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THE BIGGERPICTURE Understanding the metabolic capabilities of cells is of profound importance. Micro-
bial metabolism shapes global cycles of elements and cleans polluted soils. Human and pathogen meta-
bolism affects our health. Recent advances allow for automatic reconstruction of reaction networks for
any organism, which is already used in synthetic biology, (food) microbiology, and agriculture to compute
optimal yields from resources to products. However, computational tools are limited to optimal states or
subnetworks, leaving many capabilities of organisms hidden. Our program, ecmtool, creates a blueprint
of any organism’s metabolic functionalities, drastically improving insights obtained from genome se-
quences. Ecmtool may become essential in exploratory research, especially for studying cells that are
not culturable in laboratory conditions. Ideally, elementary conversion mode enumeration will someday
be a standard step after metabolic network reconstruction, achieving the metabolic characterization of
all known organisms.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Themetaboliccapabilitiesof cellsdetermine their biotechnological potential, fitness inecosystems,pathogenic
threat levels, and function in multicellular organisms. Their comprehensive experimental characterization is
generally not feasible, particularly for unculturable organisms. In principle, the full range of metabolic capabil-
ities can be computed froman organism’s annotated genomeusingmetabolic network reconstruction.Howev-
er, current computational methods cannot deal with genome-scale metabolic networks. Part of the problem is
that these methods aim to enumerate all metabolic pathways, while computation of all (elementally balanced)
conversions between nutrients and products would suffice. Indeed, the elementary conversion modes
(ECMs, defined by Urbanczik and Wagner) capture the full metabolic capabilities of a network, but the use of
ECMs has not been accessible until now.We explain and extend the theory of ECMs, implement their enumer-
ation in ecmtool, and illustrate their applicability. This work contributes to the elucidation of the full metabolic
footprint of any cell.
INTRODUCTION

Metabolism underlies most cellular behaviors. Which chemical

compounds a microbe can exploit for growth, which products

it canmake and at which yields is essential information for under-

standing the microbe’s roles in ecosystems, its responses to

varying conditions, and its potentials for biotechnology and
This is an open access article und
bioremediation. In the case of pathogens, metabolic capabilities

are informative about the niches in which they can thrive. The

functioning of multicellular organisms relies on how the capabil-

ities of different cell types complement each other. A computa-

tional method that can enumerate all metabolic capabilities of

any cell, from its annotated genome sequence, is therefore of

key importance.
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In the pre-genomic era, a cell’s metabolic capabilities were

investigated using experimental physiological information and

elemental balancing of nutrients and products. Cellular meta-

bolism was seen as a black box: without having knowledge of

the metabolic details, so-called macrochemical equations were

calculated which specify the stoichiometry of the conversion of

nutrients into biomass (cells) and by-products.1–6 Precise mea-

surements of heat exchange, nutrient uptake, and product for-

mation were used to develop thermodynamic theories of cellular

growth,7 which led to the improvement of biotechnological pro-

cesses.5,8 These methods could not always be applied: they

were not exhaustive, and required experimental data and basal

knowledge ofmetabolic pathways. This information is often lack-

ing, in particular for unculturable and extremophile microorgan-

isms, or for cells that survive only in multi-species communities

or as part of a multicellular organism. In addition, when several

substrates can be consumed or multiple by-products can be

produced, a unique macrochemical equation cannot be derived

and the methods need to be augmented with experimental

data.3 Nowadays, in the post-genomic era, in which the genome

of any organism can be sequenced, the potential exists for

comprehensive and unsupervised enumeration of all macro-

chemical equations of any cell. Yet despite its great benefits,

no such method is currently used, partially because most efforts

focus on computation of a highly redundant capability set.

All metabolic reactions that can be catalyzed by a cell can be

determined from the metabolic-gene annotations of its genome.

This allows for the reconstruction of the metabolic network, which

can nowadays be done almost purely computationally9 (seeMen-

doza et al.10 for a recent review). The resulting genome-scale

metabolic networks, or genome-scale stoichiometric models,

have been determined for thousands of species. Since such a

model specifies all metabolic reactions, it determines all possible

pathways from substrates to products, which are conveniently

described by the set of all elementary flux modes (EFMs).11–16

The enumeration of all EFMs of large metabolic networks is not

possible due to a severe combinatorial explosion in their num-

ber,17 so that most research has focused on calculating only sub-

sets of EFMs.18–30 However, since many EFMs share the same

overall substrates-to-products conversion and, therefore, indicate

the same metabolic capability, their enumeration is not always

required. Instead, for many applications it suffices to focus on

all possible overall conversions that a cell can catalyze.

The complete metabolic capabilities of a cell can thus be stud-

ied by focusing on all conversions from substrates to products.

An exhaustive list of these is obtained by enumeration of the

elementary conversion modes (ECMs), defined in 2005 by Ur-

banczik and Wagner.31 ECMs are not defined in terms of the

metabolic routes through the network; rather, they are defined

in terms of the end results only: the feasible stoichiometries be-

tween substrates and products—the net conversion (see Box 1

for explanation). Thus, ECMs focus on the connection of an or-

ganism with its environment rather than on the metabolic path-

ways through which this is achieved.

ECMs can be seen as objects analogous to EFMs: the

ECMs form a minimal set that generates all steady-state sub-

strate-to-product conversions, i.e., all macrochemical equa-

tions, while the EFMs form the minimal set that generates all

steady-state flux distributions. However, the set of ECMs is
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much smaller than the set of EFMs: first, because many

different EFMs map to the same overall conversion and sec-

ond, because ECMs are objects in the lower-dimensional

space of external metabolite changes rather than in the space

of reaction rates. For these reasons, the combinatorial explo-

sion that prohibited the enumeration of all EFMs on a genome-

scale network might disappear when enumerating ECMs.

Although ECMs were already defined in 2005,31 and despite

their potential for broad applicability, we could find only one

study in which they were used.35 This might be because the

concept was never made accessible for a broad audience,

even though it was rigorously defined mathematically. Mostly it

might be due to the absence of a readily usable computational

tool that computes ECMs for general metabolic networks.

In this work, we unlock the potential of ECMs by making the

theory accessible and enumeration possible for any systems

biologist. We reformulate and extend the ECM theory of Ur-

banczik and Wagner,31 provide additional explanations in

Boxes 1, 2, and 3, and supply extensive Supplemental Infor-

mation wherein all enumeration steps are explained and math-

ematically supported. Most importantly, we present a Python-

based enumeration program called ecmtool. Our software

accepts metabolic models in the SBML format as input36

and gives an exhaustive and exact list of ECMs as output.

Ecmtool provides both an indirect and a direct method.

The indirect method is based on the algorithm proposed by

Urbanczik and Wagner31 and is fast for small- to medium-

scale networks; the direct method uses a novel algorithm

that lends itself to massive parallelization and is therefore scal-

able to much larger networks. We validate the correctness of

the computed ECMs on the medium-scale e_coli_core

network,37 and test the scope of ecmtool by enumerating

the ECMs of networks of various sizes and complexity. In

addition, we provide a hide method that allows focusing on

the conversions between a user-defined subset of the external

metabolites. This method enables the enumeration of ECMs

on genome-scale models. Finally, in a collaborative, parallel

study on rhizobial bacteroids, we show that ECMs can now

truly be applied to gain biological insight (Schulte et al., un-

published data currently under revision).

This work contributes to closing the gap between any cell’s

genotype and phenotype. It offers a computational toolkit for

the exhaustive determination of metabolic capabilities, and

should be particularly valuable when experimental characteriza-

tion is impossible because cells cannot be cultured in isolation.

RESULTS

Cells Have Orders of Magnitude Fewer Metabolic
Capabilities (ECMs) Than Flux Routes (EFMs)
The number of ECMs increases much slower with metabolic

network size than with the number of EFMs (Figure 2). For

example, the number of elementary modes in the e_coli_core

model37 reduces from 100,274 EFMs to 689 ECMs. The num-

ber difference is likely even greater for larger genome-scale

metabolic networks. This makes ECM visualization possible,

which facilitates their exploration and analysis (Figure 3). This

illustrates that it is more direct and efficient to enumerate

ECMs, which are the metabolic capabilities of a cell, instead



Box 1. Definition of ECMs

ECMs are theminimal building blocks of all net conversions bymetabolic networks, and were defined by Urbanczik andWagner.31

To explain their definition, we start with the stoichiometry matrix N of a metabolic network. Each column of N captures for one re-

action which metabolites are consumed, which are produced, and in what ratios. To facilitate the exposition, we here assume that

all reversible reactions are split into a forward and backward reaction, so that all reactions in N are irreversible. Some metabolites

are internal to the cell and somemetabolites are external; metabolites that occur both inside and outside the cell are considered as

two metabolites: one internal and one external. We denote the index set of internal metabolites by Int. The product of the stoichio-

metric matrix with the vector of reaction rates v gives the rates of change of all metabolite concentrations, i.e., the conversion _c =

Nv. Metabolism is assumed to be in steady state, so that all internal metabolite concentrations are constant: _ci = 0 for all i˛ Int. The

space of all steady-state conversions, and thus of all metabolic capabilities, is given by

C =

�
_c = Nv

���� _ci = 0 if i˛ Int; vj R 0 for all j

�
: (Equation 1)

This space is called the conversion cone and should not be confused with the flux cone which comprises all steady-state fluxes. In

fact, the conversion cone is the result of multiplying all points in the flux cone with the stoichiometric matrix (see Supplemental

Information Section 2 for further explanation).

Definition 1. The set of elementary conversion modes (ECMs) is the minimal set of conversions fecm1;.; ecmKg such that each

steady-state conversion can be written as a positive sum of ECMs, without the production of any external metabolite being

canceled in that sum.

Some readers might note that this definition of ECMs is similar to the definition of EFMs. This is because both can be defined as

elementary vectors (more precisely as conformally non-decomposable vectors31–34): ECMs are the elementary vectors of the con-

version cone, while EFMs are the elementary vectors of the flux cone. The values in an ECM indicate the changes of metabolite

concentrations, while the values in an EFM indicate reaction rates.

We will explain the two parts of Definition 1 using the toy network example of Figure 1, in which the external metabolites

A; B; and BM are interconverted via internal metabolites C, D, and E.

All steady-state conversions together form the conversion cone,which is a ‘‘convex polyhedral cone’’ (shaded area in Figure 1B). As

a consequence, the steady-state conversions can be fully described by the extreme rays of this cone (blue and green in the figure).

Indeed, any steady-state conversion can bewritten as a positive sumof the extreme rays. By the first part of Definition 1, thismeans

that these extreme rays are ECMs. The example, therefore, has at least two ECMs: A / B (blue) and 2B/ BM (green).

It is important to note that any positive sum of steady-state conversions is again a steady-state conversion. This makes sense in

biological terms: a conversion lies in the cone if there exists a set of reactions that gives rise to the conversion, and satisfies the

irreversibility and steady-state constraints fromEquation 1. So, if we have several sets of reactions that correspond to conversions,

their sum will correspond to the summed conversion. However, a sum in which some extreme conversions are added negatively

does not necessarily result in a feasible conversion, because the resulting conversion might not be feasible without using an irre-

versible reaction in the negative direction.

Figure 1. ECMs Are the Minimal Building Blocks of All Net Conversions by Metabolic Networks

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100177.

(A) The Elementary conversion modes for a small network are shown in blue, green, and red. Note that the red ECM can be written as a positive combination of

the blue and green ECM, but that this cancels the production of B.

(B) The cone of steady-state conversions is shown in gray and is spanned by the blue and green ECM. The red ECM lies in the interior of the cone on the

intersection with the _B= 0 plane.

(Continued on next page)
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Box 1. Continued

Now consider the conversion 2 A / BM (red). This conversion can be written as a positive sum of the two previously found

ECMs: 2( A/ B ) + ( 2 B / BM ) = ( 2 A / BM ). However, in summing these ECMs, the metabolite B is cancelled, since

it is produced and consumed. Since, the ECMs are intended to capture a complete set of minimal building blocks of biologically

realistic conversions, taking only the extreme rays does not suffice: we also want to describe the possibility of producing BM

from A without simultaneously excreting and consuming B. The second part of the ECM-definition therefore ensures that these

conversions are added to the set of ECMs as well: the ECMs should generate all conversions without cancellation of the pro-

duction of any metabolite. If we would take a combination of the blue and green extreme conversions, this would always (partly)

cancel the production of B, since B is produced in the blue conversion and consumed in the green conversion. Therefore, the

red conversion is also an ECM: since this conversion does not produce or consume B, a positive combination with the other

ECMs does not induce a cancellation. In total, we thus have three conversions, as listed in Figure 1A.

In mathematical terms, one could obtain the full set of ECMs by calculating the extreme conversions per orthant, and then taking

the union of all these extreme conversions. The requirement that no metabolite production is cancelled, implies that all steady-

state conversions can be written as a positive sum of ECMs in which each metabolite is either produced by all ECMs in the

sum, or consumed by all ECMs in the sum. In this manner, cancellations no longer occur (see 33).
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of EFMs, which are flux routes that often have an identical

metabolic capability, i.e., net conversion of cellular nutrients

into products (Figure 2A).

A major advantage of ECMs is that they can be computed for

metabolic networks for which EFM enumeration is not possible.

For example, we found 874,236 possible ECMs for the pathogen

Helicobacter pylori in a minimal medium (iIT_341;38 485 metabo-

lites and 554 reactions), while EFM enumeration ran into memory

errors, most likely due to the enormous number of EFMs in this

model (the full set of ECMs is available upon request). We note

that a set of hundreds of thousands of ECMs might appear diffi-

cult to analyze, but the user can easily filter out a relevant subset

once such a set is obtained (see Figure S1 for an example).

Summarizing, the enumeration of ECMs by ecmtool allows for

the determination of all the metabolic capabilities of metabolic

networks for which EFM enumeration is no longer feasible. We

did find that the number of ECMs in the genome-scaleEscherichia

coli network iJR90439 (761metabolites, 1,075 reactions) is still too

large to be computed by ecmtool. However, even for models of

this size ecmtool still provides useful information. In Box 2 and

Figures 5 and 6, we show how focusing on essential information

allows networks of this size to be analyzed.

Validation of ecmtool for ECM Enumeration
We validated the results of ecmtool in several ways. First, we

have computed the ECMs on many small models for which we

could still check the correctness and completeness of the results

by hand. Second, we used the e_coli_core-model, for which we

could still use the set of EFMs enumerated by efmtool, to validate

our results. The MATLAB code that we used for this validation is

provided as a supplemental file.

The correct set of ECMs should satisfy three properties: (1)

each ECM must be a steady-state conversion, (2) each ECM

must be an elementary vector, and (3) each steady-state conver-

sion must be a positive combination of ECMs without metabo-

lites being canceled in the sum.

We confirmed that all computed ECMs are steady-state

conversions by checking that the net production of internal me-

tabolites equals zero, and that there exists a combination of

metabolic reactions that gives rise to the ECM. Then, according

to the definition of ECMs given in Box 1, we proved that each
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ECM is elementary by showing that it cannot be written as a pos-

itive sum of the other ECMs without the production of any

external metabolite being canceled.

The third property was more difficult to validate, because how

can we prove for all steady-state conversions that they can be

written as a combination of ECMs? We chose to use the set of

EFMs calculated by efmtool. This set spans all possible

steady-state flux combinations the metabolic network allows.

For each EFM,we then calculated its overall conversion and tried

to write this conversion as a combination of ECMs. If we allowed

for an error of 10�7, each conversion could be decomposed into

ECMs. This errormargin was necessary because the results from

efmtool are affected by round-off errors. The computed ECMs

do not suffer from round-off errors because the computation

by ecmtool uses fractions only. Although this slows down

many of the calculations, this is necessary to maintain the accu-

racy of the computed ECMs. For example, for the Double

Description (DD) method it is known that round-off errors can

grow to a non-negligible size.40

Above, we explained and validated that ecmtool finds all

ECMs, given an annotated genome. The annotation is necessary

for the reconstruction of the metabolic network. Strictly

speaking, this minimally requires the annotation of the metabolic

genes. Since the annotation of a genome is not always complete,

we cannot guarantee that all metabolic capabilities encoded on

the genome are found.We can guarantee that all conversions are

found of the genome-derived metabolic network.

Focusing on Subsets of Metabolites Enables Genome-
Scale Calculation of Metabolic Capabilities
Focusing on the stoichiometric relations between metabolites

of major importance by hiding external metabolites of minor

importance is a powerful way to scale up the size of metabolic

networks that can be dealt with in ecmtool. The ECMs that

are obtained now span all possible relations between the

non-hidden metabolites but no longer give information about

what happens to the hidden metabolites (see Box 2 for a

more elaborate explanation). Importantly, the steady-state

assumption remains satisfied and all hidden metabolites can

be produced or consumed, even though this production or

consumption is not reported.



Figure 2. The Number of ECMs Remains Orders of Magnitude Lower than the Number of EFMs

(A) Because many different EFMs refer to the same overall metabolic capability, the number of ECMs is much lower than the number of EFMs.

(B) EFM-versus-ECM numbers in the e_coli_core network.

(C) Subnetworks of the e_coli_core network were selected (see Supplemental Information 10.1) to illustrate how the number of ECMs and EFMs scale with

network size.

ll
OPEN ACCESSArticle
To illustrate how the hide method can help one to focus on the

most important metabolic capabilities of a network, we focused

on the minimal growth strategies that the pathogen H. pylori can

employ. We took the iIT341 model for which we already calcu-

lated the full set of ECMs (see Figure S1) and hid all information

about product secretion (Figure 5). The 3,652 ECMs that were

obtained thus span all possible proportions in which the different

nutrients can be consumed. The results show that the only

mutual dependency between the uptake of different nutrients

is between D-alanine and L-alanine, one of which should always

be consumed. This independence indicates a modular design of

the nutrient uptake system of H. pylori, which might benefit its

flexibility when living in the human stomach.

If we focus only on the conversion of glucose and oxygen into

biomass, we could even compute the ECMs for a genome-scale

model of E. coli: iJR904,39 containing 761 metabolites and 1,075

reactions (Figure6).According to theauthors’definition, the result-

ing ECMs form a minimal spanning set of all feasible conversions

from glucose and oxygen to biomass. This implies that the set of

ECMs contains the most ‘‘extreme’’ conversions. Therefore, we

can use them to draw the full Pareto front between the biomass

yield onglucose andonoxygen, extending amethodusedbyCarl-

son and Srienc to genome-scale models.41 It turns out that this

Pareto front is completely determined by 12 ECMs. For each of

theseECMs,wecan find acombination of reaction rates that gives

rise to this conversion. In doing so, we obtain 12 states of meta-

bolism that fully determine E. coli’s flexibility to optimize its growth

rate in glucose- and oxygen-limited conditions. A flux balance

analysis whereby glucose and oxygen uptake is constrained and

biomass production is maximized will always result in a combina-

tion of these metabolic states.
Case Study: A Metabolic Capability Study of an
Unculturable Rhizobium Strain with ecmtool
Rhizobiaare soil bacteria thatcan induce formationof nodule struc-

tures on plant roots, in which they differentiate into non-dividing

bacteroids. Bacteroids fix atmospheric nitrogen into ammonia
and make this available to the plant in exchange for carbon in the

formof dicarboxylates.42Althoughametabolic networkwas recon-

structed, physiological information about rhizobial bacteroids is

lacking because they are difficult to isolate and extremely fragile.43

In addition, analyzing the metabolic network with an optimization

approach such as flux balance analysis44 is unfavorable because

it is unclearwhat theoptimizationobjectivewouldbe.Afterpersonal

correspondence,ecmtoolwasusedbySchulteetal. toenumerate

the metabolic capabilities of Rhizobium leguminosarum (Schulte

et al., unpublished data currently under revision). This aided in

exposing the role of oxygen supply in the observed amino acid

secretion and carbon polymer synthesis by bacteroids, and in

quantitatively reproducing the carbon cost of biological nitrogen

fixation.
DISCUSSION

Relevance of ECMs
Our method enumerates and quantifies, for any organism for

which a metabolic reconstruction has been made, all possible

stoichiometric relations between substrates, products, and

biomass. This method does not rely on any optimality assump-

tion, nor does it require experimentally obtained physiological

information. It uncovers the full metabolic capability of an organ-

ism, and with that the metabolic footprint that an organism may

leave in its environment.

ECM enumeration stands in a long tradition of methods that

pursue this goal.45 Some of these methods attempt to find an

exhaustive list of reaction pathways that a cell is capable of,

for example calculating extreme currents,46 EFMs,11 or elemen-

tary pathways.47 Thesemethods all have in common that scaling

to genome-scale metabolic networks is impossible because of

the rapid growth of the number of pathways with network

size.17 Other methods try to view the cell as a black box and

focus on what is consumed and what is produced, leading to

the concepts of macrochemical equations,3,5 direct overall reac-

tions,2 and eventually to ECMs.31 ECM enumeration is the only
Patterns 2, 100177, January 8, 2021 5



Figure 3. The Full Metabolic Potential of the

e_coli_core-Model

(A) The ECMs of the full model are shown as the

different columns; each row corresponds to a

different external metabolite. The color scale in-

dicates the stoichiometric coefficient of the

metabolite in the conversion: blue for production

and red for consumption. The coefficients were log-

transformed to allow for visualization of differences

in both large and small coefficients (details and R-

code can be found in Supplemental Information

10.2); small values are shown in gray while zero

values are white. Of the 689 elementary conver-

sions, 613 lead to the production of biomass. These

ECMs were normalized to fix the biomass produc-

tion at 1, while the other ECMs were normalized

such that the sum of absolute coefficients is 1.

(B) If we use the hide method, explained in Box 2, to

hide the production of metabolites, we get 15 ECMs

that span all possible ratios in which substrates can

be converted into biomass. This smaller set of

ECMs is easier to compute and easier to explore,

while the steady-state assumption is still satisfied in

the whole network. So even though the secretion of

products is not reported, it has been implicitly taken

into account, so that all relations between sub-

strates shown in (A) are captured in (B).

(C) If we use the tag method, also explained in Box

2, to report the activity of the pyruvate dehydroge-

nase (PDH) reaction, we find 36 ECMs that sum-

marize all possibilities. It can be seen that the PDH

reaction is not essential for growth but seems to be

necessary for efficient growth on glucose, since the

uptake of glucose is generally lower when PDH is

active.
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method that provides a complete set of metabolic capabilities,

takes reaction irreversibility into account, and scales to

genome-scale networks.

Applications of ECM Enumeration
The enumeration of ECMs facilitates the exploratory study of

metabolic networks: investigation of the ECMs could spark

new hypotheses and show unexpected connections. It therefore

complements optimization approaches like such as flux balance

analysis (FBA)44 that are efficient at answering questions already

known beforehand. Even in the case that optimization ap-

proaches are more efficient, elementary mode analysis provides

additional insight. For example, EFM analysis was used to un-

derstand an adaptive growth strategy of Lactobacillus plantarum

that was observed experimentally and predicted by FBA.48 In

this specific case, the analysis could be restricted to primary

metabolism which facilitated the EFM computation, but this re-

striction is often biologically unreasonable. In the future ECMs

could replace EFMs, such that this approach can bemore gener-

ally applied. Carlson and Srienc41 used the set of EFMs in a rela-

tively small E. coli model to investigate optimized E. coli growth

in carbon- and oxygen-limited conditions. Using this approach,

they could simplify their analysis by selecting four EFMs that

together determined all optimal growth strategies in different

glucose- and oxygen-limited conditions. In Figure 6 we showed

that with ecmtool this approach can be generalized to genome-

scale models.
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Most analyses ofmetabolic networks require a priori physiolog-

ical information that is often not available. For example, it is often

required to impose constraints on exchange fluxes to choose a re-

action rate that needs to be optimized, or at least to know which

metabolites can be produced.3 This hinders the investigation of

species that are insufficiently characterized and difficult to culture.

Moreover, for many organisms it is doubtful whether reaction

rates are optimized at all, for example for pathogens or the

composing cells of higher eukaryotes. ECMsdo not require exten-

sive information, solely a reconstructed metabolic network. The

decisive role that ECMenumeration can play in the study of uncul-

turable and non-optimized organisms is exemplified by the recent

application of ecmtool to investigate the symbiotic relationship

of unculturable bacteroids with plants (Schulte et al., unpublished

data currently under revision).

An overview of all feasible overall reactions might furthermore

be useful when studying interacting species, such as crossfeed-

ing species, host-pathogen interactions, or multi-species com-

munities. The possible interactions are determined by what is

consumed and produced by the individual species, which is

exactly the information offered by the ECMs. Indeed, knowing

the capabilities of one and the incapabilities of another might

lay bare dependencies on which a stable community is built.

Methods to Scale ECM Computation Even Further
Although ECM computation increases the size of models for

which metabolic capabilities can be charted, all ECMs of



Box 2. Hiding and Tagging Enables Focusing on the Most Important Metabolic Conversions

In ecmtool, the user can choose to compute only the stoichiometric relations between a subset of the external metabolites by

‘‘hiding’’ the other external metabolites. The resulting set of ECMs still gives a full summary of these relations and complies

with the steady-state assumption on the full metabolic network. The consumption and production of the hidden metabolites still

occurs but is not reported. As a result, the reported ECMs are not necessarily mass-balanced, which is emphasized by the ques-

tionmarks in Figure 4A. An ECMcomputedwith the hidemethod thus gives a ratio in which the non-hiddenmetabolites can appear

in a conversion, but it does not give any information about which hidden metabolites are consumed or produced in such a con-

version. In return, the hide method facilitates ECM enumeration on much larger networks because fewer ECMs are needed to

describe all conversion relations between the smaller set of non-hiddenmetabolites. Therefore, ECMenumeration with hiddenme-

tabolites can take an organism’s full metabolic complexity and summarize its metabolic capabilities regarding a few variables that

are of interest.

Figure 4. The Hide- and Tag-Methods Enable the Study of the Relations between the Most Relevant Metabolites and Reactions

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100177.

(A) Information about the production of F can be ignored if F is marked as internal and a virtual reaction (cyan) is added that converts metabolite F into nothing.

This strategy aids in fast computation, because the resulting set of ECMs is generally smaller (see also the worked-out example in Methods).

(B) Information about the usage of a reaction can be uncovered by coupling the production of a virtual metabolite (T1, shown in green). The coefficient of T1 in

the resulting ECMs denotes the rate of the reaction of interest.

In Figure 4A we show how metabolite F can be hidden in the ECM computation by adding a reaction that converts it to nothing

(sometimes called a demand reaction). In general, a metabolite is hidden by adding a reaction that creates it from ‘‘nothing,’’ turns

it into ‘‘nothing,’’ or both, depending on whether the metabolite can only be consumed, only produced, or both, respectively. The

metabolite is then marked as an internal metabolite, so that the steady-state assumption is imposed. The added reaction can al-

waysmake sure that the net consumption or production of themetabolite is zero. As a result, the hiddenmetabolite will vanish from

the computations at an early stage of the enumeration, thereby reducing computation time. We illustrate this in the worked-out

enumeration example in Box 3.

In the example of Figure 4A, we obtain the conversions between non-hidden metabolites A, B, and BM, ignoring the information

about whether or not F is produced during these conversions. If metabolites are hidden, the computed conversions should be in-

terpreted with care, acknowledging that the reported conversions are possibly not elementally balanced (since the hidden metab-

olites are excluded from this report). In the example, we emphasize that we do not knowwhether F was produced in the conversion

by adding question marks on the right side of the conversion notation. If metabolites that can be consumed by the cell are also

hidden, question marks should be placed on the left side as well.

Besideshidingmetabolitesofminor importance,wecankeep trackof reaction ratesofmajor importance. The tagmethod, suggested

byUrbanczik andWagner,31 adds a virtual externalmetabolite that is producedwhenever the reaction of interest is used. As a result,

one unit of virtual metabolite is produced when the tagged reaction runs at a rate of 1. Since an ECM reports the stoichiometric co-

efficients of all metabolites in the conversion, the coefficient of the virtual metabolite in the ECM reflects the rate at which the tagged

reactionmust run toproduce theconversion. Thismethodwill showtowhichconversions the reactionof interest contributes,possibly

providing valuable informationabout theessentiality of that reaction. In Figure 4B,weshowanexampleof such reaction tagging.One

of two reactions from C to D is extended to produce virtual metabolite T1, resulting in the reaction C/ D + T1. Any conversion that

uses the reaction of interest produces T1, and its coefficient in the conversion is equal to the reaction rate.

In Figure 3 we illustrate the hide- and tag-methods in the e_coli_core model to respectively highlight the different possible com-

binations of growth substrates, and the necessity of the pyruvate dehydrogenase reaction in these conversions.
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Figure 5. Focusing on Substrate Uptake Shows the Minimal Needs

of Helicobacter pylori

We computed the ECMs, shown as different columns, for the iIT341 model by

allowing for the uptake of all metabolites of a supposedly minimal medium

proposed by the developers of the model (MinII from Thiele et al.38). All output

metabolites were hidden, using the hide method outlined in Box 2. The uptake

of nine substrates is not shown here because these were equal for all ECMs,

indicating that these are directly coupled to biomass formation. The color scale

indicates the log-transformed coefficients of themetabolites in the conversion,

where metabolite production is shown in blue and consumption in red (details

and R-code can be found in Supplemental Information, Section 10.2). The

ECMs are normalized such that biomass production, if non-zero, is 1, other-

wise the sum of the absolute coefficients is fixed at 1. The ECMs were clus-

tered using hierarchical clustering. The block-like ordering of the ECMs in-

dicates that substrate usage of H. pylori is largely modular: the uptake of one

substrate seems independent of the uptake of another.

Figure 6. Few Conversions from Glucose and Oxygen to Biomass

Cover E. coli’s Full Flexibility
We calculated the ECMs for the genome-scale E. coli model iJR90439 by

hiding all external metabolites except for glucose, oxygen, and biomass. This

gives 12 ECMs that span all possible biomass yields on glucose and oxygen.

The dots show, for the 10 ECMs that produce biomass, the necessary glucose

and oxygen uptake to produce one unit biomass. The other two ECMs give the

most extreme conversions from glucose and oxygen to non-biomass prod-

ucts, consuming only glucose (red arrow) or consuming the most oxygen per

glucose (blue arrow). The convex combinations of biomass-producing ECMs

combined with positive multiples of the non-biomass-producing ECMs give all

feasible ways to produce one unit of biomass (yellow area).
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genome-scale networks with thousands of reactions can still not

be computed. We hope that this last scaling step can be made in

the future. Even if this step cannot be made, the hide method

described in Box 2 enables focusing on the most relevant set

of external metabolites while the steady-state constraints are still

satisfied in the whole network. In Figures 3 and 5 we illustrate

with an E. coli core model and a genome-scale H. pylori model

that thismethod can be used to obtain amuch smaller set of con-

versions that spans all stoichiometric couplings between the

user-defined external metabolites. This has not been possible

with any other method. Moreover, when we focused only on

the relations between glucose, oxygen, and biomass production,

the hide method allowed us to scale ECM computation to the

genome-scale E. coli model (Figure 6).

ECM enumeration ignores all information about the activities

of reaction rates. If the hide method is used, even the consump-

tion and production of the hidden metabolites is ignored. For

example, if we hide everything but glucose, oxygen, and

biomass, the ECMs show that the cell is capable of converting

glucose and oxygen into biomass in the reported ratios. Howev-

er, we obtain no information about which other metabolites can

be consumed and produced during this conversion. Therefore,

the ECMs obtained while hiding metabolites are generally not

elementally balanced, illustrated by the question marks in Fig-

ure 4A. This might limit their use if one is, for example, interested

in the thermodynamic properties of the conversion. However, for

each ECM of interest, some flux distributions that lead to it can
8 Patterns 2, 100177, January 8, 2021
be reconstructed. These flux distributions can then be used to

determine the overall conversion. The reconstruction could be

done by imposing the conversion ratios from the ECMas equality

constraints on the model. Solving an FBA problem would then

give one candidate flux distribution, performing a flux variability

analysis49 would give the feasible ranges of all fluxes, and it

might even be possible to find all elementary pathways that

lead to this ECM by computing the elementary flux vectors.34,50

In addition, if one is particularly interested in the activities of a

certain set of reactions in the conversions, this can be reported

by using the tag method, which is explained in detail in Box 2.

In Figure 3C we used the tag method to highlight the use of the

pyruvate dehydrogenase reaction in the e_coli_core network.

Conclusion
In thisworkwepresented ecmtool, a computational tool that cal-

culates all overall chemical conversions that a cell might cata-

lyze—all of its metabolic capabilities—from its metabolic network

alone. We hope that ECM enumeration will in the future become a

standard step after metabolic network reconstruction so that the

metabolism of all known organisms will be fully characterized.
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Box 3. A Worked-Out Example of ECM Enumeration with the Direct Method

To show how ECM enumeration works in practice, we will here work out some steps of the computation of ECMs for the network

given by the following stoichiometry matrix:

v1 v2 v3 v4 v5 v6 v7

N=

A
E
F
BM
B
C
D
G

2
66666666664

�1 �1 0 0 0 0 0
0 0 0 0 �1 0 0
0 0 0 0 0 �1 0
0 0 0 0 0 0 1
1 0 �1 0 �1 �1 0
0 1 0 �1 0 0 0
0 0 1 1 0 0 �1
0 0 0 0 1 1 �1

3
77777777775
;

(Equation 7)

which is also shown as the first network of Figure 7A. All reactions are assumed irreversible, external metabolites A, E, and F

can only be used as inputs, and BM can only be used as an output. For the enumeration we will use the direct intersection

method, and we will not apply any of the network compression steps (examples of these steps can be found in Supplemental

Information Section 5).

Figure 7. A Worked-Out Example of ECM Enumeration on a Small Network
For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.patter.2020.100177.

All steps are described in the main text. Metabolites that are underlined are marked as external. The metabolites for which we impose the steady-state

constraint in the next step are circled. Dotted arrows indicate conversions that were found to be redundant, and are thus deleted. (A) The network has two

Elementary Conversions: using either E or F to convert A into BM. (B) When we ignore the uptake of E and F by using the hide-method, the metabolic ca-

pabilities is summarized by just one ECM, converting A into BM.

The stoichiometry matrix gives a list of generators that generates all conversions before we have imposed the steady-state

constraints: Rð0Þ = N. On this collection of generators, we impose the steady-state constraint for metabolite B, i.e., _B =

0. In the stoichiometry matrix we can see that there are three reactions, v2; v4; v7, that do not produce or consume B

and therefore already satisfy this constraint. Of the other reactions, v1 produces B and v3; v5; v6 consume B. Each pair

of a producing and a consuming reaction generates a candidate that satisfies the steady-state constraint, so this gives us

133= 3 candidates:

d v1 + v5: A + E / G;

d v1 + v6: A + F / G;

d v1 + v3: A / D.

(Continued on next page)
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Box 3. Continued

All candidates are tested for redundancy by the adjacency test described in Supplemental Information Section 8.1. This test in-

dicates whether the candidate can be written as a positive combination of already existing reactions. The first two reactions

are non-redundant and are thus added to the next list of generators, but the third reaction can be written as a sum of v2 and

v4, and is therefore not added. We obtain

Rð1Þ =

A
E
F
BM
C
D
G

2
66666666664

v2 v4 v1 + v5 v1 + v6 v7
�1 0 �1 �1 0
0 0 �1 0 0
0 0 0 �1 0
0 0 0 0 1
1 �1 0 0 0
0 1 0 0 �1
0 0 1 1 �1

3
77777777775
; (Equation 8)

which is depicted as the second network in Figure 7A.

This process is then repeated for internal metabolites C, D, and G, eventually giving

Rð1Þ =

A
E
F
BM

2
664
�2 �2
�1 0
0 �1
1 1

3
775; (Equation 9)

containing all ECMs, namely 2A + E / BM , and 2A + F / BM .

In Figure 7B we illustrate the ECM enumeration when we use the hide method to ignore the consumption of E and F. Hiding these

metabolites is done by extending the metabolic network with reactions that create E and F from nothing, and marking the metab-

olites as internal. We thus get

v1 v2 v3 v4 v5 v6 v7 v8 v9

N=

A
E
F
BM
B
C
D
G

2
66666666664

�1 �1 0 0 0 0 0
0 0 0 0 �1 0 0
0 0 0 0 0 �1 0
0 0 0 0 0 0 1
1 0 �1 0 �1 �1 0
0 1 0 �1 0 0 0
0 0 1 1 0 0 �1
0 0 0 0 1 1 �1

0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0

3
77777777775
:

(Equation 10)

When we now start by imposing the steady-state constraints for metabolite E, we see that only v5 and v8 do not satisfy this

constraint. Combining these reactions gives the candidate v5 + v8: B / G, which is added to the new list of generators. When

we then impose the steady-state constraint for metabolite F, we get the same candidate v6 + v9: B / G, but since this is not a

new conversion it is not added to the list of generators. It can thus be seen that hiding metabolites E and F immediately reduces

the computational complexity, because now only one reaction from B to G remains while without the hide method there were two

such reactions. Moreover, after imposing the remaining steady-state constraints, we find only one ECM: 2A + ??/ G, where the

question marks indicate that we do not know whether more metabolites are consumed because this information is hidden.

Although it would not give problems in this example, we can in general not hide a metabolite by simply removing it from the

network. This is because information about whether the metabolite can be used as an input, as an output, or both would be

lost from the computation. With the current method, this information is stored in the directionality of the added reaction.
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Materials Availability

There are no physical materials associated with this study.

Data and Code Availability

The source code for ecmtool is freely available on GitHub at https://github.

com/SystemsBioinformatics/ecmtool, and can additionally be installed

through the Python package manager pip. A manual is available as Section

11 of Supplemental Information, which includes the commands for some

worked-out examples for which the results are available in the GitHub

repository.

This study did not generate any new datasets.
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Methods

Here, we will describe only the most important conceptual steps of the ECMs

computation. The method that was implemented in ecmtool is more elabo-

rately described and explained in Supplemental Information. In developing

this method we strongly benefited from the pioneering work by Urbanczik

and Wagner, who not only defined ECMs but also described many of the

enumeration steps. Unfortunately their enumeration tool, implemented in a

mixture of Mathematica, MATLAB, and C, no longer functions, but many of

the ideas can still be used. In the following, we will mention which conceptual

stepswere based on ideas fromUrbanczik andWagner andwhichwere added

by us.

https://github.com/SystemsBioinformatics/ecmtool
https://github.com/SystemsBioinformatics/ecmtool
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The Minimal Ingredients for Computing ECMs

To start the computation of ECMs, we need the following ingredients:

1. A stoichiometry matrix

2. Reversibility information of all reactions

3. Information on which metabolites are external or internal

4. Information on whether external metabolites can be produced,

consumed, or both

Our Python implementation can automatically extract these from an

SBML (Systems Biology Markup Language36) file. In the case that it is

not clear whether a reaction is reversible or not, the reaction can be

assumed to be reversible. Incorrectly marking a reaction as reversible

can only lead to some ‘‘false positives’’—computed ECMs that are in

fact not possible—but not to ‘‘false negatives.’’ Since marking a metabolite

as internal or external is sometimes ambiguous and context dependent, we

here use our own definition: a metabolite is internal whenever the steady-

state assumption should be met, so that its production and consumption

should balance out.

Splitting External Metabolites into Inputs and Outputs Enables ECM

Computation by Extreme Ray Enumeration

The ECMs, formally defined in Box 1, can be described as the elemen-

tary vectors32 in the space of all steady-state conversions. This space is given

by

C =

�
_c = Nv

���� _ci = 0 if i˛ Int; vj R 0 for all j

�
; (Equation 2)

where N is the stoichiometry matrix and Int the index set of internal metabo-

lites. We have, for simplicity, assumed all reactions to be irreversible, but

this is not necessary.

We first consider the case that the space of steady-state conversions is

contained in one orthant, i.e., that for each dimension, i, all conversions

are either non-negative ð _ci R0Þ or non-positive ð _ci %0Þ. In that case, the

elementary vectors coincide with the spanning rays: a well-defined minimal

set of vectors with which we can generate the cone by taking conical com-

binations (weighted sums with positive weights). Enumerating the extreme

rays of a polyhedral cone is a known mathematical problem described, for

example, by Fukuda.51 However, the set C is generally not contained in

one orthant, because some external metabolites can be used as an input

( _ci<0) in some conversions, and as an output ( _ci>0) in others. This adds

ECMs that are not spanning rays of C, so that extreme ray enumeration is

no longer enough.

We devised a new method to solve this problem: we extend the network

slightly to make a new C that is contained in one orthant. Let Aex be an

external metabolite that is both an input and an output. We connect Aex to

two virtual metabolites, Aex;in and Aex;out, through two irreversible reactions:

Aex;in/Aex and Aex/Aex;out. Finally, we mark Aex itself as an internal metab-

olite, such that it has to be kept in steady state. As a consequence, conver-

sions in which Aex was produced must now produce Aex;out to maintain the

steady-state assumption. Likewise, conversions in which Aex was consumed

must now consume Aex;in. As such, all information about Aex is stored in the

production of Aex;out and the consumption of Aex;in, while these new external

metabolites can only be produced or consumed. Therefore, the new space of

steady-state conversions is contained in a single orthant, so that we can pro-

ceed with the ECM computation by enumerating the spanning rays of this

space. After the calculation we can then undo the splitting of metabolites

so that we obtain the full set of ECMs (we prove this in Supplemental Infor-

mation Section 3.3).

Finding the ECMs Is Finding a Generator Representation of C
The space of steady-state conversions C is a so-called pointed polyhedral

cone. Such a cone can be described in two ways: with an inequality represen-

tation or with a generator representation.52

The inequality representation is a set of vectors fa1;.;aMg that give the

bounds that constrain the cone. All elements in the cone _c˛C must satisfy

ai, _cR0 for all i. Or, as a matrix equation,
C =

8>><
>>: _c˛Rn

�������� A
_cR 0; A =

2
664
aT
1

«

aT
M

3
775
9>>=
>>; ðinequality representationÞ:

(Equation 3)

In the generator representation one gives a set of vectors, fr1;.rKg, with

which all elements in the cone can be generated by taking conical

combinations:

C = f _c = Rl j li R 0; R = ½ r1 . rK �g ðgenerator representationÞ:
(Equation 4)

Since we have split the external metabolites into inputs and outputs

before, computing the ECMs now amounts to obtaining a minimal generator

representation of C, because the generators, r i, are then precisely the

ECMs.

TheMain Computation Step: Impose Equality Constraints on a Large

Set of Generators

Following Urbanczik and Wagner,31 we will start the computation with a cone

that is too large, but for which we already have a generator representation. To

be precise, we will start with the cone generated by the columns of the stoichi-

ometry matrix:

C0 = f _c = Nl j li R 0g: (Equation 5)

This cone is the space of all conversions that can result from combinations of

reactions of the metabolic network, regardless of whether these conversions

meet the steady-state requirement or not. Therefore, this cone does contain

the steady-state conversion cone, C, because it contains all possible conver-

sions in steady state. However, to get a good description of C we should still

impose the steady-state constraint. To compute the ECMs, we should there-

fore keep track of how our set of generators changes while we impose the

steady-state equalities _ci = 0 for each internal metabolite.

Concluding: we start with a set of generators of the cone C0, we impose the

set of equalities given by _ci = 0, and are then interested in the generators of the

resulting cone. We have implemented two methods for this main part of the

computation: an indirect method, which was extended from suggestions in

literature,31,51 and a direct method, which we developed ourselves. These

methods are described elaborately in Supplemental Information Sections 7

and 8, but we will also briefly explain both below. We chose to implement

both methods because their merits complement each other. The indirect

method is fast on small- to medium-scale networks, and might therefore be

preferred over the direct method. The method is called indirect because it first

computes a large intermediate result, which is then used to compute the

ECMs. However, the intermediate result might be much larger than the final

result, so that the indirect method can run intomemory issueswhile calculating

the intermediate result, even though the final result is not that large. Our newly

developed direct method performs better on larger networks, and especially

when many metabolites are hidden using the hide method, because it avoids

such large intermediate results.

The Indirect Method

As we will explain below, the indirect method twice uses the DD method.40,53

The DD method computes a minimal set of generators from an inequality rep-

resentation of a cone. This part of the computation is done using polco.54

Although our actual starting point is a generator representation of C0, it is
useful for now to imagine that we already have an inequality representation

of C0. We will later explain how we obtain this representation. This inequality

representation would be a set of vectors h1;.hM, such that

C0 =

8>><
>>: _c˛Rn

�������� H
_cR 0; H =

2
664
hT
1

«

hT
M

3
775
9>>=
>>;: (Equation 6)

Given this representation, it is easy to impose a steady-state constraint _ci =

0, by adding the elementary unit vector be i = ½0;/; 0; 1; 0;/; 0�T both positively
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and negatively to the set of inequalities. This enforces 0%be i, _c= _ci and 0% �bei, _c = � _ci, such that we have actually imposed _ci = 0. In our implementa-

tion, we have sped up the computation by imposing the steady-state

constraint through removing the ith column from the inequality constraint ma-

trix H. We prove in Supplemental Information Section 7.3.1 that this is equiva-

lent. Removing these columns can make many of the rows in the constraint

matrix redundant. For this, we have developed a redundancy removal algo-

rithm that minimizes the size of the inequality constraint matrix (see Supple-

mental Information Sections 5.6 and 7.3.3).

Comparing Equations 2 and 6, we see that by imposing these steady-state

constraints for all internal metabolites we go from an inequality representation

for C0 to an inequality representation of the cone of steady-state conversions C.
From this, we can use the DD method to compute a minimal set of generators

for this cone, yielding the ECMs.

It remains to be shown howwe obtain an inequality representation of C0 from
the generator representation we start with. For this, we assume that C0 has a

dual cone associated with it: C�0, which has two important properties (see Sup-

plemental Information Section 1.3 for more information and explanation):

(1) the dual of the dual cone is again the cone: ðC�0Þ� = C0;
(2) the vectors in the generator representation of a cone form an inequality

representation of the dual cone, and vice versa: genðC0Þ = ineqðC�0Þ.

Our computation starts from a generator representation of C0 (Equation 5),

but by property 2 this is also an inequality representation of its dual C�0. By
applying the DDmethod on this inequality representation, we can find a gener-

ator representation of C�0. This generator representation is, again by property 2,

an inequality representation of the dual of this dual cone. By property 1, we

have thus obtained an inequality representation of C0, which was exactly

what we needed. The steady-state constraints can now be imposed and the

ECMs computed, as explained above.

Note that this indirect method heavily relies on the DD method. We found

that polco54 functions well and is reasonably fast, but can run into memory is-

sues when the networks for which we try to compute the ECMs get too large.

We found that these memory issues were caused by the size of the inequality

representation needed to describe C0, i.e., the issues arise in the first applica-

tion of the DD method. This therefore causes a computational limitation even

though the generator representation of C (which we are eventually after) can be

much smaller. This lack of control of the size of our intermediate results forms

an important disadvantage of the indirect method. Therefore, we developed

the direct method for the computation of ECMs for larger networks.

The Direct Method

Just as the indirectmethod, the directmethod starts with the cone C0 introduced
in Equation 5, generated by the columns of the stoichiometry matrix N. We

collect these generators in a matrix Rð0Þ. We then iteratively impose the

steady-state constraints, _ci = 0, for all internal metabolites i. Imposing such a

steady-state constraint means that we take the intersection of the cone C0
with the hyperplane _ci = 0. The intersection is again a cone, called Cð1Þ, which

is generated by a new set of generators that we collect in amatrixRð1Þ. Proceed-
ing withRð1Þ and imposingmore steady-state constraints, we will eventually end

up with a set of generators for the steady-state conversion cone C.
One such iteration thus starts with a set of generators of Cði�1Þ, collected in

Rði�1Þ. Now, we distribute these generators into three groups—a plus-group, a

zero-group, and a minus-group—depending on whether the generators have

_ci>0, _ci = 0, or _ci<0, respectively. The generators in the plus- and minus-groups

do not satisfy the steady-state constraint, and should therefore be dropped. How-

ever, each combination of a plus-generator with a minus-generator can provide a

candidategenerator thatdoessatisfy _ci = 0.Thesecandidates, combinedwith the

generators that were already in the zero-group,must contain all generators of CðiÞ.
However, when we combine all generators from the plus-group with the

minus-group to create new generators, we will not get aminimal set of gener-

ators. In other words, the cone CðiÞ could also be generated by a smaller num-

ber of generators. This might not seem like a large problem, but the number of

unnecessary generators (also called redundant generators) grows exponen-

tially with the number of iterations, quickly causing computational infeasibility.

Therefore, we have developed an adjacency test. This test determines for each

candidate, i.e., an appropriate combination of a plus-generator with a minus-
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generator, whether it is redundant. It does so by checking if the candidate can

be written as a combination of other generators. If so, the candidate is redun-

dant and should be left out of RðiÞ. This test is implemented by performing a

linear optimization for each candidate. In Supplemental Information Section

8.1 we have added figures to explain our method, and also elaborate on the

linear optimization and explain how we optimized it to be fast enough.

Although performing many linear optimizations is in principle a very slow

process, there is an important advantage: the different optimizations can be

done completely independently. Therefore, we were able to parallelize this

direct method so that it can now be run on large computation clusters.

Network Compression Facilitates ECM Computation on Large

Networks

ECM theory focuses on the overall conversions between external metabolites

instead of on how these conversions come about internally. This distinction

can be exploited to simplify the network even before we start the main compu-

tation steps described above. We have implemented several compression

steps that together bring large networks back to aworkable size. Most of these

compression steps were suggested by Urbanczik and Wagner.31 We have

added the removal of cycles, the removal of redundant reactions, and part

of the removal of infeasible reactions. In Supplemental Information Section 5

we provide proofs and more extensive explanations.

Infeasible Reactions Can Be Removed. The flux vectors that give rise to the

ECMs should satisfy the steady-state and the irreversibility constraints. If we

can prove that a reaction can never be active in a solution that meets both

of these constraints, this reaction can be safely removed. In principle, the

feasibility of a reaction can be tested by running a linear optimization: for reac-

tion iwewould maximize vi such that vjR0 for irreversible reactions j, and such

that Nintv = 0, where Nint is the part of the stoichiometry matrix corresponding

to internal metabolites. If the optimal solution does not give vi strictly larger

than zero, then reaction i is infeasible and can be removed from the network.

In Section 5.1 of Supplemental Information we describe a computationally effi-

cient way of achieving the same.

Redundant Reactions Can Be Deleted. We can delete redundant reactions; a

reaction is called redundant if it can bewritten as a conical combination of other

reactions. Because the function of these reactions can always be replaced by

the combination of the other reactions, it does not add functionality to the

network and can therefore be removed. Redundant reactions in systems with

fewer than about 10,000 reactions can be removed using a program called re-

dund from lrslib,55 so that this suffices during this compression step. As we

have mentioned above, we also apply redundancy removal during both the

direct and the indirect method, and here the number of reactions can become

much larger than 10,000. This is the reason why we also developed our own

parallelizable redundancy test (see Supplemental Information Section 5.6 for

an explanation).

Reversible Reactions Can Be Used to Cancel a Reaction and a Metabolite.

Each reversible reaction can be used to cancel itself and one metabolite it con-

nects to. Say that a reversible reaction, R1, produces an internal metabolite A,

and say that there are several other reactions producing or consuming A. We

prove in Section 5.3 of Supplemental Information that we can, without changing

the ECMs of the network, add or subtract reaction R1 to these other reactions

such that the production or consumption of A is canceled. After doing this for all

reactions connected toA,R1 is theonly reaction left that producesA. This implies

that no reaction flux ispossible throughR1 in a steady-state solution, because the

production of A cannot be compensated by another reaction. Therefore, we can

delete both R1 and A from the network without affecting the ECM results.

Dead-EndMetabolites andConnectingReactionsCanBeDeleted. Sometimes

an internal metabolite can only be produced and not consumed, or vice versa. In

this case, the reaction flux through the reactions connected to this metabolite

has to be zero in any steady-state solution. Therefore, we can delete the metab-

olite and all connecting reactions without affecting the set of ECMs.

Reactions with a Unique Function Can Be Used to Cancel a Reaction and a

Metabolite. Say that we have a reaction R1 which is the sole reaction that

produces a metabolite A, but that there are several reactions that consume

A. Then, again without affecting the set of ECMs, we can add R1 to these

consuming reactions such that the consumption of A is exactly canceled.

The reaction R1 is now the only reaction left that producesA, and can therefore

not be active in a steady-state solution. We can thus cancel both R1 and A.
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Cycles of k Reactions Can Cancel k � 1 Reactions and Metabolites. A cycle

is a set of reactions that can be used in a certain ratio such that nothing is pro-

duced or consumed. Say that the reactions R1;.;Rk form a cycle, so that with

appropriate weights li we have l1R1 +/+ lkRk = B/B. In addition, say that

R1 produces an internal metabolite A. In Section 5.5 of Supplemental Informa-

tion we show that we can now use a trick similar to what we used with the

reversible reactions. We use l1R1 as the forward reaction and l2R2 + /+

lkRk as the backward reaction to cancel the production and consumption of

A. After doing this, R1 will again be the only reaction producing A, so that we

can delete both R1 and A from the network. Since we compensated for the ac-

tion of R1 in the rest of the network, we will be left with a cycle using the reac-

tions R2;.;Rk , on which we can use the same trick again. In this way, we can

delete k � 1 reactions and k � 1 metabolites.

The ECM Computation Was Implemented in Python

We implemented our algorithms in a publicly available Python program called

ecmtool. It is freely available on GitHub at https://github.com/

SystemsBioinformatics/ecmtool, and can additionally be installed through

the Python package manager pip. The direct and indirect computation

methods are both available within the program. A manual is available as Sec-

tion 11 of Supplemental Information, and some worked-out examples

are given.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100177.
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