019; Talla,

Soler, et al. 2019). This includes, L. sinapis, which has the

greatest intraspecific variation in diploid chromosome number

of any animal, from 2n¼ 57, 58 in southeastern Sweden to

2n¼ 106–108 in northeastern Spain (Lukhtanov et al. 2018).

Our objectives are 3-fold. First, we infer the strength and

determinants of gBGC variation among Leptidea populations.

Second, we investigate the patterns of gBGC and mutation

bias across the genome, its determinants, and association

with GC content. Third, we detail the effect of gBGC and

opposing mutation bias on genetic diversity across a GC gra-

dient and consider the impact of linked selection and GC

content itself as determinants of genetic diversity.

Results

Samples, Genome, and Population Resequencing Data

The samples and population resequencing data used in this

study were originally presented in Talla et al. (2017). In brief,

60 male Leptidea butterflies from three species and six pop-

ulations were analyzed. For L. sinapis, 30 individuals were sam-

pled: ten from Kazakhstan (Kaz-sin), ten from Sweden (Swe-

sin), and ten from Spain (Spa-sin). Ten L. reali were sampled in

Spain (Spa-rea) and ten L. juvernica per population were col-

lected in Ireland (Ire-juv) and Kazakhastan (Kaz-juv), respec-

tively. Reads from all 60 sampled individuals were mapped to a

previously available genome assembly of an inbred, male,

Swedish L. sinapis (scaffold N50¼ 857kb) (Talla et al. 2017).

Detailed information on SNP calling can be found in Talla,

Johansson, et al. (2019).

Patterns of gBGC among Populations and Species

To infer the strength of gBGC in the different Leptidea pop-

ulations (fig. 1A and B), we calculated separate DAFs per mu-

tation category (GC-conservative/neutral: S!S and W!W,

collectively denoted N!N, GC-changing: S!W and W!S)

for segregating nonexonic variants. To polarize alleles, we

used invariant sites in one or two outgroup populations

(“strict” polarization; supplementary table S1, Supplementary

Material online). We used the four basic population genetic

models developed by Gl�emin et al. (2015) to obtain maximum

likelihood estimates of the intensity of gBGC (B¼ 4 Neb).

Model M0 is a null model with B fixed at 0. In contrast, B is

a free parameter in model M1. To correct for polarization

errors, we also used extensions of M0 and M1 (M0* and

M1*) with one error parameter included per mutation cate-

gory. The GC content in the ancestral genome was approxi-

mately 0.32. For all populations, the M1 model had a better fit

than the M0 model (likelihood-ratio tests [LRT] upper-tailed v2;

a¼ 0.05; df¼ 1), which indicates that gBGC is a significant

evolutionary force in Leptidea butterflies (fig. 1B). The quanti-

tative results from the M1 and M1* models were overall con-

gruent, and M1* had a better fit for all populations except

Swe-sin (LRT upper-tailed v2; a¼ 0.05; df¼ 3). When taking all

nonexonic sites into consideration and applying model M1*,

Spa-rea and Swe-sin had the lowest B (0.21), followed by Kaz-

sin (B¼ 0.22). Spa-sin, the population with the largest number

of chromosomes (fig. 2B), had a marginally higher B (0.24)

compared with the other L. sinapis populations. All these esti-

mates were lower than Irish- (Ire-juv) and Kazakhstani (Kaz-juv)

L. juvernica with B¼ 0.54 and B¼ 0.79, respectively (supple-

mentary table S2, Supplementary Material online).

We tried an alternative more “liberal” polarization (only

two outgroup individuals, see Materials and Methods) to

test the impact of the polarization scheme on the estimates

from the gBGC model. The results were qualitatively similar

but the polarization error rates were inflated compared with

the “stricter” polarization scheme (supplementary table S2

and text S1, Supplementary Material online). Thus, we used

the “strict” polarization scheme for subsequent analyses un-

less otherwise stated. We also tested the impact of including

and excluding ancestral CpG-prone sites as they may influence

the estimation of the S!W mutation bias (k) and B (supple-

mentary text S1, Supplementary Material online). All popula-

tions except Kaz-juv had the highest estimate of k at ancestral

CpG-prone sites, followed by all nonexonic sites and lowest

GC-Biased Gene Conversion in Butterflies GBE
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when excluding ancestral CpG sites (supplementary table S2,

Supplementary Material online). This difference could be

caused by hypermutagenic methylated cytosines but the

level of DNA methylation observed in Lepidopteran taxa is

low (Jones et al. 2018). However, the difference when exclud-

ing- and including CpG-prone sites was small (<0.25) and

consequently, we used all nonexonic sites in subsequent

analyses.

FIG. 1.—Leptidea butterflies show variation in the genome-wide strength of gBGC. (A) Phylogeny of the six Leptidea populations included in this study.

Node values represent support from 100 bootstrap replicates on sites. The phylogeny in (A) is based on a subtree from a maximum-likelihood phylogeny used

as a starting tree in figure 1 of Talla et al. (2017). A mounted specimen of a Leptidea sinapis is shown. (B) Estimates of the population-scaled coefficient of

gBGC (B¼4Neb). Circles represent point estimates from the original DAF spectra using model M1*, bars are mean values of B for the 1,000 bootstrap

replicates on segregating sites. Overlain and opaque violins are bootstrapped values for model M1* and underlain, transparent violins are estimates for model

M1.

FIG. 2.—Determinants of variation in the strength of gBGC among populations (A) Relationship between p and B. (B) Relationship between diploid

chromosome number and B (M1*). Points in (B) show the lowest and highest estimate of diploid chromosome number for each population. Insets in (A) and

(B) show phylogenetically independent contrasts of each respective axis variable based on the phylogeny in figure 1A. Contrasts for diploid chromosome

number were based on midpoint value.
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Determinants of gBGC Intensity Variation among
Populations and Species

The strength of gBGC is dependent on Ne and the conversion

bias b¼ ncr. Given that transmission bias, c, and conversion

tract length, n, require sequencing of pedigrees, we here fo-

cus on variation in genome-wide recombination rate, r to as-

sess variation in b. To understand the relative importance of

Ne and r, we correlated B with p (as a proxy for Ne) and diploid

chromosome number (as a proxy for genome-wide recombi-

nation rate) (Kaback et al. 1992; Stapley et al. 2017). Neither

genetic diversity, (p; P� 0.13, adjusted R2� 0.45), nor diploid

chromosome number (P� 0.35, R2� 0.05), significantly pre-

dicted variation in B among species in phylogenetically inde-

pendent contrasts (see insets in fig. 2A and B). Since Spanish

L. sinapis likely experienced massive chromosomal fission

events recently (Lukhtanov et al. 2011; Talla, Johansson,

et al. 2019; Lukhtanov et al. 2020), it is possible that B is

below its equilibrium value in this population. Excluding

Spa-sin yielded a positive relationship between chromosome

number and the intensity of gBGC, though above a signifi-

cance threshold of 0.05 (P� 0.07, R2� 0.79).

Level of Mutation Bias Varies among Leptidea Species

The GC content is determined by the relative fixation of S!W

and W!S mutations (Sueoka 1962), which is governed by

the balance of a mutation bias from S!W over W!S, and a

fixation bias from W!S over S!W. The latter may be caused

by gBGC only, but may also be observed at synonymous sites

due to selection for preferred codons (Galtier et al. 2018).

Protein coding genes make up only 3.7% of the L. sinapis

genome (Talla, Soler, et al. 2019) and potential selection on

codon usage will hence only affect genome-wide base com-

position marginally in this species. Using the DAF spectra of

different mutation classes allows not only estimation of B, but

also the mutation bias, k (Muyle et al. 2011; Gl�emin et al.

2015). We found that k (estimated from model M1*) varied

from 2.94 (e.g., Spa-sin) to 4.09 (Kaz-juv) (supplementary ta-

ble S2, Supplementary Material online). This means that the

S!W mutation rate is on average 3 to 4 times higher than the

W!S mutation rate in Leptidea butterflies. Applying the M1

model gave similar results. It is possible that the polarization

scheme which only allowed private alleles for the L. juvernica

populations, contributed to their high value of k. To test this,

we used the aforementioned “liberal” polarization. The

resulting k were approximately 3.5 and 3 for Kaz-juv and

Ire-juv, respectively, and approximately 3 for the L. reali and

L. sinapis populations, with only minor differences in k be-

tween the M1 and M1* models for all populations (supple-

mentary table S2, Supplementary Material online). This

indicates that the “strict” polarization scheme shape the

DAF spectra of the L. juvernica populations in a way unac-

countable for by the demographic ri parameters of the model.

However, this aspect of the polarization scheme alone cannot

explain the higher k observed in Kaz-juv compared with the

other populations (see supplementary text S1, Supplementary

Material online, for further discussion).

Patterns and Determinants of gBGC and GC Content
across the Genome

To understand the effects of gBGC throughout the genome,

we partitioned the polarized SNPs into centiles based on their

local (1 kb) GC content in the ancestral genome. The number

of SNPs in each centile ranged from 2,661 in Ire-juv to 21,140

in Spa-sin (supplementary table S1, Supplementary Material

online). The models were compared using LRTs on the aver-

age difference of all centiles between the reduced (M0) and

full (M1) model and between the models excluding (M1) or

including (M1*) polarization error parameters. M0 could not

be rejected in favor of M1 for both Ire-juv and Spa-rea. It is

possible that the lower number of SNPs per GC centile in

these populations increases variance and thus reduces the

fit of the M1 model, especially for Spa-rea which had the

lowest B (fig. 1B). However, both of these populations had

a genome-wide significant influence of gBGC, and will still be

considered in the following analyses. For all populations, M1*

was not significantly better than M1, indicating either a lack

of power for M1* or that the polarization error was negligible.

The strength of gBGC (B¼ 4 Neb) varied across GC centiles for

all populations with Swe-sin and Kaz-sin showing the lowest

standard error of the mean (0.009, table 1; fig. 3A and B) and

Ire-juv the highest (0.026). Because Ire-juv had the lowest

number of SNPs per centile, it is hard to disentangle sam-

ple—from biological variance but we note that Kaz-juv

showed a similar standard error (0.025). The average value

was overall congruent with what we observed in the analysis

among populations (supplementary table S2, Supplementary

Material online). We saw similar standard errors for the S!W

mutation bias, k (table 1; fig. 3C and D).

To investigate the impact of variation in Ne across the ge-

nome, we used genetic diversity, as a proxy for Ne and pre-

dictor of B, in separate linear regressions for each population

(supplementary fig. S1A, Supplementary Material online).

Swe-sin and Kaz-sin showed significant negative relationships

(P< 0.05), but limited variance explained (R2� 0.1 for both).

The regressions were insignificant (P> 0.05) for the other

populations (supplementary fig. S1A, Supplementary

Material online). Overall these results suggest that variation

among centiles in B could be dominated by differences in

conversion bias, b, instead of variation in Ne. An observation

that supported this conclusion is that B significantly (P< 0.05;

R2: 4–22%) predicted GC content in four out of six popula-

tions (fig. 3A and B). Here, GC content may serve as a proxy

for recombination rate, assuming that differences in GC con-

tent have been caused by historically higher rates of recom-

bination and thus stronger B. That two populations lacked a

relationship with GC content may be explained partly by a

GC-Biased Gene Conversion in Butterflies GBE
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Table 1

Estimates of k, B, and Relevant Measures of GC Content

Population k B GC 1/(1 1 k) GC 1/(1 1 ke2B) GC pmax GC CDSmin

Swe-sin 2.996 0.010 0.216 0.009 0.25 0.29 0.27 0.35

Spa-sin 2.976 0.008 0.216 0.010 0.25 0.29 0.31 0.34

Kaz-sin 3.006 0.011 0.206 0.009 0.25 0.29 0.28 0.34

Kaz-juv 4.156 0.019 0.796 0.025 0.19 0.35 0.29 0.34

Ire-juv 3.546 0.027 0.476 0.026 0.22 0.31 0.29 0.34

Spa-rea 2.986 0.012 0.166 0.011 0.25 0.28 0.31 0.34

NOTE.—Population-specific averages across GC centiles of k, B, equilibrium GC content under mutational equilibrium alone, GC(1/[1þ k]), and when taking B into account
GC(1/[1þ ke�B]), and the observed GC content in the ancestral genome for the centile with the highest average pairwise difference GC(pmax) and lowest density of coding
sequence (GC CDSmin). We also show standard error of the mean for k and B.

FIG. 3.—Relationship between B, k, and observed GC content in the ancestral genome. (A) Association between B and observed GC content in the

ancestral genome for the L. sinapis–L. reali clade, and (B) for the L. juvernica populations. Higher GC content was significantly consistent with greater B in all

populations except Spa-rea and Ire-juv. (C) Relationship between k and GC content was negative for all populations in the L. sinapis–L. reali clade. (D) Shows

the same as (C) but for the L. juvernica populations. Neither Kaz-juv nor Ire-juv showed significant associations between k and GC content. Lines in plots

represent significant linear regressions performed separately per population between the X- and Y variables.

Boman et al. GBE
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lack of power for Ire-juv, which had the lowest number of

SNPs per centile, whereas this explanation is less likely for Spa-

rea. Nevertheless, for a majority of the populations considered

here we saw a relationship between GC content in the an-

cestral genome and B, indicating that gBGC has been

influencing the evolution of GC content.

The mutation bias was significantly (P< 0.05, separate lin-

ear regression per population) negatively associated with ob-

served GC content in the ancestral genome for all populations

except Ire-juv and Kaz-juv (fig. 3C and D). To investigate if

there was an association between k and B, we performed

separate linear regressions per population predicting k with

B. Higher estimates of k across the genomes were consistent

with larger values of B for all populations (P< 0.05) except

Spa-sin and Swe-sin (supplementary fig. S1B, Supplementary

Material online). This indicates an inability of the model to

separately estimate these parameters or increased B in regions

more prone to S!W mutations. The former explanation is

unlikely given that the most common sign was negative in the

regressions between k and GC content.

Mutation Bias and gBGC Influence the Evolution of GC
Content

The equilibrium GC content in the presence of a S!W mu-

tation bias, but in the absence of gBGC, can be calculated as

1/(1þ k) (Sueoka 1962). The observed mean GC content was

0.32 for all populations, which is higher than expected under

mutational equilibrium alone across almost the entire genome

for all populations (fig. 4A). When accounting for gBGC (1/

[1þ ke�B]) (Li et al. 1987; Bulmer 1991; Muyle et al. 2011),

the observed mean GC content was higher than the predicted

equilibrium GC content in all populations except Kaz-juv (ta-

ble 1 and fig. 4B). This means that gBGC in general is not

strong enough to prevent GC content from decreasing in all

the considered Leptidea populations except Kaz-juv.

Segregating variants hold information on the evolution of

base composition. GC content will decrease if more S!W

than W!S mutations reach fixation and vice versa. We can

explore the fate of segregating variants by investigating the

skewness of the folded site-frequency spectrum (SFS) (fig. 4C)

(Gl�emin et al. 2015). GC content is at equilibrium if skewness

equals zero, evolves to higher GC content if the skew is pos-

itive, and decreases if it is negative. As expected from the

relationship between observed and equilibrium GC content

(fig. 4A and B), most of the centiles in all populations had a

negative skew, which shows that GC content is decreasing in

the Leptidea genomes (fig. 4C).

Pinnacle of Genetic Diversity Close to GC Equilibrium

We found a nonmonotonic relationship between GC content

and p (fig. 4D). The highest genetic diversity was observed

close to the predicted genome-wide GC equilibrium, with

diversity decreasing in both directions away from equilibrium

GC content (fig. 4D). To test if this pattern could result from

differential read coverage, we calculated the average read

count per base pair in each GC centile per individual (supple-

mentary fig. S2, Supplementary Material online). Read cover-

age was generally even across most of the GC gradient except

for two regions around 31% and 35% GC where the

L. juvernica populations show a signal consistent with dupli-

cations compared with the L. sinapis reference genome. In

addition, the centile with the greatest GC content showed

high coverage in all populations. This is expected given the

PCR bias against high and low GC regions in Illumina sequenc-

ing (Browne et al. 2020). With the exception of L. reali, the GC

content at the centile with the highest p, GC(pmax), was at a

level between the GC equilibrium defined by k alone, GC(1/

[1þ k]), and equilibrium when accounting for both k and B,

GC(1/[1þ ke�B]). GC(pmax) was lower for all populations than

the GC content of the centile with the lowest density of cod-

ing sequence, GC(CDSmin).

The Role of gBGC and Mutation Bias in Shaping Genetic
Diversity

Since gBGC mimics selection, the genetic diversity is directly

dependent on the interaction between the strength of gBGC

and the potential of an opposing mutation bias (McVean and

Charlesworth 1999). To understand how gBGC contributes to

genetic diversity in Leptidea, we estimated the effects of gBGC

and opposing mutation bias on genetic diversity by modeling

the effect of B on the SFS (McVean and Charlesworth 1999).

In the model, gBGC elevates the relative genetic diversity (prel)

in the presence of an opposing mutation bias (k> 1) by in-

creasing the equilibrium GC content compared with the case

when gBGC is absent (B¼ 0). This allows for a greater influx of

mutations as long as k> 1 (fig. 5A). In Leptidea, genetic di-

versity (p) showed a nonmonotonic relationship along the GC

range (fig. 4D). In contrast, given values of k around 3 and

above, relevant for Leptidea, the model assuming gBGC–mu-

tation–drift equilibrium (GMD) predicts a monotonic increase

of p in the 0.2–0.5 GC range (fig. 5A). Using the output from

the gBGC inference, we could predict prel values for each GC

centile and population from the GMD model (fig. 5B). The

results showed that gBGC and mutation bias has the potential

to elevate p compared with B¼ 0, by an average of 2.6% in

Spa-rea, 3.3% in Swe-sin and Kaz-sin, 3.5% in Spa-sin, 8% in

Ire-juv, and 14.7% in Kaz-juv. According to the GMD model,

this means that at GC equilibrium, gBGC will promote genetic

diversity in Leptidea butterflies.

We can decompose the GMD model into four spectra stan-

dardized by their respective mutational opportunity (fig. 5C)

to mimic the empirical data (fig. 5D). For example, the S!W

category is standardized by equilibrium GC content. The four

spectra include the GC-conservative/neutral spectra (W!W

and S!S) and the GC-changing spectra (W!S and S!W)

(fig. 5C). The contribution of GC-conservative mutation

GC-Biased Gene Conversion in Butterflies GBE
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categories to p is unaffected by equilibrium GC content. In

contrast, the influence of S!W on the SFS decreases as B

increases, and vice versa for W!S over the GC range. We

also tested the robustness of the model to variation in of k and

B by drawing values of both parameters from normal distri-

butions in which the standard deviation was determined from

observed values (GC centile analysis) from Swedish L. sinapis

(0.1 and 0.09 for k and B, respectively, supplementary fig. S3,

Supplementary Material online). Although some variation is

evident (especially for the S!W mutation class because of the

k in the numerator, see Materials and Methods), the overall

qualitative pattern is unaffected by the estimation error ob-

served in the empirical data.

To understand the role gBGC plays in the variation of p with

GC in Leptidea, we investigated the properties of the DAF spec-

tra separately for all four mutation categories mentioned above.

A majority of the segregating sites were GC-changing and

S!W contributed most to p across all centiles (Swe-sin:

fig. 5D, Others: supplementary fig. S4, Supplementary

Material online). All mutation classes showed a qualitatively

FIG. 4.—Observed GC content, equilibrium GC content and their association with k, B, and genetic diversity (p). (A) Observed GC content compared

with equilibrium GC content determined by mutation bias (k) alone. (B) Observed GC content compared with equilibrium GC content when accounting for

gBGC. Dotted lines in (A) and (B) represent x¼ y. (C) The skewness of the folded SFS shows the strong S!W bias in the segregating variation which increases

with observed GC content in the ancestral genome. Extrapolating from the distribution of skewness values onto the y¼0 line serves as a validation of the

estimated k. Dotted vertical lines represent the GC equilibrium under mutation bias alone, 1/(1þ k), for each population. (D) The association between

genetic diversity (p) and observed GC content. Points in all panels represent GC centiles.

Boman et al. GBE
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negative quadratic relationship between p and GC content

(fig. 5D and supplementary fig. S4, Supplementary Material

online). We therefore suggest that the roughly negative qua-

dratic curves of p over GC content are to some degree shaped

by factors shared among mutation classes. This means that

forces other than gBGC are the main determinants of the rela-

tionship between GC content and diversity (cf. fig. 5C and D). In

addition, we note that observed differences between W!W

and S!S diversity ask for a refined GMD model beyond binary

states W and S.

FIG. 5.—A model for genetic diversity under gBGC–mutation–drift equilibrium, predicted prel per population and p per mutation category. (A) Genetic

diversity relative to neutral (B¼0) across equilibrium GC content determined by B and k. Lines begin at B¼0 and end at B¼8. The mutation bias is held

constant. (B) Genetic diversity values predicted from the gBGC–mutation–drift equilibrium model using output from the inference of gBGC. Most of the

genomes for each population have values of B and k such that their relative strength boosts the long-term genetic diversity compared with B¼0. The lower

and upper limits of the box correspond to the first and third quartiles. Upper and lower whiskers extend from the top- and bottom box limits to the largest/

smallest value at maximum 1.5 times the interquartile range. (C) Components of the gBGC mutation drift model. Only results from k¼3 are shown. The

separate mutation categories were standardized by mutational opportunity, whereas “All” was standardized as in (A). The genetic diversity is here assumed

to be equal for N!N and W!S mutations (hN/hWS¼1). (D) Genetic diversity in Swedish L. sinapis measured by average pairwise differences (p) across

genomic GC content for all four mutation categories: S!S (SS), S!W (SW), W!S (WS), W!W (WW). The other populations are shown in supplementary

figure S4, Supplementary Material online.
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FIG. 6.—Relationship between p, CDS density, and GC content. (A) shows the relationship between CDS density and GC content for Swe-sin in four

nonoverlapping equidistant intervals of GC content. (B) instead shows the relationship between p and CDS density in the same bins separately for: S!S,

W!W, S!W, and W!S mutations. The fifth GC content bin is not shown because it includes only one centile. See supplementary figure S5,

Supplementary Material online, for the other populations. R2¼proportion of variation explained, k¼ slope of regression (times 103 for readability in B).

GC bins 1–4 shown left to right. Mutation categories from top to bottom row: S!S, W!W, S!W, and W!S.

Boman et al. GBE
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The Effects of Linked Selection and GC Content on
Genetic Diversity

Having rejected gBGC as a main contributor to p along the

GC gradient warrants the question: can the pattern be

explained by reductions in diversity caused by linked selec-

tion? Linked selection has previously been shown to affect

genetic diversity in butterfly genomes (Martin et al. 2016;

Talla, Soler, et al. 2019). Selection affecting linked sites will

reduce genetic diversity unequally across the genome

depending on the density of targets of selection and the

rate of recombination. In agreement with this, density of cod-

ing sequence (CDS density), which can be used as a proxy for

the intensity of linked selection in general but background

selection in particular (Lohmueller et al. 2011), was larger

where p was lower (fig. 6 and supplementary fig. S5,

Supplementary Material online).

In addition, regional variation in mutation rate will also

contribute to a heterogenous diversity landscape. We here

suggest that GC content influences mutation rate for three

reasons: 1) p varies conspicuously with GC content (fig. 4D),

2) the S!W mutation bias appears to be affected by GC

content (fig. 3C), and, 3) GC content has been shown to be

a major determinant of the mutation rate at CpG sites in

humans (Fryxell and Moon 2005; Tyekucheva et al. 2008;

Schaibley et al. 2013). Since guanine and cytosine are bound

by three hydrogen bonds, one more than for adenine and

thymine, it is believed that a higher local GC content reduces

the formation of transient single-stranded states (Inman

1966). Cytosine deamination, which leads to C/G!T/A muta-

tions, occurs at a higher rate in single-stranded DNA

(Frederico et al. 1993). Thus a higher GC content appears

to reduce CpG mutation rates on a local scale of approxi-

mately 2 kb (Elango et al. 2008). Mutation rate variation de-

termined by local GC content outside the CpG context is less

studied but negative correlations have been observed for

most mutation classes in humans (Schaibley et al. 2013).

To understand the relative contribution of GC content and

CDS density on variation in p, we first used quadratic regres-

sion analyses separately for each population and mutation

category. We started with a model including both linear

and quadratic terms for GC content and CDS density as

well as an interaction term and performed stepwise reduction

of insignificant predictor terms (supplementary table S4,

Supplementary Material online). In general, the best fitting

model for all populations and categories included linear terms

of GC content and CDS density, both showing negative rela-

tionships with p, where GC content was a stronger predictor

in most cases (higher absolute value of t).

Since GC content and CDS density were correlated with

each other, we separated the data into bins (fig. 6A). The GC

centiles were placed in five bins of equidistant GC content

and variants were separated by mutation category (fig. 6 and

supplementary fig. S5, Supplementary Material online). This

allows an investigation of the impact of CDS density on p
while keeping the GC range constant, and thereby disentan-

gle the relative contribution of GC content and CDS density

on variation in p. The fifth bin was not considered as it in-

cluded only a single centile with the highest GC content. First,

we studied the association between GC content and CDS

density (fig. 6A). GC content was negatively associated with

CDS density in bins 1 and 2, whereas bin 3 showed no rela-

tionship and bin 4 a positive correlation (fig. 6A). Second, we

considered the relationship between p and CDS density for all

mutation categories. Here, the general trend was negative,

across GC bins, populations, and mutation categories. In ad-

dition, the slopes got more negative with increasing GC con-

tent (fig. 6B and supplementary fig. S5, Supplementary

Material online).

For the GC-neutral mutation categories, we observed the

steepest negative slope when CDS density and GC content

had a positive relationship (bin 4, fig. 6A and supplementary

fig. S5, Supplementary Material online). This may be caused

by a joint effect of higher local GC content and CDS density

contributing to a strong reduction in genetic diversity (fig. 6A

and B). Despite a similar spread in CDS density, most popu-

lations showed fewer significant trends for bin 2. For Swe-sin,

the W!W mutation category even showed a positive slope

(fig. 6B). This is possibly a result of the negative relationship

between GC content and CDS density causing an antagonistic

response on diversity. When only GC content varied, p was

also reduced for some but not all mutation categories and

populations (bin 3, fig. 6 and supplementary fig. S5,

Supplementary Material online). When CDS density and GC

content had a negative relationship, the slope was shallow

but lower p was still consistent with a higher proportion of

coding sequence (bin 1, fig. 6). From these results, we con-

clude that both GC content itself and linked selection affect

diversity across the genome in Leptidea butterflies.

For the GC-changing mutation categories, we observed

some evidence that gBGC has affected genetic diversity

(fig. 6B and supplementary fig. S5, Supplementary Material

online). The decomposed GMD model—with separate cate-

gories standardized for mutational opportunity—predicts that

p will increase and decrease monotonically with GC content

for W!S and S!W mutations, respectively (fig. 5C). Our

results supported this conclusion for the S!W category

which showed a more pronounced negative slope compared

with the GC-neutral mutation categories (fig. 6B and supple-

mentary fig. S5, Supplementary Material online). However,

this pattern is also expected from the relationship between

k and GC content (fig. 3C). The W!S mutation category

showed slopes comparable with the GC-neutral categories

which means that it did not follow the expectation of the

GMD model. Linked selection could interact with the distor-

tion of the S!W and W!S DAF spectra caused by gBGC,

which would constitute an indirect effect on p by gBGC. An

argument against an indirect effect is that linked selection

GC-Biased Gene Conversion in Butterflies GBE
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would be weaker or diminish where recombination is the

highest, which most likely occur at greater GC content where

B is stronger (see Discussion, fig. 3A and B) (Pouyet et al.

2018).

Discussion

The Intensity of gBGC Varies Widely among Species

In this study, we used whole-genome resequencing data from

several populations of Leptidea butterflies to estimate gBGC

and investigate its impact on rates and patterns of molecular

evolution. Our data support previous observations that gBGC

is present in butterflies (Galtier et al. 2018). The genome-wide

level of gBGC (B) varied from 0.17 to 0.80 among the inves-

tigated Leptidea populations. In general, L. juvernica popula-

tions had levels of B in line with previous estimates of gBGC in

butterflies (0.69–1.16; Galtier et al. 2018), whereas the other

species had lower B, more in agreement with what has been

observed in humans (0.38) (Gl�emin et al. 2015).

Determinants of gBGC Variation in Animals

Regression analysis suggested that the overall strength of

gBGC among the Leptidea butterflies may depend more on

interspecific variation in genome-wide recombination rate

rather than differences in Ne. Galtier et al. (2018) also showed

a lack of correlation between B and longevity or propagule

size (used as proxies for Ne), across a wide sample of animals.

We observed that chromosome number (a proxy for genome-

wide recombination rate) was positively associated with B af-

ter excluding Spa-sin, which has recently experienced a

change in karyotype. Galtier et al. (2018) suggested that B

may vary among species due to interspecific differences in

transmission bias, c. This observation was supported by a

study on honey bees (Apis mellifera) showing a substantial

variation in transmission bias at noncrossover gene conversion

events (0.10–0.15) among different subspecies (Kawakami

et al. 2019). Analyses of noncrossover gene conversion tracts

in mice and humans showed that only conversion tracts in-

cluding a single SNP were GC-biased (Li et al. 2019). By con-

trast, in yeast, the SNP closest to the end of a conversion tract

determines the direction of conversion for all SNPs in a tract

(Lesecque et al. 2013). Both these studies suggest that the

impact of conversion tract length may be more complex than

the multiplicative effect on conversion bias assumed in the

b¼ ncr equation. The relative importance of recombination

rate, transmission bias, and conversion tract length, in diver-

gence of b among populations and species remains to be

elucidated.

Butterfly Population Genomics in Light of gBGC

Linkage maps for butterflies with high enough resolution to

establish whether or not recombination is organized in

hotspots are currently lacking (Davey et al. 2016; Davey

et al. 2017; Halldorsson et al. 2019). Nevertheless, recombi-

nation varies marginally (2-fold) between—but substantially

within chromosomes in two species of the Heliconius genus

(Davey et al. 2017). Related to this, chromosome length is

negatively correlated to both recombination rate and GC con-

tent in H. melpomene (Martin et al. 2016; Davey et al. 2017;

Martin et al. 2019), which is a pattern typical of gBGC (Pessia

et al. 2012). Shorter chromosomes experience on an average

more recombination events due to the observation of at least

one crossover per chromosome (or chromosome arm) per

meiosis in most animals (excluding, e.g., butterfly females

and Drosophila males) (Baker et al. 1976; Kaback et al.

1992). This, in turn, leads to a stronger signature of GC-

biased gene conversion on shorter chromosomes. The higher

GC content at 4-fold degenerate (4 D) sites on shorter chro-

mosomes in H. melpomene was interpreted to be a conse-

quence of stronger codon usage bias on short chromosomes

(Martin et al. 2016). An alternative explanation is that the

higher recombination rate per base pair observed on smaller

chromosomes leads to an increased intensity of gBGC and

consequently a greater GC content. Galtier et al. (2018)

showed significant positive correlations (r¼ 0.18–0.39) be-

tween GC content of the untranslated region and the third

codon position in genes of three butterflies. This supports the

conclusion that gBGC and possibly variation in mutation bias

across the genome, affects codon usage evolution in butter-

flies. The degree of mutation bias in H. melpomene is un-

known (as far as we know), but a k� 3 is possible given

that H. melpomene has a genome-wide GC content of

32.8% (Challis et al. 2017), which is similar to the ancestral

Leptidea genome and the L. sinapis reference assembly (Talla

et al. 2017; Talla, Johansson, et al. 2019). We conclude that

assessment of natural selection using sequence data should

also include disentangling the effects of potential confound-

ing factors like gBGC, especially in taxa where this mechanism

is prevalent (Bol�ıvar et al. 2016; Pouyet et al. 2018).

GC-Biased Gene Conversion, Mutation Bias, and Genetic
Diversity

Many studies have in the recent decades investigated the as-

sociation between genetic diversity and recombination rate

and have in general found a positive relationship (Begun

and Aquadro 1992; Nachman 1997; Kraft et al. 1998;

Cutter and Payseur 2003; Lohmueller et al. 2011; Langley

et al. 2012; Cutter and Payseur 2013; Mugal et al. 2013;

Corbett-Detig et al. 2015; Wallberg et al. 2015; Martin

et al. 2016; Pouyet et al. 2018; Rettelbach et al. 2019;

Talla, Soler, et al. 2019; Castellano et al. 2020). Somewhat

later, debates on the determinants of so-called GC isochores

in mammalian genomes gave rise to much research on the

impact of gBGC on sequence evolution (Eyre-Walker 1999;

Eyre-Walker and Hurst 2001; Meunier and Duret 2004;
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reviewed in Duret and Galtier [2009]). In this study, we em-

phasize that gBGC and the widespread opposing mutation

bias may also influence variation in genetic diversity across the

genome. This can be considered as an extended neutral null

model to which the importance of selective forces can be

compared.

Several empirical studies have noted the impact of gBGC

on genetic diversity. Castellano et al. (2020) observed that the

p of GC-changing mutations had a stronger positive correla-

tion with recombination than GC-conservative mutations.

Pouyet et al. (2018) observed that in genomic regions with

sufficiently high recombination to escape background selec-

tion, GC-neutral mutations were evolving neutrally, whereas

S!W mutations were disfavored and W!S mutations fa-

vored. This illustrates an important point that genomic regions

where the diversity-reducing effects of background selection

may be weak or absent, are the same regions in which gBGC

affects the SFS the most. Consequently, we suggest that fu-

ture studies on the impact of linked selection also consider the

impact of gBGC. A simple solution would for example be to

compare observed data with predictions from the GMD

model and consider GC-neutral and GC-changing mutations

separately (Castellano et al. 2020).

The impact of gBGC on genetic diversity is dependent on

the evolutionary timescale considered. For segregating var-

iants, gBGC can only decrease diversity. If we also consider

substitutions and model the evolution over longer timescales,

gBGC may indirectly increase genetic diversity. In the GMD

equilibrium model, gBGC raises genetic diversity indirectly by

increasing GC content, which in turn allows greater muta-

tional opportunity for S!W mutations. This can only be

achieved when there is a S!W mutation bias greater than

one and the intensity of gBGC is not too strong. Under iden-

tical conditions, gBGC may produce a positive correlation be-

tween recombination rate and genetic diversity through an

increase in GC content. The impact of this effect will depend

on the relative proportion of GC-neutral- and GC-changing

variants. In the GMD model, the diversity of GC-neutral var-

iants is unaffected by GC content. Although this is a reason-

able null model, it is also a simplistic view in light of the

diversity-reducing effects on GC-neutral variants imposed by

high GC content observed in our study. GC-neutral variants

are only independent of gBGC on the timescale of segregat-

ing variation. Over longer timescales gBGC and mutation bias

will cause GC-content to evolve towards an equilibrium which

may or may not be conducive for GC-neutral mutations.

Determinants of Genetic Diversity across the Genome

Identifying determinants of genetic diversity and evaluating

their relative importance remains a challenging task. First,

we usually lack information on the relationship between GC

content and mutation rate due to the sizable sequencing ef-

fort required to establish reliable estimates (Messer 2009).

Divergence at synonymous sites has been used as a proxy

for mutation rate (Martin et al. 2016; Talla, Soler, et al.

2019), but synonymous divergence is a biased estimator of

mutation rate in systems where B 6¼ 0 (Bol�ıvar et al. 2016). In

model organisms, such as humans, it has become feasible to

study mutation rates using singletons in massive samples

(>14,000 individuals; Schaibley et al. 2013), or through

large-scale sequencing of trios (J�onsson et al. 2017).

Second, the predictor variables of interest are often correlated

(e.g., GC content and recombination rate in the presence of

gBGC) which complicates interpretation for conventional

multiple linear regression approaches (Talla, Soler, et al.

2019). A solution to this problem has been to use principal

component regression (PCR) in which the PCs of predictor

variables are used as regressors (Mugal et al. 2013; Martin

et al. 2016; Dutoit et al. 2017). Using this method, Dutoit

et al. (2017) found that the PC which explained most variation

of p among 200 kb windows in the collared flycatcher ge-

nome was mainly composed of a negative correlation with

GC. Martin et al. (2016) considered 4 D sites in H. melpomene

and found that GC content was less important than gene

density. It is likely that synonymous variants show greater

impact of background selection compared with nonexonic

variants, given the tight linkage between synonymous sites

and nonsynonymous sites putatively under (purifying) selec-

tion. Instead of PCR, we opted for an alternative approach in

which the quadratic relationship between GC content and

CDS density was binned into separate categories showing

differential correlations. For example, in one bin, GC content

and CDS density showed a clear negative correlation

(k¼�0.96, bin 2, fig. 6A), and in this bin, the genetic diversity

was almost invariant. This would suggest that the concor-

dance between the GC(pmax) and GC(1/[1þ ke�B]) is a

byproduct of the interaction between mutation and linked

selection. However, given that GC(1/[1þ ke�B]) is close to

GC(pmax), the balance between gBGC and opposing mutation

bias in these populations is driving GC content to values which

favor diversity. In addition, by investigating the GC-neutral

and GC-changing mutation categories separately, we could

to some extent distinguish the effects of linked selection, from

the effects of gBGC. The effects of GC content in itself is

harder to separate from gBGC as it may differ between mu-

tation categories resulting in patterns congruent with predic-

tions from the GMD model. For example, the S!W category

showed stronger negative slopes across bins (especially evi-

dent in bin 4, fig. 6B) compared with the GC-neutral catego-

ries in line with both the GMD model and the observed

negative relationship between k and GC content for a major-

ity of the populations (fig. 3C). Nevertheless, the effects of

gBGC and mutation bias on p within the GMD model should

be interpreted with caution given that it describes p at GC

content equilibrium, whereas in reality, many centiles are

some distance away from equilibrium.
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Conclusion

In this study, we highlight that gBGC is a pervasive force,

influencing rates and patterns of molecular evolution both

among and across the genomes of Leptidea butterflies. We

further emphasize that gBGC shapes genetic diversity and

may—through fixation of W!S mutations—lead to a con-

comitant increase in diversity if opposed by a S!W mutation

bias. This means that positive correlations between genetic

diversity and recombination do not necessarily imply that se-

lection is affecting diversity in the genome. Especially if the

recombination rate is correlated with GC content, a pattern

typical of gBGC. Here, we reject gBGC as a main determinant

of diversity in Leptidea butterflies but recognizes its impact on

diversity along with linked selection and GC content. Our

model of how mutation bias and gBGC affect segregating

variation provides a part of the puzzle linking the evolution

of GC content to genetic diversity.

Materials and Methods

Data Set

We used 60 male Leptidea butterflies from three species and

six populations ranging from Kazakhstan in the east to Spain

in the west. Further information on parameters used for ge-

notype calling can be found in Talla, Johansson, et al. (2019).

Chromosome numbers for each population (if available) or

species were obtained from the literature (Dinc�a et al. 2011;

Lukhtanov et al. 2011; �S�ıchov�a et al. 2015; Lukhtanov et al.

2018).

Filtering and Polarization of SNPs

Allele counts for each population were obtained using

VCFtools v. 0.1.15 (Danecek et al. 2011). Only nonexonic,

biallelic SNPs with no missing data for any individual, and in

regions not masked by RepeatMasker in the L. sinapis refer-

ence assembly (Talla et al. 2017; Talla, Johansson, et al. 2019),

were kept for downstream analyses. The rationale behind

excluding exonic SNPs was to minimize the impact of selection

on the allele frequencies, and SNPs in repetitive regions were

excluded because of the reduced ability for unique read map-

ping (Sexton and Han 2019), and their higher potential for

ectopic gene conversion, which deserve a separate treatment

(Roy et al. 2000; Chen et al. 2007). Sex chromosome-linked

SNPs were considered like any other SNP. The lack of recom-

bination in female meiosis in butterflies (Maeda 1939; Turner

and Sheppard 1975; Suomalainen et al. 2009) and the re-

duced effective population size (Ne, three Z chromosomes

per four autosomes [A]) cancel out (Charlesworth 2012).

This leaves only their relative recombination rate (r) affecting

intensity of gBGC (B), assuming that effective sex ratios are

equal, and that conversion tract length (n) and transmission

bias (c) are identical for Z and A,

BZ

BA
¼

3Ne ncrZ
2
3

4NencrA
1
2

¼ rZ

rA
:

SNPs were polarized using invariant sites in one or two out-

group populations, again allowing no missing data (supple-

mentary table S1, Supplementary Material online). We denote

this polarization scheme “strict.” We also tested a more

“liberal” polarization approach where only the individual

with the highest average read depth per outgroup population

was used to polarize SNPs, allowing for one missing allele

per individual. Mean read depth per individual was obtained

using VCFtools v. 0.1.15 (Danecek et al. 2011). The liberal

polarization scheme was mainly used to test the impact of

polarization on estimation of the mutation bias (k) of S!W

mutations over W!S mutations (supplementary table S1,

Supplementary Material online). The “strict” polarization

was used for all analyses unless otherwise stated. We consid-

ered alternative (i.e., not in the reference genome) alleles as

the ancestral allele if all outgroup individual(s) were homozy-

gous for that allele (“strict” polarization and “liberal”

polarization).

Derived allele frequency spectra of segregating variants

were computed for the following categories of mutations;

GC-conservative/neutral (S!S and W!W, collectively

denoted N!N), strong to weak (S!W), and weak to strong

(W!S). All alternative alleles inferred as ancestral alleles were

used to replace the inferred derived reference allele to make a

model of an ancestral genome using BEDTools v. 2.27.1

maskfasta (Quinlan & Hall 2010). This method leverages the

information from invariant sites in all sequenced individuals to

decrease the reference bias when calculating GC content.

However, the ancestral genome was biased towards

L. sinapis given that it both served as a reference genome

and had more polarizable SNPs than the L. reali and

L. juvernica populations (supplementary table S1,

Supplementary Material online).

Inferring GC-Biased Gene Conversion from the DAF
Spectrum

To estimate the strength of gBGC, we utilized a population

genetic maximum likelihood model (Muyle et al. 2011;

Gl�emin et al. 2015), implemented as a notebook in

Mathematica v. 12.0 (Wolfram Research 2019). The model

jointly estimates the S!W mutation bias (k) and the

population-scaled coefficient of gBGC (B¼ 4 Neb), in which

b is the conversion bias. To account for demography, the

model introduces a nuisance parameter (ri) per derived allele

frequency class (i), except singletons, following Eyre-Walker

et al. (2006). The model also estimates the genetic diversity of

N!N and W!S spectra (hN and hWS, respectively) and com-

putes an estimate of the skewness of S!W and W!S alleles

in the folded site frequency spectrum. We applied four of the

implemented models, that is, M0, M0*, M1, and M1*, as the

Boman et al. GBE
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more extended models have large variance without prior in-

formation on heterogeneity of recombination intensity at a

fine scale (Gl�emin et al. 2015), which is currently lacking for

Lepidoptera. The M0 model is a null model that evaluates the

likelihood of the observed DAF spectrum for a population

genetic model without gBGC (i.e., B¼ 0). M1 extends this

model by including gBGC via the parameter B. M0* and

M1* are extensions of M0 and M1, respectively, where one

additional parameter per mutation class is incorporated, to

account for polarization errors. We analyzed separately all

nonexonic sites, and excluding- or including ancestral CpG-

prone sites, meaning trinucleotides including the following

dinucleotides: CG, TG, CA, NG, TN, CN, NA centered on

the polarized variant. N here means either a masked or un-

known base. Following Gl�emin et al. (2015), we used GC

content as a fixed parameter in the maximum likelihood esti-

mation. GC content in the repeat- and gene-masked ancestral

genome model was determined by the nuc program in the

BEDTools v.2.27.1 suite. Coordinates of repeats and exons

(including introns and UTR regions if available) were obtained

from Talla et al. (2017) and Leal et al. (2018), respectively. The

number of G and C bases at ancestral CpG-prone sites was

computed using a custom script and subtracted from the GC

of all nonexonic sites to obtain the GC content for the set

excluding ancestral CpG-prone sites.

GC Centiles

The polarized nonrepetitive, nonexonic SNPs of each popula-

tion were divided into 100 ranked bins based on local GC

content (GC centiles) in the repeat- and exon-masked ances-

tral genome. This means, all GC centiles represented un-

equally sized chunks of the genome with equal numbers of

polarizable SNPs. The GC content was estimated in 1 kb win-

dows of the reconstructed and repeat- and exon-masked an-

cestral genome (described above) using BEDTools v. 2.27.1

nuc (Quinlan and Hall 2010), correcting for the number of N

bases. To calculate the overall GC content of a centile, we

summed the GC content of each 1 kb window. Separate

DAFs were created per centile and parameters of gBGC and

mutation bias were estimated with the models previously de-

scribed. We also estimated the genetic diversity per GC centile

and population using the average pairwise differences (nucle-

otide diversity, p), and excluded masked bases when averag-

ing. We calculated p for all sites without any missing data,

separately for each population, using 1 as value for the max

missing (-mm) parameter in the –site-pi function of VCFtools

v. 0.1.15 (Danecek et al. 2011). We also calculated separate p
for polarized sites belonging to the following mutation cate-

gories (S!S), (W!W), (S!W), and (W!S) for each popula-

tion and centile, using a custom function in R (R Core Team

2020), based on the following parameterization,

pXY
obs ¼

Pn�1

i¼1

iðn� iÞxXY
i

n

2

 !
LX

;

where n is the sample size and xi
XY is the number of

sites with the ith derived allele frequency for mutations

from X!Y with X, Y 2 fW, Sg. LX is the number of AT or

GC sites in a certain centile for alleles of W or S origin,

respectively.

To average p, we used the number of unmasked

bases within the range of GC values defined by each centile.

The proportion of coding bases (CDS density) was used as a

proxy for the impact of linked selection in general, and back-

ground selection in particular. CDS density was estimated

separately for each population and centile by aggregating

the CDS content across all 1 kb windows for a particular cen-

tile. A custom-made script was used to assess the impact

of read depth on the pattern of p across GC centiles.

This script combined BEDTools v. 2.27.1 (Quinlan and Hall

2010) complement, genomecov, and intersect to calculate

the read depth per unmasked base pair. Average read-

depth per individual and centile was then plotted against

GC content to qualitatively assess if the population-specific

patterns followed what was observed for the association be-

tween p and GC.

Model of the Effect of gBGC and Mutation Bias on Genetic

Diversity

We consider a model in which the effect of gBGC (B) and

mutation bias (k) determines the level of p relative to a refer-

ence case where B¼ 0 (McVean and Charlesworth 1999). For

this purpose, we first define diversity p as the weighted sum

of the following mutation categories (S!W), (W!S), (S!S),

and (W!W),

p ¼ xGCpSW þ ð1� xGCÞpWS þ xGCpSS þ ð1� xGCÞpWW:

Then, under the assumption that GC-conservative/neutral

mutations are equal and can be summarized by N!N

diversity,

p ¼ xGCpSW þ ð1� xGCÞpWS þ pNN:

Next, we let xGC represent the equilibrium GC content deter-

mined by gBGC (B) and opposing mutation bias (k) (Li et al.

1987; Bulmer 1991; Muyle et al. 2011),

xGC ¼
1

1þ ke�B
;

and introduce relative diversity prel that is standardized for the

reference case (B¼ 0).
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prel ¼
2kxGC

1
1�eB þ 1

B

� �
þ 2 1� xGCð Þ 1

1�e�B � 1
B

� �
þ hN

hWS

2k
1þkþ

hN

hWS

:

From an empirical perspective this means that prel is the pre-

dicted p relative to the reference case (B¼ 0) when the ob-

served GC content is at a value determined by gBGC and

mutation bias (1/1þ ke�B). Here, the numerator of the equa-

tion for prelconsists of three terms each describing the relative

contributions of S!W, W!S, and N!N mutations. GC-

changing mutations have a diversity determined by k and B,

whereas the contribution of GC-conservative/neutral muta-

tions is affected by the ratio of N!N diversity (hN) over

W!S diversity (hWS). The model assumes gBGC–mutation–

drift (GMD) equilibrium.

Fitting the GMD model to data relies on obtaining a neutral

reference p value unaffected by demographic fluctuations in

population size, selection, or gBGC. Such a value is unattain-

able, except for the most well-studied model organisms

(Pouyet et al. 2018). Maximum observed genetic diversity,

pmax, could be used as a proxy for neutral diversity which

should be reasonable if the entire genome is reduced below

the neutral value through linked selection (Torres et al. 2020).

Another approach, which we employ here, is to fit the model

without estimating a neutral reference p. This allows us to

estimate how B, k, and the relative amount of GC-changing

mutations affect prel when GC content equilibrium is reached.

For the GMD model, we can also define prel values for the

separate mutation categories.

prel ¼ xGCpSW
rel þ ð1� xGCÞpWS

rel þ xGCpSS
rel þ ð1� xGCÞpSS

rel:

This means,

pSW
rel ¼

2k
1

1� eB
þ 1

B

� �
2k

1þ k
þ hN

hWS

; pWS
rel ¼

2
1

1� e�B
� 1

B

� �
2k

1þ k
þ hN

hWS

;

pSS
rel ¼

hSS

hWS

2k
1þ k

þ N

WS

; pWW
rel ¼

hWW

hWS

2c
1þþ

hN

hWS

These equations provide expectations for how the prel of

S!W, W!S, S!S, and W!W mutations vary with GC

content.

Statistical Analyses

All statistical analyses were performed using R v. 3.5.0-4.0.2

(R Core Team 2020). Linear models and correlations were

performed using default packages in R. We analyzed the rel-

ative contribution of GC content and CDS density to variation

in p per mutation category using quadratic regressions:

pXX
obs e GC contentþ ½GC content�2 þ CDS density

þ ½CDS density�2 þ GC content
: CDS density:

We performed model reduction such that insignificant predic-

tor terms where dropped until only significant terms

remained. Phylogenetic independent contrasts (Felsenstein

1985) were performed using the pic() function in the package

ape (Paradis and Schliep 2019). This package was also used to

depict the phylogeny in figure 1A. Other plots were either

made using base R or the ggplot2 package (Wickham 2016).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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