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Osteoporosis is a prevalent bone disease of the aging population, which is characterized
by a decrease in bone mass because of the imbalance of bone metabolism. Although the
prevention and treatment of osteoporosis have been explored by different researchers, the
mechanisms underlying osteoporosis are not clear exactly. N6 methyladenosine (m6A) is a
methylated adenosine nucleotide, which functions through its interaction with the proteins
called “writers,” “readers” and “erasers.” The epigenetic regulation of m6A has been
demonstrated to affect mRNA processing, nuclear export, translation, and splicing. At the
cellular level, m6A modification has been known to affect cell proliferation, differentiation,
and apoptosis of bone-related cells, such as bone marrow mesenchymal stem cells
(BMSC), osteoblasts, and osteoclasts by regulating the expression of ALP, Runx2, Osterix,
VEGF, and other related genes. Furthermore, PTH/Pth1r, PI3K-Akt, Wnt/β-Catenin, and
other signaling pathways, which play important roles in the regulation of bone
homeostasis, are also regulated by m6A. Thus, m6A modification may provide a new
approach for osteoporosis treatment. The key roles of m6Amodification in the regulation of
bone health and osteoporosis are reviewed here in this article.
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1 INTRODUCTION

Epigenetic modifications regulate gene expression and translation and affect cell development and
differentiation (Kohli and Zhang, 2013). Epigenetic abnormalities can occur in different ways,
including DNA, RNA, and histone modification (Litt et al., 2001; Akhavan-Niaki and Samadani,
2013; Xu et al., 2016; Roignant and Soller, 2017). RNA transmits DNA genetic information to
proteins and participates in biological processes via RNA post-transcriptional modification. Previous
studies have identified more than 150 types of RNA modifications (Helm and Motorin, 2017).
Among them, N6-methyladenosine (m6A) modification is the most common gene modification in
mammalian cells, occurring in the adenosine base at the nitrogen-6 position of mRNAs (Desrosiers
et al., 1974; Wei et al., 1975). The core sequence of m6A is RRm6ACH ([G/A/U] [G > A]m6 AC [U >
A > C]), which is located in the 3′ untranslated region (3′UTR) adjacent to the stop codon of mRNA
(Dominissini et al., 2012; Meyer et al., 2012). Unlike other gene modifications, the modification of
m6A is dynamically reversible and regulates the maturation, translation, and degradation of
precursor mRNAs (Haussmann et al., 2016; Guo et al., 2017; Yu et al., 2018). m6A RNA
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methylation participates in the development of diseases, as an
increase in m6A promotes the expression of oncoproteins.
Studies have revealed that the high prevalence of m6A can
enhance the proliferation, invasion, and survival of cancer
cells, including cancer cells of gastric, lung, breast, and liver
(Zhang et al., 2016; Du et al., 2017; Cai et al., 2018; Chen et al.,
2019; Lin et al., 2019).

Recent studies have shown that m6A methylation is involved
in the development of bone-related diseases such as osteoporosis
(Wu et al., 2018), osteoarthritis (Liu et al., 2019), and
osteosarcoma (Miao et al., 2019; Wang et al., 2019).
Osteoporosis is a bone metabolic disease with a reduction in
bone mass and degradation of bone structure, which increases the
risk of bone fracture (Felsenberg and Boonen, 2005). With the
growth of the aging population worldwide, the prevalence of
osteoporosis is increasing rapidly, and the number of patients is
estimated to be more than 200 million at present (Tian et al.,
2017; Shapiro et al., 2019). The patient’s bones gradually become
fragile and can easily fracture, which seriously affects people’s life
span and quality of life (Muftic et al., 2013; Shapiro et al., 2019).
m6A RNA methylation plays a crucial role in regulating bone
formation and resorption by influencing cytokines, hormones,
and signaling pathways. This study reviews the influence of m6A
on osteoporosis, particularly its relationship with bone
homeostasis through multiple mechanisms.

2 BASIC INTRODUCTION OF M6A
METHYLATION

m6A is one of the most prevalent internal modifications in
eukaryotic messenger RNA. m6A regulates gene expression
through affecting the translocation, exporting, translation, and
decay of RNA (Huang et al., 2020). Thus, dynamic m6A
modification is important for many physiological processes.
The abundance and function of m6A are effected by the
interaction of methyltransferases (“writers”), binding proteins
(“readers”), and demethylases (“erasers”) (Panneerdoss et al.,
2018; Shi et al., 2019).

2.1 Writers
Writers transfer a methyl group to the N-6 position of adenosine.
N-methyladenosine (mA) is mainly catalyzed by the m6A
methyltransferase complex, which encompasses Wilms tumor
1-associated protein (WTAP), methyltransferase-like 3
(METTL3), and methyltransferase-like14 (METTL14) (Ping
et al., 2014). METTL3 plays a major catalytic role in
regulating alternative splicing of mRNAs (Ke et al., 2017; Xu
et al., 2017; Feng et al., 2018), while METTL14 assists in RNA
substrate binding (Wang et al., 2016). WTAP is required for the
METTL3-MELLT14 complex to be located in nuclear speckles
and catalyzes the activation of m6A methyltransferase in vivo
(Ping et al., 2014).

Recently, an increasing number of other components of the
methyltransferase complex has been found, such as KIAA1429
(VIRMA, vir-like m6A methyltransferase associated) (Schwartz
et al., 2014), methyltransferase-like protein 16 (METTL16)

(Warda et al., 2017), RNA binding motif protein 15 (RBM15),
RBM15B (Patil et al., 2016), and zinc finger CCCH-type
containing 13 (ZC3H13) (Wen et al., 2018). These proteins
interact with the methyltransferase complex to regulate the
stability of the complex and affect m6A methylation of
mRNAs (Knuckles et al., 2018). However, comprehension of
m6A methyltransferase is still exploratory, so it remains
further research on these writers.

2.2 Readers
Readers modulate the stability and translation of m6A-modified
RNAs (Wang et al., 2014; Wang et al., 2015). The most common
type of m6A “reader” proteins is the YTH family, including
YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2, which
contain the unique YTH domain and directly bind to m6A to
regulate downstream targets (Luo and Tong, 2014; Xu et al., 2014;
Kasowitz et al., 2018). Among them, YTHDF3 mainly attenuated
methylated mRNAs and then decreased translation through
cooperation with YTHDF1 and YTHDF2. Thus, these three
YTHDF proteins interact and coordinate to regulate
methylated mRNAs (Shi et al., 2017). The second type of
“reader” proteins are the heterogeneous nuclear
ribonucleoprotein (HNRNP) family proteins (HNRNPA2B1,
HNRNPC, HNRNP G), which regulate the maturation of
RNA substrates in the nucleus (Alarcón et al., 2015; Liu et al.,
2015). With more studies focusing on m6A methylation, other
RNA-binding proteins (Readers) have been found, such as
insulin-like growth factor 2 mRNA-binding proteins (IGF2BP)
(Huang et al., 2018), leucine-rich pentatricopeptide repeat-
containing (LRPPRC), and fragile X mental retardation 1
(FMR1) (Zhang et al., 2018). The potential number of readers
is large and m6A modifications depend on readers to fulfill
biological functions, which contains a broad research space.

2.3 Erasers
Demethylase (“erasers”) can remove the methyl group of m6A
off RNAs, indicating that the methylation of m6A is a dynamic
process and is reversible. There are two common
demethylases: fat mass and obesity-associated protein
(FTO) and alkB homolog 5 (ALKBH5) (Jia et al., 2011;
Zheng et al., 2013). FTO was first reported related to body
mass and obesity in humans (Dina et al., 2007; Zhao et al.,
2014). In 2011, Jia et al. (2011) found that FTO is partially
located on nuclear speckles and that m6A in nuclear RNA is
the physiological substrate of FTO. FTO removes m6A
methylation in RNAs to affect physiological activities such
as glycolysis (Qing et al., 2021) and adipogenesis (Wang et al.,
2020a). FTO depletion induces a notable increase in the total
m6A levels of polyadenylated RNAs. ALKBH5 also localizes to
the nucleus and significantly impacts mRNA export and RNA
metabolism through demethylation activity. Alkbh5-deficient
male mice showed increased m6A mRNA expression, which
impairs fertility through aberrant spermatogenesis and
apoptosis (Zheng et al., 2013). At present, few proteins
exhibit demethylation activity. The functions and
mechanisms of additional m6A demethylases still need
further mining.
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3 REGULATION OFM6AMETHYLATION ON
BONE CELLS

Human bones undergo remodeling through bone formation
and resorption, and the coordination between osteogenesis and
osteoclastogenesis maintains bone health (Felsenberg and
Boonen, 2005). Any disruption to this balance leads to
bone-related diseases, including osteoporosis, which is
mainly characterized by bone mass loss, reduction of bone
strength, and increased risk of fractures (Bliuc et al., 2015;
Onsensus Development, 2001). Several studies have shown
that m6A methylation plays an essential role in regulating
bone cells, including bone marrow mesenchymal stem cells
(BMSCs) and osteoblasts (Wu et al., 2018; Yu et al., 2019a; Mi
et al., 2020; Yan et al., 2020). Thus, m6A methylation may open
a new approach for the prevention and treatment of
osteoporosis.

3.1 Regulation of m6A Methylation on Bone
Marrow Mesenchymal Stem Cells
BMSCs are multiple differentiation potential cells that can
differentiate into osteoblasts, chondrocytes, and bone marrow
adipocytes. BMSCs play an essential role in human skeletal
health by balancing osteogenic and lipogenic differentiation
(Kawai et al., 2009; Chen et al., 2016). The preferential
differentiation of mesenchymal stem cells into adipocytes
leads to an increase in bone marrow fat and a decrease in
osteoblasts and osteocytes, resulting in bone mass loss and even
the development of osteoporosis (Rosen et al., 2009; Scheller
and Rosen, 2014).

As METTL3 plays a crucial role in catalyzing m6A
methylation, previous studies have primarily focused on
regulating METTL3-mediated m6A methylation on
osteogenesis. Recently, Wu et al. (2018) demonstrated that
conditional knockout of METTL3 in BMSCs increased bone
loss, leading to impairment of bone formation and
development of the pathological characteristics of osteoporosis
in mice, indicating that downregulation of METTL3-mediated
m6A methyltransferase in BMSCs induced osteoporosis. The
findings further revealed that the dysregulation of m6A
methyltransferase increased adipocyte differentiation and
decreased osteoblast differentiation, resulting in a reduction in
osteogenesis. Mechanistically, METTL3-mediated m6A
methyltransferase targeted Pth1r (parathyroid hormone
receptor-1) and reduced protein translation, impaired the
function of PTH (parathyroid hormone)-Pth1r signaling, and
dysregulated BMSC-derived osteoblasts (Wu et al., 2018). Tian
et al. (2019) also discovered that downregulation of METTL3
decreased the early and later osteoblast differentiation in BMSCs,
as both ALP activity and mineralized nodules were reduced,
indicating that downregulation of METTL3-mediated m6A
methyltransferase affects osteoblast differentiation in BMSCs.
Research revealed that as the downstream target of m6A
methyltransferase after the knockdown expression of METTL3,
the expression of osteogenic-related genes such as Runx2 and
Osterix was reduced (Tian et al., 2019). Furthermore, the

reduction of Akt phosphorylation and downregulation of the
PI3K-Akt signaling pathway also regulate METTL3-mediated
m6A on bone formation (Marie, 2012; Tian et al., 2019).
Consistently, the knockdown of METTL3 in BMSCs increased
adipocyte differentiation. Yao et al. (2019) demonstrated that
silencing METTL3 in porcine BMSCs decreased Janus kinase1
(JAK1) mRNA m6A modification levels and promoted
adipogenesis through the JAK1/STAT5/C–EBPβ signaling
pathway. These results demonstrated that the downregulation
of METTL3 in BMSCs suppressed osteoblast differentiation and
promoted adipocyte differentiation, leading to decreased bone
formation and even the development of osteoporosis.

On the contrary, overexpression of METTL3 increased
osteogenic differentiation and remedied BMSC dysfunction
in ovariectomized mice by directly promoting the m6A
methylation of Runx2 to maintain the stability of mRNA
Runx2, leading to a high expression level of Runx2. In
addition, m6A methylation of precursor miR-320 indirectly
amplified the effect of METTL3 overexpression on
osteogenesis through the downregulation of mature miR-320
in BMSCs. Furthermore, downregulation of mature miR-320
levels protected against METTL3 silence-induced bone loss in
vivo (Yan et al., 2020).

In addition, m6A methylation affects bone formation through
blood vessels. Previous studies have found that vascular
endothelial growth factor (VEGF), including three homologous
spliced variants, 120, 164, and 188, promote angiogenesis and
osteogenesis (Breier et al., 1992; Wallner et al., 2015; Hu and
Olsen, 2016; Tong et al., 2019). Tian et al. (2019) illustrated that
knockdown of METTL3 reduced the expression of VEGFA
(VEGFA-164 and VEGFA -188). Previous studies have shown
that VEGFA-164 and VEGFA -188 promote the proliferation and
differentiation of osteoblasts from BMSCs (Carmeliet et al.,
1999), suggesting that METTL3 also regulates bone formation
through m6A methylation of VEGF in BMSCs, followed by the
mutual promotion of angiogenesis and osteogenesis in bone
(Ramasamy et al., 2014).

Further research showed that METTL3 promoted the
activation of m6A methylation of MYD88-RNA in menstrual
blood-derived mesenchymal stem cells (MenSCs), which
upregulates the osteogenesis inhibitor NF-κB and thus
suppresses bone formation. Knockdown of METTL3
inhibited the degradation of IκBα and the S536 site
phosphorylation of p65, thereby restraining NF-κB nuclear
translocation and suppressing downstream transcription.
More interestingly, ALKBH5 reversed these results by
demethylase of MYD88-RNA (Yu et al., 2019a). A recent
study showed that ALKBH5 affects osteogenesis by targeting
BMP2 (Wang et al., 2020b) and TRAF4 (Cen et al., 2020). FTO
also inhibits osteogenic differentiation of BMSCs through m6A
demethylation (Zhang et al., 2020).

These studies indicate that METTL3-mediated m6A
methylation could regulate bone formation at multiple levels
and might provide new strategies for the treatment of
osteoporosis. However, more studies are required to better
understand the role of m6A methylation in regulating BMSCs
and bone formation.
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3.2 Regulating m6A Methylation on
Osteoblasts
Studies have also shown that m6A methylation regulates
osteoblast differentiation. Mi et al. (2020) discovered that
downregulation of METTL3 promoted the osteogenic process
in vitro and in vivo by inhibiting the maturation of miR-7212-5p.
Further studies showed that miR-7212-5p inhibited osteoblast
differentiation of MC3T3-E1 cells by targeting FGFR3. These
findings suggest that METTL3 inhibits osteogenic-related genes
in MC3T3-E1 cells. It seemed that METTL3 had a dual role in
osteogenic differentiation, especially in different cell lines. FTO,
an important RNA demethylase, also plays an important role in
modulating osteoblast differentiation. Shen et al. (2018) found
that FTO was upregulated during aging or osteoporosis in
humans and mice, which upregulated BMSC differentiation
into adipocytes and downregulated osteoblasts. Interestingly,
conditional knockout of FTO in osteoblasts inhibited the
progression of osteopenia in ovariectomy (OVX) mice but not
in sham-operated mice. Mechanistically, GDF11 (growth
differentiation factor 11)-FTO-PPARγ (peroxisome
proliferator-activated receptor-gamma) signaling inhibits the
differentiation of osteoblasts and promotes osteoporosis in
humans and mice. Similarly, Zhang et al. (2019) found that
conditional knockout of FTO in osteoblasts showed no
difference in bone volume in 12-week-old mice compared to
wild-type mice. However, 30-week-old mice with FTO knockout
in osteoblasts had lower bone volume than wild-type mice. This
phenomenon may be explained by the different animal models
used. Additionally, Wang et al. (2019) studied the m6A
methylome of the transcriptome in osteosarcoma cells by

chemotherapy, indicating that m6A methylation modification
may potentially affect the totipotency of osteosarcoma cells
(OSCs) through the Wnt and Notch signaling pathways. Miao
et al. (2019) also found thatMETTL3-mediated m6Amethylation
in OSCs promoted m6A levels of lymphoid enhancer factor-1
(LEF1) and upregulates the Wnt/β-catenin signaling pathway,
which plays a critical role in osteoblast differentiation and
osteogenesis (Wang et al., 2017; Zheng et al., 2020). These
findings illustrated that m6A methylation affected osteoblast
differentiation in humans and mice.

3.3 Regulating m6A Methylation on
Osteoclasts
The bone resorption mediated by osteoclasts is important in bone
metabolism. A recent study revealed that m6A methylation plays
a prominent role in osteoclast differentiation and bone resorption
(Salzman, 2016). The RNA methylase METTL3 affected m6A
levels through the 1956 bp in circ_0008542 (noncoding RNA
with a closed circular structure) and promoted the initiation of
osteoclast-induced bone absorption. Circ_0008542 upregulated
the competitive binding of miRNA-185-5p and promoted the
expression of the target gene RANK. Instead, RNA demethylase
ALKBH5 downregulated the combination of circ_0008542 with
miRNA-185-5p to rescue excessive bone resorption (Wang et al.,
2021). In addition, several studies have shown that m6A has a
regulatory effect on intracellular inflammatory factors such as
interleukin-1β (IL-1β), IL-6, interferon-gamma (IFN-γ), and
tumor necrosis factor-α (TNF-α), leading to bone loss through
the bone immune system (Neurath and Finotto, 2011; Briot and

FIGURE 1 | The molecular mechanism and physiological regulation roles of m6A modification in bone. M6A is mainly catalyzed by the METTL3–METTL14–WTAP
methyltransferase complex, and the demethylases ALKBH5 and FTO remove the methyl group of m6A off RNAs. Readers of the YTH domain family are effectors that
recognize the m6A methylation code and convert it into signals. M6A modification regulates the expression of Runx2, Osterix, VEGF, RANK, and other related genes
affecting bone metabolism. Furthermore, PTH/Pth1r, PI3K-Akt, NF-κB, and other signaling pathways were also mediated by m6A, which is important in the
regulation of bone homeostasis.
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Roux, 2015; van Bodegraven and Bravenboer, 2019). Estrogen
deficiency also increases inflammatory cytokines (Tsangari et al.,
2004), followed by the activation of osteoclasts, increased bone
resorption, and osteoporosis (Chen et al., 2017). Liu et al. (2019)
also found that during the process of IL-1 β-induced chondrocyte
inflammation, the expression level of METTL3 mRNA increased
in a dose-dependent manner. At the same time, knockdown of
METTL3 reduced the mRNA expression level of inflammatory
factors in chondrocytes, including IL-6, IL-8, IL-12, and TNF-α,
suggesting that m6AmRNAmethylation promotes inflammatory
injury in chondrocytes. Another study found that the knockdown
of “reader” protein YTHDF2 increased the expression of
MAP4K4 and MAP2K4, then activated MAPK and NF-κB
signaling pathways, upregulated osteoclasts differentiation, and
enhanced LPS-induced stimulation in RAW 264.7 cells (Yu et al.,
2019b). These results suggest that m6A mRNAmethylation plays
a critical role in regulating osteoclasts through inflammatory
responses.

4 CONCLUSION AND PROSPECTS

In summary, m6A methylation regulated osteogenic
differentiation and bone metabolism. But the function of m6A
methylation maybe like a “double-edged sword,” by which it can
either promote or inhibit bone formation in different ways
(Figure 1; Table 1). Undoubtedly, m6A regulation has
provided novel insight into the molecular mechanism of bone
metabolism.

However, the study of m6A modification on bone metabolism
is still in its infancy. First, existing research on m6A in bone
mainly focused on Writers; the mechanism of m6A Erasers and
Readers in bone metabolism require further study. The

methylation of m6A is a dynamic and reversible process, and
how theWriters and Erasers coordinate and how the Readers play
their role after recognizing RNA methylation needs further
exploration. Second, osteoclast-mediated bone resorption is
also an important part of bone metabolism, but there are few
related studies. Moreover, although METTL3 targets Runx2,
VEGF and different signaling pathways to promote osteogenic
differentiation, it remains controversial whether METTL3 is a
potential therapeutic target for osteoporosis, as METTL3 also
activates osteoclasts and then increases bone resorption. Due to
the complexity of regulating m6A methylation in bone
metabolism, further studies are needed to explore its
underlying mechanism.
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TABLE 1 | Multiple functions exerted by m6A RNA methylation in bone.

m6A component m6A levels Related targets Biological function Sample resources Refs

Mettl3 knockout Low Pth1r ↓ Inhibit osteogenesis BMSCs Wu et al. (2018)
Mettl3 knockdown Low JAK1 ↑ Inhibit osteogenesis BMSCs Yao et al. (2019)
Mettl3 knockdown Low Vegfa-164 ↓ Inhibit osteogenesis BMSCs Tian et al. (2019)

Vegfa-188 ↓
Mettl3 knockdown Low MYD88 ↓ Promote osteogenesis MenSCs Yu et al. (2019)
Mettl3 knockdown Low miR-320 ↑ Inhibit osteogenesis BMSCs Yan et al. (2019)

RUNX2 ↓
Mettl3 knockdown Low miR-7212-5p ↓ Promote osteogenesis MC3T3 Mi et al. (2020)
Mettl3 knockdown or ALKBH5 overexpression Low circ_0008542 ↓ Inhibit bone resorption Osteoclast Wang et al. (2021)

RANK↓
YTHDF2 knockdown — MAP2K4 ↑ — Raw264.7 Yu et al. (2019)

MAP4K4 ↑
ALKBH5 knockdown high TRAF4 ↓ Inhibit osteogenesis MSC Cen et al. (2020)
ALKBH5 knockdown high BMP2 ↓ Inhibit osteogenesis OLF Wang et al. (2020)

P-AKT ↓
FTO knockdown high PPARγ ↓ Promote osteogenesis BMSCs Shen et al. (2018)
FTO knockdown high MYC ↑ Promote osteogenesis BMSCs Zhang et al. (2020)
FTO knockout high Hspa1a ↓ Inhibit osteogenesis Osteoblast Zhang et al. (2019)
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