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Micromechanical resonators are promising replacements for quartz crystals for timing and frequency
references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and
low power consumption. To be used in high performance reference application, resonators should obtain a
high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties,
geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic
resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor
and frequency product (Q-f ). Here, we describe the physics that gives rise to the quantum limit to the Q-f
product, explain design strategies for minimizing other dissipation sources, and present new results from
several different resonators that approach the limit.

M
icromechanical resonators have become viable timing and frequency references1,2. Miniaturization and
compatibility with electronic fabrication potentially reduce size and cost of attaining high performance
on-chip oscillators3. Resonators have been realized with ultra-stable frequency4 and high quality factor

(Q) critical for high performance reference oscillators1,3. High-Q performance is limited by the mechanisms that
dissipate the mechanical energy of the resonator.

Energy is dissipated in micromechanical resonators through several mechanisms such as air damping, clamp-
ing loss and thermoelastic dissipation (TED). These loss mechanisms are essentially classical in nature. Air
damping refers to the loss of energy to the air molecules surrounding the resonating structure5 and is the
dominant energy loss mechanism in low frequency resonators that are not operated in vacuum. Clamping loss
is the energy lost to the anchor from a resonator. The energy loss through the anchor depends on the design of the
stem connecting the resonator to the anchor6–10, and is usually mitigated by symmetric operation of multiple
elements such that the forces and moments at the anchor sum to zero. TED11,12 is a coupled thermo-mechanical
phenomenon, wherein strain-induced temperature gradients induce thermal transport and energy loss. Though
the origin of TED can be traced back to phonon interactions, it is possible to model this effect purely based on
classical heat transfer and the resulting entropy generation12. For this set of mechanisms (air damping, anchor loss
and TED), the total energy dissipation can be significantly reduced by appropriate design of the resonator and
operation in vacuum. Another energy loss mechanism – described as the Akhiezer effect (AKE) – arises from
quantum mechanical phonon processes and presents a fundamental upper limit to the Q-f product for resona-
tors13, depending only on the properties of the resonator material.

‘‘Quantum energy dissipation’’ in vibrating solids arises due to scattering (AKE) and transport (TED) of
phonons. To understand the fundamentals of these processes, we begin by considering a crystalline solid at room
temperature. The solid may be represented by an array of atoms held near their equilibrium positions by
interatomic forces; this array of atoms has quantized vibrational modes referred to as phonons14. Phonons have

wavelength (l), energy (v), and momentum (~k~2p=l); the relationship between the frequency of the mode and

the wavelength of the mode is referred to as the dispersion relation vs
~k
� �

, and is approximately linear for small

values of v and~k.
At equilibrium, phonons modes are populated according to the Planck distribution. If the entire solid is

subjected to a longitudinal elastic vibration, such as occurs during operation of a micromechanical oscil-
lator, the periodic distortions of the solid are represented by a local variation in the dispersion relation; in
effect, extension of the crystal reduces the slope of the dispersion relation, while compression of the crystal
increases the slope of the dispersion relation. The fractional change in the slope of the dispersion relation
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per unit change in volume is referred to as the Grüneisen
parameter15,16,

V

vs
~k
� � Lvs

~k
� �

LV
~{cs,~k ð1Þ

where the indices for the Grüneisen parameter take into account
the details associated with the mode shape and orientation with
respect to the crystal16. During such a distortion of the crystal, the
population of the phonon modes no longer matches the Planck
distribution function, and inelastic phonon scattering processes
act to redistribute the population, thereby approaching a new
thermal equilibrium with the Bose-Einstein distribution.

There are 3 timescales that determine the outcome of the scatter-
ing processes – the vibrational period of the lattice distortion (tv), the
mean scattering time (ts), and the relaxation time for thermal trans-
port between regions of different lattice distortion (tth). For silicon
resonators, the mean scattering time (ts) is a few picoseconds17.

In cases where tv . tth . ts, (true for most bending-mode MEMS
resonators) the scattering process leads to establishment of a new
thermal equilibrium at a different temperature (cooler for extension,
warmer for compression), and thermal transport can take place
between regions with different strain. Because the transport is irre-
versible, entropy is generated and energy is dissipated – this phe-
nomenon is described as Thermoelastic Dissipation (TED), and can
dominate for resonators that have significant strain gradients, such
as for bending modes of a beam18. To avoid TED one can select
resonator designs that will not exhibit significant strain gradients,
such as extensional modes of rings, disks and bars13,19.

For resonators that vibrate without producing strain gradients,
and when tv . ts, the phonon scattering process leads to establish-
ment of a new population distribution representing a new temper-
ature. During this process, entropy is increasing as always happens
during evolution towards thermodynamic equilibrium14, and energy
is being dissipated; this phenomenon is described as the Akhiezer
Effect (AKE)20–24. For very high-frequency resonators when ts . tv,
there is insufficient time during a period of vibration for scattering to
alter the distribution of phonons in the crystal. In this very high-
frequency case, AKE should be suppressed, and the Q-f product may
exceed the normal Akhiezer limit24–27.

Results
The dynamics of the phonon-phonon interactions are captured by
the Boltzmann transport equation (BTE)15.

Ln(~k,s)
Lt

 !
coll

~
Ln(~k,s)

Lt
zv:+rn(~k,s)z

F
�h
:+kn(~k,s) ð2Þ

where n ~k,s
� �

is the distribution function of phonons with wavevec-

tor~k and polarization s, v 5 hv/hk is phonon group velocity and F is

an external force field.
Ln ~k,s
� �
Lt

0
@

1
A

coll

is the rate of change in phonon

population due to phonon-phonon collisions.
The spatial terms in the BTE become negligible for cases where: (i)

the spatial change in the phonon distribution is insignificant due to
small strain gradients in the resonating solid, and (ii) F is zero for a
simple elastic crystal with periodic boundary conditions. (i) is valid
for many micro/nano mechanical resonators operated without strain
gradients, such as in the Lamé mode resonator and contour mode of a
ring resonator, and when these resonators are operated in ordinary
environments. The resonators are operated in the natural vibration
mode of the structure. If surface effects can be neglected (as for high
quality crystalline silicon which is employed in our resonators), the

solid boundaries are strain free and vibration corresponds to a
standing wave, which defines the mode shape. Periodic boundary
conditions are appropriate for standing wave solution of the BTE.
This assumption is valid when the anchors are carefully designed so
not to interfere with the mode symmetry (placed at node points and
displacement gradient in the anchor is negligible to first order). In
this case, the pertinent BTE reduces to21:

Ln ~k,s
� �
Lt

0
@

1
A

coll

~
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0
@

1
A ð3Þ

where Dn ~k,s
� �

is the perturbation from thermal equilibrium in pho-

non population distribution at the thermal reservoir temperature.
We apply a relaxation time approximation to the collision term

and assume phonon population decays toward a Bose-Einstein

distribution N 0 ~k,s
� �

21. The relaxation time approximation signifies

phonon scattering in a vibrating solid in the limit of absent spatial
dispersion. This assumption is necessary to derive the attenuation of
a standing vibration wave in a solid.

Ln ~k,s
� �
Lt

0
@

1
A

coll

~
n ~k,s
� �
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� �
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� �

where,

N 0 ~k,s
� �

~ e�hv=kbT 0{1
� �{1

ð4Þ

Here, t(~k,s)~ts is the relaxation time of the phonon scattering, i.e.
mean time between collisions, which is often condensed into a single

time constant t independent of wavevector~k and polarization s, and
T 0(~r,t) is modulated local temperature.

Assuming a harmonic solution to equation (3) (DT, Dn, Dv ,
ej2pft) with the mechanical resonance frequency f, equation (4) can be
solved for n22.

n~v0
LN

0

Lv

� �
0

Dv

v0
{

DT
T

� �
1

1{if tð Þ : ð5Þ

where a Taylor expansion of the term N 0 ~k,s
� �

was used and the

subscript 0 denotes equilibrium. The average rate of energy dissip-
ated by phonon collisions is proportional to second order of strain;
therefore, to first order, energy must be conserved.

X
~k,sð Þ
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coll
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The local temperature change may be derived to satisfy the energy
conservation as DT/T 5 (Dv/v0)I00/I01 and substituted in equation
(5) for n. I00(ft) and I01(ft) are angular integrals21. Here, it is assumed
that the frequency shift is the same for all phonon modes, which is
supported by neglecting the spatial terms in BTE. This assumption is
specific to the AKE limit.

n is complex in general, and its imaginary part corresponds to the
attenuation (C) of the harmonic vibration of the solid20,23 as given
by21,

C~
fWlost

cestored
~

f c2
avg cvT

2rc3
= I2

00=I01zif tI00
� �

: ð7Þ

where Wlost is the local energy lost per unit volume, estored is energy
stored per unit volume, cavg is average Grüneisen’s parameter, r is the
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density of the solid and cv and c are the heat capacity per unit volume
and average acoustic velocity respectively.

In the AKE limit (ft= 1), the imaginary part may be simplified to give,

C~
4p2 f 2 c2

avg cvTt

3rc3
ð8Þ

Using the attenuation relation above, the total energy lost in the resonator
is estimated as,

Elost~

ð
V

WlostdV~

ð
V

cestoredC

f
dV~

ð
V

4p2 f c2
avg cvTt

3rc2
estoreddV ð9Þ

Thus, the quality factor of the micro- (nano-)resonator can be estimated
as

Q~2p
Estored

Elost
~2p

ð
V

estoreddV

ð
V

4p2 f c2
avg cvTt

3rc2
estoreddV

ð10Þ

We see that all the details related to the vibration mode shape and
volumetric change are represented in the integrals in the expression
above, and that those integrals perfectly cancel out, leaving only constants.
Consequently, in homogeneous micromechanical resonators, the AKE
limit of quality factor is simply given by

Q:f ~
3rc2

2pc2
avg cvTt

~
rc4

2pc2
avg kT

ð11Þ

where k 5 1/3cvc2t is the thermal conductivity of the solid.

Table 1 lists some of the commonly used resonator materials and
their Q-f product limits together with the Grüneisen parameter used
to determine these limits. Amongst all, SiC has exceptionally high Q-f
product.

To obtain the Q-f products of anisotropic silicon we use the first
expression in equation (11) and the expression for cv

15 that uses the
transverse wave velocity in silicon for the correct evaluation of the
Debye temperature. This more accurate accounting for cv yields a
somewhat smaller Q-f value than some previous results13 and was
employed in24.

Maris23 provides a more complete analysis, including the elastic
and inelastic collision dynamics, and finds an expression for Q in this
limit with an additional term that relates the period of the oscillation
to the timescale for phonon scattering,

QAKE~
rc2

2pc2cvT
1z f tð Þ2

f t
ð12Þ

Equation (12) reduces to equation (11) with the assumption invoked
throughout this paper that the frequency of vibration of the solid is

Table 1 | Akhiezer limit of Q-f product for common resonator
materials and the corresponding average Grüneisen parameter

Material Q-f (3 10213) cavg

Si 2.3 0.51
Quartz 3.2 0.87
AIN 2.5 0.91
Diamond 3.7 0.94
Sapphire 11.3 1.1
SiC 64 0.3

Figure 1 | Quality factor and frequency of recently reported high frequency silicon bulk resonant mode devices. Plot shows our fabricated dual ring

resonators (filled diamonds) resonating in contour bulk (breathe) mode and width extensional bulk acoustic resonators, WE BARs, (filled triangles) in

the acceptable AKE region. SL refers to square Lamé mode resonators of Refs. 8,28–31. SE refers to square extensional mode resonators of Refs. 32–35.

Open triangle WE BARs refer to WE resonators of Refs. 19,36–38. The other bulk mode resonators represent disk resonators of Refs. 9,39–43. The

resonance mode shapes for the relevant resonators are shown in Figure 2. Upper and lower limit of AKE are derived from equation (11) for corresponding

value of the Grüneisen’s parameter for Si: 0.17 and 1.5.
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low enough to allow the phonons to interact and reach a new equi-
librium, i.e. ft = 1.

Discussion
This upper limit set by Akhieser effect on quality factor in dielectric
micro/nano mechanical resonators may be represented by a boun-
dary in the Q-f plane. The region below the AKE limit line is access-
ible for resonators of the same material.

Figure 1 compares some of the state of the art devices and recent
devices from our group in this AKE limit for silicon resonators. To
our knowledge, there are no examples of silicon resonators with Q-f
products that exceed this limit.

To approach the AKE limit in resonators, other damping mechan-
isms must be minimized or eliminated altogether. Vacuum pack-
aging or operation in vacuum is necessary for elimination of
energy loss to surrounding air molecules. Design of symmetric reso-
nators that greatly reduce the strains present at the anchors is neces-
sary to reduce energy loss due to anchor damping. Selection of
resonator modes that do not exhibit strain gradients (such as exten-
sional modes) are important for suppression of TED. The Lamé

modes of squares and contour modes of rings are representative
examples of low-TED modes because the total strain distribution is
uniform.

Strain gradient pertains to nonzero spatial gradients in the
Boltzmann transport equation that cause thermal transport. Heat
transfer drives the irreversible energy loss. While under the assump-
tion of periodic boundary condition the AKE limit of energy dissipa-
tion is the same for all Si resonator modes, it is expected that for
devices where Q(TED) prediction is comparable to or lower than
Q(AKE), significant spatial gradients introduce the thermal trans-
port relaxation time tth into the model that may further reduce the
quality factor by the mechanism of TED.

Our group has been focused on characterization and optimization
of dissipation in MEMS resonators. To this end, we have developed a
wafer-scale vacuum encapsulation process to eliminate damping
from air molecules5, and we have focused on device designs with
TED optimization18. More recently, we have developed a series of
ring-extensional mode resonators in this process that suppress TED
and allow these devices to approach the AKE limit. With comparable
frequencies, the Q’s of these recent resonators exceed those of most

Figure 2 | (a) Finite-element method (FEM) simulation of bulk mechanical mode shapes for (a) dual ring resonator, (b) Width extensional (WE) BAR,

and (c) Lamé mode square colored with total displacement relative to the maximum displacement of the dual ring resonator. Color intensity corresponds

to maximum (compressive) displacement where red and minimum displacement where deep blue.

Figure 3 | Frequency response measurements of dual ring resonators. (a) SEM image of one ring inside the encapsulation package. (b) A zoomed

in view of the ring, outer drive/sense electrode and cap layer, capacitive transduction is established in the vacuum cavity. (c) A top view SEM image of the

dual ring resonator geometry showing the ring pair connected by the coupling bar and anchored off the center of the bar. The Drive/Sense (D/S) electrodes

are labeled as in a typical measurement setup shown in (e). (d) Transmission response of the resonators near 10 MHz and 13 MHz, measured

with the setup shown in (e). (e) Schematic of the experimental setup. Each ring pair is depicted in the cross sectional view as marked in (c). A differential

drive voltage is applied to each drive electrode generates an out of phase sense current with respect to the input voltage. The two opposite sense

currents are added by the differentiated in the TIA, while their unsigned noise is subtracted out.

www.nature.com/scientificreports
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previously published bulk mode resonators. These resonators consist
of a pair of symmetric rings driven into an in-plane ‘‘breathing’’
mode, i.e. extension of the ring contour, which is free of strain
gradients. These rings are coupled to a nodal anchor point by a bar
whose in-plane fundamental extensional mode is matched to the
modes of the rings, as shown in Figure 2. Within the tolerances of
our fabrication process, the ring and bar extensional modes become
coupled into a single high-Q resonator mode. The mechanical res-
onance is driven and sensed by capacitive transduction by applying
an AC polarization voltage to the drive electrodes. The particular
electrode configuration shown in Figure 3 enables efficient transduc-
tion of the contour (extensional) mode of the rings as they expand
and contract simultaneously. The resonant frequency of this mode is

a sole function of the average ring radius, R, f ~
ffiffiffiffiffiffiffiffi
E=r

p
(1=2pR) for

homogenous material properties where E is the Young modulus. The
asymmetric drive/sense layout of the rings is characteristic of differ-
ential transduction, which allows application of symmetric forces
and subtraction of parasitic capacitive signals for improved accuracy
in the measurement. Representative frequency response of these
resonators near the resonance is shown in Figure 3d.

As shown in Figure 1, these resonators achieve quality factors
higher than previously published resonators in 10–20 MHz range.

In addition, we have designed and fabricated a second set of
high frequency resonators in Figure 1 and refer to these as Width
Extensional Bulk Acoustic Resonators (WE BAR). As shown in
Figure 4, WE BAR consists of a rectangular bar that resonates by
expanding and contracting its width. Similar to the dual ring res-
onator, the WE BAR is transduced by the parallel electrodes along the
length of the bar. Q-f products close to the AKE limit are observed for
these devices.

Figure 2 compares the simulated mode shapes of these resonators
where the deformations are scaled to the maximum deformation of
the dual ring resonator. The deformation is nearly uniform in the
rings and the deformation gradient in the WE BAR and the Lamé
mode square is significantly lower than the dual ring resonator. This
indicates TED is less significant for the latter two. Quantitative
results from fully coupled TED simulations of an example dual-ring

resonator and a WE BAR are compared in Table 2 and show Q(TED)
of the WE BAR is higher by a factor of 7. Because TED is suppressed,
the WE BAR operates closer to the AKE limit.

We mentioned that because of the absence of large strain gradients
associated with the vibrational mode, the contour mode of dual ring
resonators and width extension of the bar should be free of TED for
homogeneous material properties. However the intrinsic anisotropy
of the materials properties of SCS causes very slight nonuniformities
in the volumetric strain around the ring, which is due to anisotropic
stiffness. By examination of Figure 2, largest gradients are found in
the bar that connects the rings to the anchor at the node point of the
bar extension. Because of this strain gradient, there is some energy
loss from TED, contributing to reductions in the total Q-f product for
these resonators to around 20% of the AKE limit. For an example
20 MHz resonator, as reported in Table 2, the measured Q was 255 3

103, whereas Q(TED) from simulation was 337 3 103 and calculated
Q(AKE) was 1.17 3 106. The reduction of the measured Q by a factor
of 4.5 relative to the AKE limit arises due to residual TED in these
resonators. The total Q from independent contributions of AKE and
TED is 1/(Q(TED)21 1 Q(AKE)21) 5 261 3 103 which indicates that
Q is almost fully contained by the contributions of AKE and TED.

Figure 4 | Frequency response measurement of width extensional (WE) BARs. (a) Top view SEM image of WE BAR and actuation electrodes.

The (D/S) electrodes are labeled as in a typical measurement setup either one can be used as the drive (D) electrode and the other as sense (S) electrode.

(b) Schematic of the experimental setup. (c) Transmission response of the resonator near 52 MHz.

Table 2 | Comparison of experimentally measured quality factor
(Qmeas) for a dual ring resonator and a WE BAR with Q calculated
from Eq. 11 in the Akhiezer limit (QAKE) and Q from fully coupled
finite-element method (FEM) thermoelastic simulation (QTED).
Note that QAKE signifies an average upper bound to attainable
Q by phonon scattering and is derived independent of the res-
onant mode shape. The average Grüneisen parameter for Si is
used

Device f (MHz)
QAKE

(31024)
QTED

(31024)
Qmeas

(31024)

Dual Ring Resonator 19.7 117 33.7 25.5
WE BAR 50.2 117 247 10.5

www.nature.com/scientificreports
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It is important to note that the AKE limit line was derived for an
average Grüneisen’s parameter. For a more accurate prediction, we
would need to take into account the material anisotropy and its effect
on phonon scattering time; the same consideration applies to the
thermal phonon time constant, t. We notice that the variations in
the reported values for the Si Grüneisen’s parameter may arise from
different accounting for the anisotropic material properties; the dis-
tribution in estimates for the Si Grüneisen’s parameter lead to pub-
lished estimates for the AKE limit that range over three times the
average24. We represent this variation as a set of upper and lower
AKE lines in Figure 1. For different resonators, such as rings and
bars, which can exhibit strains along different directions in the SCS
crystal, the correct choice of parameters for calculating the AKE limit
can be different within this range. Aside from this modest interaction
between the mode shape and the crystal geometry, we find that
general ‘‘AKE limits’’ can be considered as accurate, and that
designers working to optimize Q for resonators should be aware of
the implications of this limit.

1. Nguyen, C. T.-C. MEMS technology for timing and frequency control. IEEE
Trans. Ultrason. Ferroelect. Freq. Contr. 54, 251–270 (2007).

2. van Beek, J. T. M. & Puers, R. A review of MEMS oscillators for frequency
reference and timing applications. J. Micromech. Microeng. 22, 013001 (2011).

3. Nguyen, C. T-C. Integrated Micromechanical Radio Front-Ends. Proc. IEEE Int.
Symp. VLSI-TSA. 3–4 (2008).

4. Salvia, J. C. et al. Real-Time Temperature Compensation of MEMS Oscillators
Using an Integrated Micro-Oven and a Phase-Locked Loop. J. Micorelectromech.
Syst. 19, 192–201 (2010).

5. Candler, R. N. et al. Single wafer encapsulation of MEMS devices. IEEE Trans.
Adv. Packag. 26, 227–232 (2003).

6. Wang, J., Ren, Z. & Nguyen, C. T.-C. 1.156-GHz self-aligned vibrating
micromechanical disk resonator. IEEE Trans. Ultrason. Ferroelect. Freq. Contr.
51, 1607–1628 (2004).

7. Wang, J., Butler, J. E., Feygelson, T. & Nguyen, C. T.-C. 1.51-GHz nanocrystalline
diamond micromechanical disk resonator with material-mismatched isolating
support. Proc. IEEE Int. Conf. MEMS, 641–644 (2004).

8. Khine, L. & Palaniapan, M. High-Q bulk-mode SOI square resonators with
straight-beam anchors. J. Micromech. Microeng. 19, 015017 (2009).

9. Li, S.-S. et al. Micromechanical "hollow-disk" ring resonators. Proc. IEEE Int. Conf.
MEMS, 821–824 (2004).

10. Hao, Z., Pourkamali, S. & Ayazi, F. VHF single-crystal silicon elliptic bulk-mode
capacitive disk resonators-part I: design and modeling. J. Microelectromech. Syst.
13, 1043–1053 (2004).

11. Nowacki, W. Thermoelasticity. (Pergamon, Elmsford, NY, 1962).
12. Duwel, A., Candler, R. N., Kenny, T. W. & Varghese, M. Engineering MEMS

Resonators With Low Thermoelastic Damping. J. Microelectromech. Syst. 15,
1437–1445 (2006).

13. Chandorkar, S. A. et al. Limits of quality factor in bulk-mode micromechanical
resonators. Proc. IEEE Int. Conf. MEMS, 74–77 (2008).

14. Kittel, C. & Kroemer, H. Thermal Physics. (2), (John Wiley & Sons, Inc, USA,
1980).

15. Kittel, C. Introduction to Solid State Physics. (John Wiley & Sons, Inc, USA, 1986).
16. Choy, C. L., Wong, S. P. & Young, K. Thermal-Expansion And Gruneisen

Parameters For Anisotropic Solids. Phys. Rev. B 29, 1741–1747 (1984).
17. Ridley, B. K. Electrons and Phonons in Semiconductor Multilayers. (Cambridge

University Press, Cambridge, England, 1997).
18. Candler, R. N. et al. Impact of geometry on thermoelastic dissipation in

micromechanical resonant beams. J MEMS 15, 927–934 (2006).
19. Pourkamali, S., Ho, G. K. & Ayazi, F. Low-Impedance VHF and UHF Capacitive

Silicon Bulk Acoustic-Wave Resonators—Part II: Measurement and
Characterization. IEEE Trans. Electron Devies 54, 2024–2030 (2007).

20. Akhieser, A. On the absorption of sound in solids. J. Phys. (Akademiia Nauk-
Leningrad) 1, 277–287 (1939).

21. Woodruff, T. O. & Ehrenreich, H. Absorption of Sound in Insulators. Phys. Rev.
123, 1553–1559 (1961).

22. Barrett, H. H. & Holland, M. G. Critique of Current Theories of Akhieser
Damping in Solids. Phys Rev. B1, 2538–2544 (1970).

23. Maris, H. Interaction of Sound Waves with Thermal Phonons in Dielectric
Crystals. Physical Acoustics. (Academic Press, NewYork, 1971).

24. Duwel, A. E. et al. Thermal Energy Loss Mechanisms in Micro- to Nano-scale
Devices. Proc. of SPIE, 8031 (2011).

25. Landau, L. & Rumer, G. Absorption of sound in solids. Phys. Z. Sowjetunion 11, 18
(1937).

26. Tabrizian, R., Rais-Zadeh, M. & Ayazi, F. Effect of phonon interactions on limiting
the f.Q product of micromechanical resonators. Proc. IEEE Int. Conf. Solid State
Sens., Actuator Microsyst. 2131–2134 (2009).

27. Hwang, E. & Bhave, S. A. Experimental verification of internal friction at GHZ
frequencies in doped single-crystal silicon. Proc. IEEE Int. Conf. MEMS, 424–427
(2011).

28. Wu, G., Xu, D., Xiong, B. & Wang, Y. A high Q micromachined single crystal
silicon bulk mode resonator with pre-etched cavity. Microsyst. Tech. 18, 25–30
(2012).

29. Wu, G., Xu, D., Xiong, B., Wang, Y. & High, Q. Single Crystal Silicon
Micromechanical Resonators With Hybrid Etching Process. Sensors J. 12,
2414–2415 (2012).

30. Colinet, E. et al. 100 MHz oscillator based on a low polarization voltage capacitive
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