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ABSTRACT

Deciphering transcription factor networks from
microarray data remains difficult. This study
presents a simple method to infer the regulation
of transcription factors from microarray data
based on well-characterized target genes. We
generated a catalog containing transcription
factors associated with 2720 target genes and
6401 experimentally validated regulations. When it
was available, a distinction between transcriptional
activation and inhibition was included for each regu-
lation. Next, we built a tool (www.tfacts.org) that
compares submitted gene lists with target genes
in the catalog to detect regulated transcription
factors. TFactS was validated with published lists
of regulated genes in various models and
compared to tools based on in silico promoter
analysis. We next analyzed the NCI60 cancer micro-
array data set and showed the regulation of SOX10,
MITF and JUN in melanomas. We then performed
microarray experiments comparing gene expression
response of human fibroblasts stimulated by differ-
ent growth factors. TFactS predicted the specific
activation of Signal transducer and activator of tran-
scription factors by PDGF-BB, which was confirmed
experimentally. Our results show that the expres-
sion levels of transcription factor target genes con-
stitute a robust signature for transcription factor
regulation, and can be efficiently used for micro-
array data mining.

INTRODUCTION

Data mining in gene lists generated by microarray experi-
ments remains a major challenge. A particularly intricate
issue is to identify the regulatory network responsible
for gene regulation in a given biological system. Several
tools like GSEA offer the possibility to search for enriched
transcription factor (TF) targets in lists of co-expressed
genes (1–5). They mostly use precomputed putative cis-
regulatory elements predicted in gene promoters and
compare their results to the submitted gene lists. A
drawback of binding site prediction is the high level of
noise when it is applied to mammalian genomes (6).
Several improvements have been proposed, such as
context-sensitive promoter analysis and promoter cluster-
ing based on microarray co-expressed genes (7–12).
We and others have observed that the activation of TFs

like SREBP1 (13,14) and p53 (15) can easily be detected in
microarray gene lists based on the fact that the expression
of their target genes is changed. It is, however, not clear as
to whether this approach is valid for other TFs.
The aim of this work was to test whether a catalog of

well-characterized TF targets can be used to predict the
activity of transcription factors in various biological
systems, based on microarray data.
As a model system to test this method, we studied gene

regulation by growth factor receptors in normal and
leukemia cells. Growth factors, such as platelet-derived
growth factor (PDGF) and fibroblast growth factor
(FGF), are key regulators of cell proliferation, differenti-
ation and survival. They exert these effects through
specific tyrosine kinase receptors, which activate signalling
pathways that ultimately regulate transcription factors
and gene expression. Previous reports using expression
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microarrays suggested that growth factors regulate gene
sets involved in wound healing (16), fatty acid and chol-
esterol synthesis (13,14), cell division and differentiation
(17). Various tyrosine kinase receptors are thought to
induce overlapping gene expression, suggesting that
growth factors activate a common transcriptional
program associated with cell growth (18).

MATERIALS AND METHODS

Data

To build a database linking TFs to their target genes, we
started with lists of genes obtained from curated TRED
(19), TRRD (20), PAZAR (21) and NFIregulomeDB
databases, and completed some of these factor-gene lists
with the regulation type (‘up’ or ‘down’) based on the
original publications. SREBP and p53 target gene signa-
tures were based on our previous reports (13,15) and were
completed by data from TRED. The FOXO1, FOXO3,
TCF/b-Catenin, GLI, ID, AR, GR, LXR, NOTCH/
RBP-J, PPARa, ATF6, HNF, SF1 and STAT transcrip-
tion factors gene target lists were collected from published
papers. On the basis of these data, we built two catalogs:
the ‘sign-sensitive’ catalog that takes into account the sign
of the regulation (‘up’ or ‘down’) and the ‘sign-less’
catalog that neglects this information (see Figure 1 and
Supplementary Data in supplementary file 1 for catalogs
and references).

Statistics

The number of target genes for a particular TF in the
query gene lists and in the catalog are compared using
right-sided Fisher’s test. Three different hypotheses are
tested for each TF. These hypotheses are, respectively,
activation and inhibition (using sign-sensitive catalog),
and regulation (using sign-less catalog). For each hypoth-
esis, we compute the P-value (Pval), E-value (Eval),
Q-value (Qval), false discovery rate control (FDRC), as
well as a non-parametric random control (RC).
The P-value is computed according to the

hypergeometric formula: Pval ¼Pi¼n
i¼k
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target genes annotated for the TF under consideration, n
the number of query genes, N the number of regulations in
the catalog (sign-less or sign-sensitive) and k varies with
the tests as follows.

. sign-less regulation: k is the number of query genes
that are annotated as regulated by TF (i.e. the inter-
section between the query and the TF signature);

. sign-sensitive activation: is the number of query genes
for which the sign of the transcriptional response
(+for upregulated, �for downregulated) is the same
as the sign of their regulation by TF (+ for activation,
�for repression);

. sign-sensitive inhibition: k is the number of query
genes for which the sign of the transcriptional
response is the opposite of the sign of their regulation
by TF.

The nominal P-value (Pval) represents the risk of false
positive for a single test. Since the list of query genes is
systematically compared to each target gene signature, a
multi-testing condition is required. The Eval represents the
expected number of false positives for a given nominal
P-value. It is computed using the formula: Eval=
Pval�T, where T is the number of tests.

The Q-value (Qval), which is an estimate of the False
Discovery Rate (FDR), i.e. the fraction of predictions
expected to be false (false predictions/all predictions) for
a given level of nominal P-value, is computed using the
R package from Storey et al. (22).

The Benjamini–Hochberg procedure to control the
FDR is implemented as described in Benjamini et al. (23).

To evaluate empirically the probability to select a TF
by chance, we run Fisher’s tests with random gene selec-
tions. The program computes the RC as follows:
RCTF ¼ NðEvalTF � �Þ=N � 100, l is a user-specified
threshold on (l= 0.05 by default), N is the number of
repetitions to perform (N=100 by default) and
N (EvalTF� l) is the number of random simulations
returning an Eval� l.

Implementation and availability

The tool is available via a Web page www.tfacts.org. It is
implemented in HTML, JavaScript, PHP, R and Perl, the
catalog of TF signatures is stored and maintained under
MySQL.

Validation/comparison

NCI60 data set (24) was retrieved from cellMiner web site.
In the E-value matrix constructed from NCI60 data set
analysis, prior to the �log10 transformation, we arbitrar-
ily set all the null E-values to 1.00e�4, and put the non-
detected TF’s E-values to the matrix maximum value.

Cell cultures and microarray analysis

Human fibroblasts (AG01518) were cultured (1.5� 106

cells/10 cm dish) in minimum essential medium (MEM)
with fetal calf serum 10% and L-Glutamine for 24 h.
Cells were starved for 24 h in MEM (0.05% bovine
serum albumin and L-Glutamine) and then stimulatedFigure 1. Data integration in TFactS catalogs.
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for another 24 or 1 h by PDGF-BB (25 ng/ml) or b-FGF
(10 ng/ml) in the presence of heparin (50mg/ml). The
control condition was left without stimulation in the star-
vation medium for 48 h.

The human fibroblast microarray experiment was done
in two biological replicates. RNA extraction was per-
formed using RNeasy (Qiagen). RNA quality was tested
in agarose gel electrophoresis and by real-time PCR for
two known PDGF-BB target genes: NR4A1 (after 1 h)
and SCD (after 24 h) compared with a control gene
RPLPO (13). The human Affymetrix chip HGU133A2
was used as described (25,26). Results from Affymetrix
chips were analyzed using the GCOS suite software, and
in each replicate the stimulated conditions were normalized
using the control condition as baseline for the comparison.
The MAS5 algorithm in GCOS was used as follows: the
scaling factor using all probe sets was set to 100 and the
normalize factor was set to 1. Using MeV (27), the
Significant Analysis of Microarray (SAM) algorithm was
applied to detect the most significant probe sets differen-
tially expressed between the four conditions normalized to
the control condition (b-FGF stimulated after 1 h, b-FGF
stimulated after 24 h, PDGF-BB stimulated after 1 h and
PDGF-BB stimulated after 24 h), with 6.73 as the median
number of falsely significant genes (a FDR of 5.85%) and a
delta value equal to 1.01. The hierarchical analysis of these
probe sets and the samples was done using the Euclidian
distance and the average linkage clustering. Fold change
analysis was done between each condition and the control
after the absent calls filtering and taking only probe sets
that are marked by GCOS software as increased or
decreased having the mean log2� ratio absolute value of
the two replicates 1.

EOL1 [human acute myeloid eosinophilic leukemia cell
line (28)] was purchased from DSMZ (ACC386,
Germany). Cells were maintained in RPMI medium with
10% fetal bovine serum and supplemented with penicillin–
streptomycin solution (Sigma). Cells were treated with
100 nM imatinib mesylate for 4 h and then washed once
in ice-cold PBS before being used for further experiments.
RNA extraction was done as above from 510 cells and the
human Affymetrix Chip U133 Plus 2.0 was used according
to manufacturer’s instruction (Affymetrix). GCOS was
used with the same parameters as above with the
imatinib-treated condition as baseline. Lists of regulated
genes used here were obtained by applying a 3-fold expres-
sion filter.

These data sets are available in Gene Expression
Omnibus database (ref: GSE14256 and GSE15237).

Western blots were performed as described (25,29–31)
with antibodies from Cell Signalling Technology.

RESULTS AND DISCUSSION

Construction of the catalogs

In an effort to build a catalog linking transcription factors
to their known target genes, we integrated data from the
literature and freely available databases (Figure 1). This
catalog contains 6401 regulations linking 343 distinct TFs
to 2720 distinct genes. We considered all TF target genes

independently from conditions such as tissue, treatment
or cell type. Since gene regulation is highly conserved in
mammals, data from human, mouse and rat were pooled.
This is justified by the fact that many published experi-
ments were performed in heterogeneous biological
systems, for instance human promoters studied in mouse
cells transfected with cDNA from different species. We
reasoned that including the sign of the TF–gene associ-
ations (‘up-’ or ‘down-’ regulation) would be useful.
However, although it is usually available from experimen-
tal data, this information is surprisingly not systematically
included in mammalian TF databases. Therefore, in our
first catalog, we did not take into account the sign of each
regulation (i.e. activation or repression). We will refer to it
as the ‘sign-less’ catalog.
To build a ‘sign-sensitive’ catalog, we annotated the

regulations from original publications and from databases
when available. Altogether, this second catalog contains
63 TFs (Figure 1). Both catalogs are provided in
Supplementary Data in supplementary file 1.
For some TFs, the ‘specific target gene signature’ was

defined as the list of target genes known to be regulated
by, a given TF. We further define ‘generic target gene
signatures’ by regrouping closely related TFs sharing
many target genes. For instance, the E2F generic signature
groups target genes of the four activating isoforms of E2F
(E2F1–4).

Enrichment in transcription factor target genes:
statistical analysis

The comparison between TF signatures and the query
gene lists is based on Fisher’s test. For each TF, a contin-
gency table is created that compares the gene query lists
and the TF signature in the catalog. Using the
sign-sensitive catalog, we calculate P-values (Pval) for
two hypotheses, respectively, activation (activated target
genes are ‘up’ and repressed are ‘down’) and TF inhibition
(activated target genes are ‘down’ and repressed target
genes are ‘up’), see ‘Materials and Methods’ section for
more details. Using the sign-less catalog we calculated
target gene enrichment Pval for each TF (this is called
regulation hypothesis). Examples of contingency tables
for the three hypotheses (‘regulation’, ‘activation’ and
‘inhibition’, respectively) are presented in Supplementary
Data in supplementary file 2.
The corresponding E-value (Eval), Q-value (Qval) and

FDRC for each P-value (Pval) are calculated to control the
rate of false positives in multiple testing conditions.
As a negative control, we included a non-parametric

false positive percentage estimation, which we call RC.
It is based on the selection of random sets of genes from
the catalog according to the number of genes in the query
lists.
In this study, we considered a TF as regulated, activated

or inhibited, respectively, if, under the corresponding
hypothesis the Pval was significant (�0.05) combined
with either Eval� 0.05 or Qval� 0.05 or significant
FDRC or RC�5%.
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User interface

TFactS is available at www.tfacts.org. The main page
includes three frames. The query frame allows the user
to submit the lists of upregulated and/or downregulated
genes, and to select the analysis parameters (statistical
thresholds, number of random selections). By default, in
this version, only HGNC standard official gene names and
Entrez gene IDs are accepted in the list of query genes.
The user is allowed to enter a custom catalog, as an alter-
native to the TFactS catalog proposed by default.
Results are displayed in the main frame. The results

of each run are reported in two pages. Depending
on which catalog the user chooses, the first page
contains a table for each type of hypothesis: regulation
(sign-less catalog), activation and inhibition
(sign-sensitive catalog), each one contains a list of
regulated TFs, the corresponding Pval, Eval, Qval,
FDRC, the number of genes in the intersection, the
number of target genes for that TF and the RC (see
‘Materials and Methods’ section). The second page
shows for each submitted gene the corresponding TFs in
the catalog and its type of regulation. An export link to
the raw results is also provided.
The tool is documented at various levels. The statistical

methods and options are explained in a detailed help page.
A ‘Demo’ button loads the tool with a study case data set,
to illustrate the process for a typical submission. An add-
itional frame allows browsing the list of target genes for a
particular TF.

Validation with published microarray data

TFactS validation was first performed by reanalyzing
microarray-based studies in which TFs present in our
catalogs were shown to be activated or inhibited. Sixteen
such studies, independent from those used to build the
database, were found in PubMed (32–47), covering
18 transcription factors in total (14 activations and 4
inhibitions). These experiments consisted in detecting
genes that are differentially expressed between tumor
and normal cells, in different cell types, or that respond
to cytokines (interferons) or drugs affecting specific signal-
ing pathways (Table 1). Those studies cover Human and
Mouse species and a broad range of biological processes
and conditions. In each report, the regulation of one
or more TF was inferred from microarray and experi-
mental data.

To evaluate the ability of TFactS to detect the relevant
TFs, we submitted the genes reported by the authors as
showing a significant response in their respective micro-
array analysis. When regulated genes were not listed in the
paper, we reanalyzed the raw data obtained from GEO
database and we selected genes significantly regulated
>2-fold.

Even though these studies were based on very different
biological systems, the results summarized in Table 1
(details in Supplementary Data in supplementary file 1)
show that TFactS identified all (18/18) of the relevant
TFs. For example, Terragni et al. (32) showed that inhib-
ition of the AKT pathway provokes the activation of

Table 1. TFactS validation

Sign-less Sign-sensitive
catalog catalog

Ref. Model Expected TFs Regulation Act./Inh.

(33): Colon cancer FOXO3 act. y +
MYC inh. y n

(34): fibroblasts MYC act. y +
(35): fibrosarcoma STAT1 act. y +
(36): lung cancer p53 act. y +
(37): glioblastoma SREBP act. y +
(38): granulocytes NF-iB act. y +
(39): B Lymphocytes NF-iB act. y +
(40): B lymphoma SREBP inh. y �

(32): glioblastoma FOXO3 act. y +
NF-iB inh. y �

(41): adrenocortical cells SF-1 act. y n
(42): endothelial cells EGR-1 act. y +
(43): synovial fibroblasts SMAD act. y +
(44): Commd1 null mice HIF-1 act. y +
(45): TG2 null mice SP-1 act. y +

hepatocytes
(46): osteosarcoma E2F act. y +
(47): keratinocytes AP-1 inh. y �

Expected hits (Found/total) 18/18 16/18

Eighteen TFs (14 activated and 4 inhibited) reported in 16 studies were used to test TFactS. Under each hypothesis, TFs are considered significant on
the basis of multiple score thresholds (Pval and Eval or Qval or F D Rc or RC) as described in the text. The expected TFs that were described in the
studies are represented here with names in bold character. Symbols: (y): found regulated, (+): found activated, (�): found inhibited and (n): not
found. act.: activation and inh.: inhibition.

e120 Nucleic Acids Research, 2010, Vol. 38, No. 11 PAGE 4 OF 11



FOXO3 and the inhibition of NF-kB. Consistently,
TFactS identified FOXO3 as regulated (Pval’0.00e+0)
and activated (Pval=1.40e�4) and NF-kB as regulated
(Pval’0.00e+0) and inhibited (Pval=1.16e�3).

For some studies, the association is detected both in the
sign-less test and in the sign-sensitive tests (activation or
inhibition). The associations are sometimes returned both
at the generic (e.g. FOXO) and specific (e.g. FOXO3)
levels.

The sign-sensitive catalog allowed inferring the type
of TF regulation (activated or inhibited). As shown in
Table 1 (details in Supplementary Data in supplementary
file 1), TFactS failed to recognize the sign of the regulation
in two cases. Another limitation of the sign-sensitive
catalog is the more restricted number of TFs that is
included. As expected, tests using that catalog returned a
lower RC compared with sign-less predictions, indicating
that it is more conservative.

In summary, using the sign-less catalog associated with
Fisher statistics, TFactS results matched the conclusions
of published experimental studies. Taking into account the
sign of regulation provided a useful piece of information,
but did not improve the predictions, at least in these initial
validation tests. However, much more sign annotations
would be required to provide a fair comparison between
the two catalogs.

Comparison with other methods

We attempted to compare the results returned by TFactS
with those of other freely available tools, which are gen-
erally based on in silico cis-regulatory motif predictions in
gene promoters.

Among those tools, we used GSEA (1) based on (‘c3’)
signatures generated from predictions of cis-regulatory
motifs that are conserved across the human, mouse, rat
and dog genomes and matched to known TFs by their
consensus DNA binding motifs. We also chose four
other tools: TFM-Explorer (2), CORE_TF (3), CRSD
(4) and oPOSSUM (5), which are based on overrepre-
sentation of TF binding sites using TRANSFAC (48)
and JASPAR (49) position weight matrices (PWM) for
gene promoter scanning. TRANSFAC contains 365 and
presents a large overlap with TFactS database, including
all TFs used in the validation step. Each tool has a specific
method for background filtering. CRSD prefilters results
by Q-value ranking; TFM-Explorer uses a threshold based
on the parameters determined by the local genomic
context; CORE_TF compares the submitted gene
promoter set with a random set; and oPOSSUM is
based on phylogenetic footprinting.

To compare the different tools, we have used similar
settings for all of them in terms of statistical cutoff and
promoter length. Lists of enriched transcription factors
generated using these tools were ranked according to
P-values or FWER P-value (GSEA). We considered
only significant results (nominal P-value) and limited the
number of TFs in the output lists to maximum 100, even
though such long lists are not suitable for experimental
validation. Using these parameters, CRSD and

CORE_TF found 12 out of 18 expected TFs,
TFM-Explorer 8, oPOSSUM 7 and GSEA 2. Three TFs
were absent from JASPAR profiles used by oPOSSUM.
When used with TFactS sign-less catalog instead of ‘c3’
signatures, GSEA performed better (5/18). We did not use
other GSEA gene set signatures as they are not centered
on TFs. Detailed results and methods are shown in
Supplementary Data supplementary file 2. Compared to
TFactS, these tools produced much longer lists of
regulated TFs, but it is not clear whether these represent
background or previously unrecognized regulations. In
summary, TFactS was able to identify expected transcrip-
tion factor regulations, which, at least in some cases, were
not found by tools based on PWM or consensus motifs,
using standard settings.

Analysis of NCI60 cancer cell line data set

To test whether TFactS could be used to screen cancer
microarray data sets, we analyzed the NCI60 (24) cancer
collection, which contains 60 human cancer cell lines clus-
tered in nine tumor types (melanoma, ovarian, lung,
leukemia, prostate, renal, colon, glioma and breast). On
the basis of normalized log ratio, we selected genes that
were significantly regulated at least 2-fold compared to the
reference provided by Shankavaram et al. These lists of
genes were analyzed by TFactS, which predicted a number
of regulated TF in each cell line. In order to compare the
different cell lines, a matrix of E-values (Eval) was con-
structed from these results with TFs in rows and cell lines
in columns. We observed that some TFs, such as
b-catenin, FOXO and NF-kB, were found significantly
regulated in a large number of cell lines, as expected
from their widespread role in cancer. Next, we applied
the SAM algorithm to identify TFs differentially regulated
between the nine tumor groups. Among these TFs,
SOX10, MITF and JUN were significantly regulated in
melanomas in comparison with other cancer types
(Figure 2). The specific role of MITF in melanocytes
and melanoma is well known. By contrast, SOX10 is
widely expressed and its unique association with
melanoma was more surprising. Future work will have
to unravel whether SOX10 may be a specific target for
this cancer type.
Since the NCI60 data set contains information about

the presence of cancer mutations in each cell line, we
looked for significant associations between these muta-
tions and TF regulations. As the number of cell lines har-
boring one particular mutation was low, we grouped
mutations according to signal transduction pathways.
Figure 2B shows that mutations in RAS or RAF genes,
key mediators of the MAP kinase pathway which are fre-
quently mutated in melanoma and other tumors, were
associated with the regulation of SOX10, MITF and
JUN. The regulation of JUN and MITF by MAP
kinases has already been described (50,51). In contrast,
association of SOX10 with this pathway was not expected.

Analysis of novel microarray data sets

As an experimental validation for our approach, we per-
formed two microarray experiments in two distinct
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well-defined biological models: the human eosinophilic
leukemia cell line EOL1 and primary human fibroblast
cells stimulated with growth factors.
EOL1 cells express a constitutively activated FIP1L1-

PDGF receptor a fusion protein (28). This oncogene can
be efficiently inhibited by the drug imatinib mesylate
(Gleevec�). We compared gene expression profiles of
EOL1 cells treated with imatinib for 4 h to those of un-
treated cells. We selected genes that were significantly
regulated at least 3-fold in control compared imatinib-
treated cells (with Supplementary Data in supplementary
file 3). TFactS indicated a significant activation of signal–
transduces and activator of tracription (STAT)1, STAT3
and STAT5 (Figure 3).
The FIP1L1-PDGFRa has previously been reported to

activate STAT5 (28) and STAT3 (52), but to our know-
ledge the activation of STAT1 has not been established
yet. We tested this prediction by western blotting using
antibodies that are able to recognize the active,
phosphorylated form of STATs. Figure 3 shows that
STAT3 and STAT1 are indeed phosphorylated in EOL1

Figure 2. SOX10, MITF and JUN transcription factors are regulated in melanoma and associated with mutations in RAS and RAF.
E-values of TFactS-predicted TF regulations for each NCI60 cell line are transformed into scores [�log10(E-value)]. These scores were
plotted by cancer type (A) or by pathway mutations (B) for SOX10, MITF and JUN. Mutations clustered into RAF-RAS pathway
targeted BRAF, KRAS, HRAS and NRAS. P-values were obtained by Kruskal–Wallis test (A) and Student’s t-test (B). WT, ‘wild type’;
MUT, ‘mutant’; BR, breast; CNS, central nervous system; CO, colon; LC, lung cancer; LE, leukemia; ME, melanoma; OV, ovarian;
PR, prostate; RE, renal.

Figure 3. STAT1 and STAT3 are phosphorylated in EOL1 cells and
inhibited by imatinib. (A) STAT activation Benjamini-Hochberg cor-
rected P-values predicted by TFactS. (B) Cell lysates from
imatinib-treated or control EOL1 cells were used in western blot
probed with antibodies against phospho-STAT3 and phospho-
STAT1. As a control, we used antibodies against total STAT3 and
STAT1.
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cells and that this phosphorylation is inhibited by
imatinib, suggesting that it may also play a role in the
transformation process. These results confirmed the
validity of the TFactS target gene analysis.

We next tested the impact of the length of the input gene
list on TFactS results. Starting from the list of significantly
regulated genes ranked according to absolute fold-change,
we submitted increasing numbers of top-ranked genes to
TFactS (from 10 to 2500). TFactS found STAT1 regulated
if the number of submitted genes was superior to 50
(Supplementary Figure S1 in supplementary file 2).
Similar data were obtained for STAT3 and STAT5. We
then performed a robustness analysis by adding randomly
selected genes to the same data set. The addition of a
background of up to 500 random genes affected the final
result significantly only when short lists of regulated genes
were submitted (Supplementary Figure S1), suggesting
that TFactS can detect a TF signature even when it is
diluted in a large number of unrelated genes.

We also analyzed gene expression data from human
fibroblasts stimulated by either PDGF-BB or b-FGF for
1 and 24 h. SAM analysis identified 115 relevant probe
sets. Hierarchical clustering of these probe sets showed
divergent early gene regulation by PDGF and FGF but
overlapping late response (data not shown).

We first analyzed genes commonly regulated by
PDGF-BB and b-FGF 2-fold after 24 h of stimulation.
TFactS indicated that these two growth factors activate
SREBP and inhibit FOXO (Table 2 and supplementary
data in supplementary file 3), as expected from our
previous publications (13,14,25). Our previous in silico
promoter analysis did not point to any known TF regula-
tion (A.E. and J.V.H., unpublished data). However, in a
similar model, SREBP activation had been detected using
a combination of promoter analysis and literature
mining (53).

We then focused on the early gene expression response
induced by both growth factors. A combined analysis with
Affymetrix GCOS and a 2-fold threshold on expression
ratio, led to the selection of 114 probe sets responding
to PDGF-BB and 42 probe sets responding to b-FGF,
37 of which were shared between the two gene lists. We
analyzed genes specifically regulated by PDGF-BB (and
not b-FGF). TFactS detected several significant STAT
signatures: STAT1, STAT3 and STAT5 (Table 2).
To further confirm these TFactS findings, we sought

to cluster the conditions in this microarray experiment
using the expression of predicted TF target genes that
were also present in submitted lists. Figure 4 shows a
time-dependent clustering of the PDGF-BB and b-FGF
conditions based on SREBP target genes, which is consist-
ent with the late (24 h) activation of SREBP by both
growth factors. It shows also a successful clustering of
the two PDGF-BB 1h stimulation replicates based on
STAT target genes, confirming the predicted early (1 h)
specific activation of STATs by PDGF-BB.
It is well known that growth factors activate STAT

(54–57), but the specific regulation of these transcription
factors by PDGF and not by FGF was unexpected. To
test the specific action of PDGF-BB, we performed
western blots against phosphorylated STAT1 and
STAT3 in human fibroblasts after short-term (15min)
stimulation with PDGF-BB or b-FGF. Figure 5 shows
that PDGF-BB induced a strong phosphorylation of
STAT1 and STAT3, while b-FGF did not. We also
included other fibroblast mitogens, such as IGF1,
PDGF-AA, PDGF-AB, FGF-4 and insulin. None of
these growth factors activated STAT1 or STAT3 to a sig-
nificant extent. As a control for b-FGF activity, we
checked other signalling pathways and showed JNK phos-
phorylation by both PDGF and FGF.

Table 2. Analysis of genes regulated by growth factors in human fibroblasts using TFactS

TF Pval Eval \ # TG RC (%)

Genes regulated by both PDGF and FGF after 24 h
Regulation SREBP 0.00e+0 0.00e+0 9 46 0

FOXO1 0.00e+0 0.00e+0 15 145 4
FOXO3 2.00e�5 1.90e�3 8 68 1

Activation SREBP 1.00e�5 3.00e�4 9 46 0

Inhibition FOXO1 2.00e�4 6.00e�3 14 144 0
FOXO3 1.29e�3 3.87e�2 8 66 0

Genes regulated specifically by PDGF after 1 h
Regulation STAT3 0.00e+0 0.00e+0 8 67 2

STAT1 2.50e�4 1.70e�2 4 61 1
STAT5 6.00e�5 4.08e�3 4 42 1

Activation STAT3 0.00e+0 0.00e+0 8 48 2
STAT1 5.00e�5 1.05e�3 4 23 1
STAT5 5.40e�4 1.13e�2 4 42 2

Analysis of significant gene lists regulated >2-fold by PDGF-BB and b-FGF after 24 h (upper Table) or only by PDGF-BB after 1 h (lower Table)
of stimulation. For each test: regulation (sign-less), activation and inhibition (sign-sensitive), only transcription factors verified experimentally in
this study or elsewhere are listed with corresponding statistics as reported by TFactS (detailed results are shown in Supplementary Data in
supplementary file 3). \, number of genes in common between TF target genes and the query list; # TG, number of target genes for the corres-
ponding TF.
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The current hypothesis is that growth factors activate
largely overlapping signal transduction pathways (18).
This was confirmed for late gene regulation in our
model. However, in this model, PDGF-BB stimulation
specifically produced a STAT transcriptional signature
in contrast with other growth factors. A
STAT3-dependent pathway has been suggested to contrib-
ute to PDGF-driven proliferation (54), but whether this
cascade is shared by multiple growth factors is not clear.
The mechanism by which PDGF receptors specifically ac-
tivates STAT requires further investigations.

In conclusion, TFactS allowed us to pinpoint an unex-
pected specificity in the activation of STAT transcription
factors by PDGF receptors in fibroblasts and leukemia
cells.

CONCLUSIONS

In this study, we showed that the regulation of TFs can be
accurately predicted from transcriptome data, by
comparing the lists of up- and downregulated genes to a

Figure 4. Hierarchical clustering of STAT or SREBP target genes significantly regulated by PDGF-BB and b-FGF in human fibroblasts. STAT(1, 3
and 5) target gene signatures were pooled as well as SREBP(1 and 2) target genes. Several reports have shown that IRS2 gene expression is
downregulated by SREBP while other targets are up-regulated . The intensities are in log2 ratios (color scale). Two replicate experiments are
shown. F1, b-FGF(1 h); F24, b-FGF(24 h); P1, PDGF-BB(1 h); P24, PDGFBB(24 h).
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list of curated target gene signatures. We validated the
approach using published microarray studies and new
experimental data. It proved able to propose valid candi-
date TFs involved in the transcriptional response to a
specific treatment (i.e. imatinib or growth factors). These
predictions were relatively robust, although it is likely that
the quality of the experimental microarray data and the
normalization steps may significantly affect the final
results. This applies to all the methods dealing with sets
of co-expressed genes as input.

We also showed that TFactS can accurately predict the
activity of TFs if based on a catalog that is annotated with
the sign of the regulation (activation or repression).
However, we could not fully assess the performance of
this feature, by comparing with other methods, because
of the limited number of signatures annotated in the
sign-sensitive TFactS catalog.

TF signature validations were performed on
well-characterized TF for which a significant number of
target genes are known (at least 21 in Table 1). In the
NCI60 cancer data set analysis, MITF and SOX10 were
represented by only 3 and 10 targets in the database,
respectively, indicating that shorter signatures can also
be useful. We are currently working on extending the
number of regulations and increasing the number of TFs
in the catalog. In addition, we offer the possibility to the
scientific community to add their own annotated target
genes either temporarily or permanently. This option is
already implemented in the online version of TFactS. A
limitation of our approach is the availability of high-
quality experimental target gene signatures. A few

databases, such as TRANSFAC (48), TRED (19),
TRRD (20), ORegAnno (58) and PAZAR (21), tackle
this issue by gathering published promoter analysis. As
mentioned above, it would be valuable to systematically
annotate the sign of regulation in these databases, which
has not been done so far. Obviously, much more work will
be needed to identify the gene signature of all transcription
factors present in mammalian genomes.
At this stage, we pooled data from experimental systems

differing in terms of species (rat, mouse and human), cell
types and environmental conditions, in order to get con-
sensus signatures. The results from TFactS validation,
based on multiple tissues, species and cell types, suggest
the existence of robust core target signatures for the tran-
scription factors that were analyzed. Nevertheless, the im-
portance of these parameters will be carefully tested in
future versions of the tool, in order to account for
interspecies variations. Some of these parameters are
already included in other databases (19–21,48,58).
Given the diversity in the parameters that can be

optimized for each tool, it is difficult to produce an
unbiased, fair comparison with the other tools that are
able to predict TF activities, such as those based on
in silico promoter analysis. In our hands, TFactS was
able to predict TF regulations that, in a number of
cases, could not be found using a few popular tools
based on consensus motifs or matrices. We did not test
more complex analysis, which were reported to improve
results significantly (8–11,53). Obviously, TFactS is not
suitable for the identification of novel target genes, by
contrast to PWM-based tools. Our data suggest that
TFactS is a viable, simple alternative to promoter
analysis methods to study differential activity of known
TFs when sufficient known targets of the TF are repre-
sented in the database.
Altogether, we show here that comparing groups of

genes showing a response in microarray data with experi-
mental target gene signatures is an efficient way to predict
the regulation and the level of activity (activation or in-
hibition) of well-characterized trans-acting factors. As a
proof of concept, we validated a simple tool (TFactS)
that combines Fisher’s test and a curated target catalogs,
which do or do not take into account the sign of the regu-
lations. We also suggest that TFactS may contribute to the
functional analysis of cancer microarray data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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and Heldin,C.H. (2004) Platelet-derived growth factor stimulates
membrane lipid synthesis through activation of
phosphatidylinositol 3-kinase and sterol regulatory
element-binding proteins. J. Biol. Chem., 279, 35392–35402.

14. Kallin,A., Johannessen,L.E., Cani,P.D., Marbehant,C.Y.,
Essaghir,A., Foufelle,F., Ferré,P., Heldin,C.H., Delzenne,N.M.
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