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Exploring sexual dimorphism in basal
forebrain volume changes during aging
and neurodegenerative diseases

Yajun Shi,1,2,4 Dong Cui,1,2,4,5,* Fengzhu Sun,1,2 Zhen OuYang,2,3 Ruhai Dou,1,2 Qing Jiao,1,2 Weifang Cao,1,2

and Guanghui Yu1,2,6,*

SUMMARY

Patients with neurodegenerative diseases exhibit diminished basal forebrain (BF) volume compared to
healthy individuals. However, it’s uncertain whether this difference is consistent between sexes. It has
been reported that BF volume moderately atrophies during aging, but the effect of sex on BF volume
changes during the normal aging process remains unclear. In the cross-sectional study, we observed a sig-
nificant reduction in BF volume in patients with mild cognitive impairment (MCI) and Alzheimer’s disease
(AD) compared toHealthy Controls (HCs), especially in the Ch4 subregion. Notably, significant differences
in BF volume betweenMCI and HCs were observed solely in the female group. Additionally, we identified
asymmetrical atrophy in the left and right Ch4 subregions in female patients with AD. In the longitudinal
analysis, we found that aging seemed to have a minimal impact on BF volume in males. Our study high-
lights the importance of considering sex as a research variable in brain science.

INTRODUCTION

The basal forebrain cholinergic system (BFCS) is situated in the anterior and ventral regions of the striatum. It consists of four distinct groups of

cholinergic cells. Ch1 refers to medial septal nucleus–related cells, Ch2 and Ch3 correspond to those associated with the vertical and hori-

zontal limbs of the diagonal band of Broca, respectively, and Ch4 represents the largest nucleus within the BFCS, comprising cells of the nu-

cleus basalis of Meynert.1,2 Basal forebrain (BF) neurons provide the major cholinergic innervation to the brain neocortex, hippocampus,

amygdala, and some thalamic nuclei.3 They play an important role in cognitive function and attentional behaviors.4 Cholinergic deficiency

has been well demonstrated to be partly responsible for age–related cognitive deficits and neurodegenerative diseases.5–8 The loss of

cortical cholinergic activity resulting from the neuronal dysfunction of the BFCS is one of the principal features of Alzheimer’s disease

(AD).9 General intelligence has been found to be significantly associated with BF volume in healthy elderly people.2 Further, it has been found

that the manipulation of BF cholinergic neurons in mammalian development may bring about different behavioral effects in the two sexes3;

however, the sexual dimorphism in BF volume differences between patients with neurodegenerative diseases and healthy controls (HCs), as

well as the sexual dimorphism in BF volume changes during the normal aging process, remains unclear.

In recent years, progress in non–invasive, high–resolutionmagnetic resonance imaging (MRI) technology, alongwith the refinement of brain

atlases, has facilitated the precise in vivo measurement of BF morphological parameters during aging and neurodegenerative diseases.

Research combining structural MRI (sMRI) and cerebrospinal fluid (CSF) examination has revealed that cognitively normal older adults with

abnormal amyloid beta and tau pathology in CSF biomarkers exhibit a reduction in gray matter (GM) volume within the Ch4 subregion of the

BF.10 A longitudinal sMRI study found that in cognitively normal participants destined to develop AD, the BF area exhibited significant atrophy

as early as 4.5 years before the onset of clinical symptoms, indicating that atrophy in the BF is a biomarker that predicts the likelihood of asymp-

tomatic elderly subjects developing AD.11 Furthermore, a signal decrease in proton densityMRI in patients with AD in the BFmay be related to

the loss or degeneration of cholinergic neurons andmay correspond to regional cortical GM atrophy.12 It has been found that the BFCS is atro-

phied in patients with mild cognitive impairment (MCI),13 and the volume loss of BF is associated with cognitive decline in patients with MCI.14

It has been reported that approximately two–thirds of patients with AD are females,15 and they tend to experience faster cognitive decline

compared tomales.16 This could be due to the brain of female patients with AD undergomore severe pathological damage, leading tomore

pronounced hippocampal atrophy and cognitive decline.17 Extensive brain imaging studies have provided evidence that males with MCI and
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AD tend to experience slower rates of brain atrophy over time compared to females.18 In addition, it has been observed that males with MCI

show less atrophy in multiple brain regions, and once diagnosed with AD, they exhibit less atrophy in various regions as well.19,20 It has been

proposed that cholinergic basal forebrain cortical projection neurons within the nucleus basalis, which mediate memory, attention, and the

degeneration in AD, may exhibit greater vulnerability in elderly females compared to males.21 Studies have also indicated that sex hormones

have an impact on cholinergic basal forebrain functioning.3,22,23 Animal experiments have further revealed significant sex differences in es-

trogen receptors within BF cholinergic neurons.24 A recent study found that sex impacted the associations between BF dynamics and global

fibrillary amyloid–b pathology in cognitively normal older adults with subjective memory complaints.25

The purpose of this study is to investigate the sexual dimorphism in BF volume differences between patients with neurodegenerative dis-

eases and HCs, and the sexual dimorphism in BF volume changes during the normal aging process. First, we aim to conduct a cross–sectional

comparison of BF volumedifferences among three groups—AD,MCI, andHCs—and analyze the sexual dimorphism in BF volumedifferences

between patients with neurodegenerative diseases and HCs. In addition, we intend to longitudinally investigate the changes in BF volume

over time in cognitively normal older adults and analyze the influence of sex.

RESULTS

Cross–sectional study

The demographic information and brain region volumes of the three groups are presented in Table 1. There were no significant differences in

age (F = 2.710; p = 0.069) or sex (c2 = 2.759; p = 0.252) among the three groups. MMSE scores (F = 121.953; p < 0.001) showed significant

Table 1. The comparisons of BF subregion volumes among the three groups

Characteristics

AD

(n = 71)

MCI

(n = 73)

HCs

(n = 77)

F/c2

value p value

F value

interaction

p value

interaction

Post–hoc

AD vs. MCI AD vs. HCs MCI vs. HCs

Age 73.70 G

8.079

74.27 G 6.321 71.78 G 5.924 2.710b 0.069 0.795 0.453 1.000 0.343 0.075

Sex (male/

female)

28/43 37/36 40/37 2.759a 0.252 – – – – –

MMSE 20.41 G

5.515

27.27 G 1.895 28.96 G 1.175 121.953b <0.001 1.682 0.189 <0.001 <0.001 0.007

LBF 0.206 G

0.032

0.229 G 0.032 0.250 G 0.028 29.135c <0.001 2.526 0.358 <0.001 <0.001 0.012

RBF 0.155 G

0.020

0.164 G 0.024 0.178 G 0.019 10.469c <0.001 2.086 0.358 0.293 <0.001 0.081

BF Asymmetry 0.282 G

0.123

0.331 G 0.111 0.338 G 0.095 3.410c 0.045 0.647 0.596 0.097 0.097 1.000

LBF1–3 0.096 G

0.012

0.099 G 0.015 0.105 G 0.014 3.399c 0.045 0.637 0.596 1.000 0.120 0.143

RBF1–3 0.058 G

0.011

0.059 G 0.013 0.064 G 0.012 0.895c 0.461 1.281 0.420 1.000 1.000 1.000

BF1–3

Asymmetry

0.490 G

0.173

0.509 G 0.223 0.493 G 0.183 0.079c 0.924 0.504 0.605 1.000 1.000 1.000

LBF4 0.110 G

0.024

0.131 G 0.022 0.145 G 0.019 36.972c <0.001 3.124 0.358 <0.001 <0.001 0.022

RBF4 0.096 G

0.014

0.105 G 0.016 0.114 G 0.012 18.438c <0.001 1.529 0.394 0.019 <0.001 0.034

BF4

Asymmetry

0.121 G

0.198

0.213 G 0.118 0.238 G 0.115 9.220c <0.001 1.852 0.358 0.003 <0.001 1.000

Data was presented as mean G standard deviation.

n, the number of subjects; AD, Alzheimer’s disease;MCI, mild cognitive impairment; HCs, healthy controls; MMSE,Mini–Mental State Examination; LBF, left basal

forebrain; RBF, right basal forebrain; BF Asymmetry, volume difference between the left and right basal forebrain; LBF1–3, left basal forebrain Ch1–3; RBF1–3,

right basal forebrain Ch1–3; BF1–3 Asymmetry, volume difference between the left and right basal forebrain Ch1–3; LBF4, left basal forebrain Ch4; RBF4, right

basal forebrain Ch4; BF4 Asymmetry, volume difference between the left and right basal forebrain Ch4.
aPearson chi–square test.
bOne–way ANOVA.
cOne–way ANCOVA. p values corrected by False Discovery Rate (FDR) correction were considered statistically significant and represented as bold and slant

bodies.
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differences among the three groups. After the FDR correction, as shown in Table 1, there were notable differences in the volume of BF among

the three groups, thus suggesting that the BF volumes of AD andMCI subjects decreased significantly compared with HCs, particularly in the

LBF, while significant differences in the RBF were observed solely between the AD and HC groups. The decrease in BF volume was primarily

attributed to the atrophy of Ch4, as noteworthy statistical differences were observed in the bilateral BF4 among the three groups; however,

there were no differences in the volumes of Ch1–3 among the three groups (Figure 1, first row). These findings suggested that BF volume,

particularly the Ch4 subregion volume, can serve as an imaging marker in the diagnosis of neurodegenerative diseases.

As shown in Table 1, there was no significant interaction between group and sex. As a result, we separately investigated the differences in

BF volumes among the three groups for males and females, aiming to explore the sexual dimorphism in differences between groups. As

shown in Tables 2 and 3, there was no significant difference in Ch4 subregion volume (p = 1.000, FDR corrected) between MCI and HCs in

males (Figure 1, second row). In contrast, we observed significant differences in the Ch4 subregion volume among all three groups in females

(Figure 1, third row). These results suggested that the Ch4 subregion volume can serve as a reliable imagingmarker for the early diagnosis of

MCI, particularly in females.

Interestingly, we found a significant difference in BF4 asymmetry between the AD and HC groups as well as between the AD and MCI

groups; however, these significant differences were exclusively observed in females. Specifically, BF4 asymmetry was significantly reduced

in the AD group compared to the HC and MCI groups (Figure 2).

Longitudinal study

According to the findings presented in Table 4, there were no significant differences in MMSE scores across the three follow–up assessments,

indicating that participants remained cognitively normal throughout each follow–up period. Following the FDR correction, there were no sig-

nificant differences in the volume of LBF, RBF, BF asymmetry, LBF1–3, BF1–3 asymmetry, RBF4, or BF4 asymmetry. However, we observed a

significant reduction in the volume of RBF1–3 and LBF4 at month 36 compared to the baseline (Figure 3, first row).

Figure 1. The volumes of the BF subregion of three groups

There were significant differences in the total volume of LBF among the three groups, while significant differences in the RBF were observed solely between the

AD and HCs groups. The significant differences in BF4 volume were observed bilaterally among three groups. However, there were no differences in the volume

of Ch1–3 among the three groups. Furthermore, significant differences in BF volumes between the MCI and HCs groups were exclusively observed in females,

indicating that the atrophy of the BF can serve as a reliable imaging marker for the early diagnosis of MCI specifically in females. (*p < 0.05, **p < 0.01, ***p %

0.001, one–way ANCOVA, FDR corrected).
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No significant interaction was found between time and sex, as indicated in Table 4. Consequently, we proceeded to analyze the differ-

ences separately for males and females at the three follow–up visits. As shown in Table 5, no significant differences were observed in the vol-

umes of the BF subregion or in asymmetry inmales across the three follow–up visits, indicating that aging had aminimal effect on BF volume in

healthy oldermales (Figure 3, second row). However, in females, as presented in Table 6, there was a significant decrease in the volume of RBF

Table 2. The comparisons of BF subregion volumes in males among the three groups

Characteristics AD (n = 28) MCI (n = 37) HCs (n = 40) F/c2 value p value

Post–hoc

AD vs. MCI AD vs. HCs MCI vs. HCs

Age 72.86 G 8.013 74.59 G 5.188 72.45 G 5.875 1.214a 0.301 0.820 1.000 0.416

MMSE 21.43 G 5.181 27.24 G 1.754 28.87 G 1.343 52.688a <0.001 <0.001 <0.001 0.056

LBF 0.222 G 0.033 0.246 G 0.028 0.260 G 0.028 8.284b <0.001 0.059 <0.001 1.000

RBF 0.162 G 0.023 0.174 G 0.021 0.182 G 0.019 2.276b 0.214 0.918 0.467 1.000

BF Asymmetry 0.310 G 0.124 0.343 G 0.105 0.353 G 0.086 0.667b 0.663 1.000 1.000 1.000

LBF1–3 0.102 G 0.011 0.107 G 0.014 0.112 G 0.013 1.095b 0.509 1.000 1.000 1.000

RBF1–3 0.062 G 0.013 0.063 G 0.013 0.065 G 0.012 0.001b 1.000 1.000 1.000 1.000

BF1–3 Asymmetry 0.505 G 0.188 0.526 G 0.225 0.541 G 0.163 0.119b 0.999 1.000 1.000 1.000

LBF4 0.120 G 0.025 0.139 G 0.021 0.149 G 0.021 9.693b <0.001 0.027 <0.001 1.000

RBF4 0.101 G 0.014 0.111 G 0.015 0.118 G 0.012 5.652b 0.015 0.248 0.027 1.000

BF4 Asymmetry 0.166 G 0.162 0.221 G 0.115 0.229 G 0.119 2.177b 0.214 0.557 0.750 1.000

Data was presented as mean G standard deviation.

n, the number of subjects; AD, Alzheimer’s disease;MCI, mild cognitive impairment; HCs, healthy controls; MMSE,Mini–Mental State Examination; LBF, left basal

forebrain; RBF, right basal forebrain; BF Asymmetry, volume difference between the left and right basal forebrain; LBF1–3, left basal forebrain Ch1–3; RBF1–3,

right basal forebrain Ch1–3; BF1–3 Asymmetry, volume difference between the left and right basal forebrain Ch1–3; LBF4, left basal forebrain Ch4; RBF4, right

basal forebrain Ch4; BF4 Asymmetry, volume difference between the left and right basal forebrain Ch4.
aOne–way ANOVA.
bOne–way ANCOVA. p values corrected by False Discovery Rate (FDR) correction were considered statistically significant and represented as bold and slant

bodies.

Table 3. The comparisons of BF subregion volumes in females among the three groups

Characteristics AD (n = 43) MCI (n = 36) HCs (n = 37) F/c2 value p value

Post–hoc

AD vs. MCI AD vs. HCs MCI vs. HCs

Age 74.26 G 8.168 73.94 G 7.368 71.05 G 5.972 2.245a 0.111 1.000 0.157 0.278

MMSE 19.74 G 5.682 27.31 G 2.054 29.05 G 0.970 69.237a <0.001 <0.001 <0.001 0.202

LBF 0.196 G 0.027 0.213 G 0.027 0.239 G 0.023 23.806b <0.001 0.018 <0.001 0.004

RBF 0.150 G 0.017 0.155 G 0.024 0.173 G 0.017 10.328b <0.001 0.927 <0.001 0.018

BF Asymmetry 0.263 G 0.120 0.318 G 0.117 0.322 G 0.103 3.279b 0.062 0.166 0.181 1.000

LBF1–3 0.092 G 0.011 0.090 G 0.011 0.097 G 0.012 2.695b 0.093 1.000 0.354 0.174

RBF1–3 0.056 G 0.008 0.056 G 0.013 0.063 G 0.011 2.144b 0.137 1.000 0.431 0.273

BF1–3 Asymmetry 0.491 G 0.164 0.491 G 0.223 0.440 G 0.191 0.407b 0.667 1.000 1.000 1.000

LBF4 0.104 G 0.021 0.122 G 0.020 0.142 G 0.016 32.020b <0.001 <0.001 <0.001 0.007

RBF4 0.093 G 0.014 0.099 G 0.015 0.110 G 0.011 14.381b <0.001 0.181 <0.001 0.018

BF4 Asymmetry 0.092 G 0.216 0.206 G 0.122 0.247 G 0.112 8.164b <0.001 0.018 0.004 1.000

Data was presented as mean G standard deviation.

n, the number of subjects; AD, Alzheimer’s disease;MCI, mild cognitive impairment; HCs, healthy controls; MMSE,Mini–Mental State Examination; LBF, left basal

forebrain; RBF, right basal forebrain; BF Asymmetry, volume difference between the left and right basal forebrain; LBF1–3, left basal forebrain Ch1–3; RBF1–3,

right basal forebrain Ch1–3; BF1–3 Asymmetry, volume difference between the left and right basal forebrain Ch1–3; LBF4, left basal forebrain Ch4; RBF4, right

basal forebrain Ch4; BF4 Asymmetry, volume difference between the left and right basal forebrain Ch4.
aOne–way ANOVA.
bOne–way ANCOVA. p values corrected by False Discovery Rate (FDR) correction were considered statistically significant and represented as bold and slant

bodies.
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and LBF4 during the normal aging process (Figure 3, third row). These findings demonstrated the presence of sexual dimorphism in the

changes in BF subregion volumes during the normal aging process.

DISCUSSION

This study employed both cross–sectional and longitudinal designs to investigate the impact of neurodegenerative diseases and aging on BF

volume and to explore sexual dimorphism. The key findings were as follows: 1) patients with AD exhibited a decrease in BF volume, partic-

ularly in the Ch4 subregion, even before the formal diagnosis of AD. 2) There was sexual dimorphism in the differences in BF subregion vol-

umes between individuals with neurodegenerative diseases and HCs. The volume of the Ch4 subregion can serve as a dependable imaging

marker for the early diagnosis ofMCI only in females. 3) There was asymmetrical atrophy in the left and right Ch4 subregions in female patients

with AD. 4) There was sexual dimorphism in the changes in BF subregion volumes during the normal aging process. Aging appeared to have a

minimal effect on BF volume in themale general elderly population. These findings provided evidence for the use of BF volume as an imaging

marker for the diagnosis of neurodegenerative diseases and emphasized the importance of considering sex as a crucial variable in brain sci-

ence research.

The aim of our cross–sectional study was to analyze the differences of BF volume between the neurodegenerative diseases and HCs and

explore the sexual dimorphism. Our findings indicated a significant reduction in BF volume, specifically in the Ch4 region, even before the

diagnosis of AD. Most of the cholinergic innervation of the cortex, which is involved in attention and memory, originates in the Ch4 (nucleus

basalis of Meynert) and in the horizontal limb of the diagonal band nucleus of the basal prosencephalon. Functional alterations in this system

have been implicated in neurocognitive disorders as well as the cognitive changes described in Parkinson’s disease and AD.26 The atrophy of

BF in patients with AD and MCI has been widely reported.27–29 A study utilizing a large multicenter dataset found that all of the subregion

volumes of the BFCS were significantly reduced in the AD group.30 Among these subregions, the volume reduction in the nucleus basalis

of Meynert (NbM) was particularly pronounced.27,30 Studies based on sMRI have indicated that a decrease in hippocampal and BF volume

is associated with an increased risk ofMCI progressing to AD.29 A recentmultimodalMRI study revealed that, compared to the normal control

group, the cholinergic BF volumes and mean diffusivity were significantly different in patients with MCI and AD but not in individuals with

subjective cognitive decline.31 Combined with our findings, these findings suggest that the morphological parameters of the BF, particularly

Ch4, can serve as robust, reliable imaging markers for the diagnosis of neurodegenerative diseases.

There was sexual dimorphism in the differences in BF subregion volumes between individuals with neurodegenerative diseases and

HCs. The volume of the Ch4 subregion can serve as a reliable imaging marker for the early diagnosis of MCI only in females. In the

MCI stage, significant decline in BF volume was observed in females, while in males, significant atrophy was observed in the AD stage.

The incidence of AD is often reported to be higher for females than for males,15 which indicates that sex plays an important role in

AD brain research. Evidence has suggested that the cholinergic system develops in a sexually dimorphic manner.3,32 The survival and main-

tenance of BFCS neurons rely on the nerve growth factor (NGF) and its homologous receptors (trkA and p75[NTR]).21 Compared to HC,

p75(NTR) mRNA levels in BF cholinergic neurons decreased by approximately 40% in females with AD, while the p75(NTR) expression in

males remained unchanged. Additionally, compared to HC and MCI individuals, males with AD demonstrated a 45% decrease in trkA

mRNA levels in BF cholinergic neurons, while females exhibited a 50% decrease, and reduced trkA mRNA levels were associated with

poorer global cognitive performance in females. These findings suggested that females may be at a higher risk of cholinergic BF neuron

degeneration.21 Similar findings have been obtained in experiments involving ovariectomy in rats.33 Furthermore, Cantero demonstrated

for the first time that atrophy of the NbM in the MCI stage is associated with structural changes in the cerebral cortex in humans, and this

relationship is more pronounced in females.34 These findings emphasized the importance of investigating the mechanisms of neurodegen-

erative diseases separately for males and females.

Figure 2. The left–right asymmetry of the BF subregion of three groups

There was a significant difference in BF4 asymmetry between the AD and HCs groups and between the AD and MCI groups. Specifically, BF4 asymmetry was

significantly reduced in the AD group compared to the HCs and MCI groups. Notably, this asymmetrical difference was found exclusively in females,

implying that female patients with AD exhibit asymmetric atrophy in the Ch4 region. There was no significant difference in left–right asymmetry among the

three groups in males. (*p < 0.05, **p < 0.01, ***p % 0.001, one–way ANCOVA, FDR corrected).
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In addition, we observed a significant difference in left–right brain asymmetry between female patients with AD and HC individuals, with

decreased left–right BF4 asymmetry in patients with AD. The left and right hemispheres of the human brain exhibit slight asymmetry,35,36 and

studies have suggested that there are abnormalities in brain asymmetry in several diseases, such as schizophrenia, depressive disorders, anx-

iety, and neurodegenerative disease.37–40 Numerous other factors may also contribute to brain asymmetry, such as genes, sex, and hor-

mones.40 Many studies have suggested that the brain’s left–right asymmetry is one of the possible diagnostic landmarks for AD.41,42 Clinical

research has found that, as patients progress from HC to AD, the size and shape of many anatomical structures in the brain, such as the hip-

pocampus and basal forebrain, undergo changes in the left and right hemispheres, and the asymmetry also changes.42,43 A recent study that

investigated the complexity of the cerebral cortex using fractal dimensions found that the leftward hemispheric and temporal lobe asymmetry

decreased with age, and males had significantly lower asymmetry between hemispheres and higher asymmetry in the parietal and occipital

lobes than females.44 Furthermore, research that utilized a resting–state functional connectivity–based gradient approach to assess asymme-

tries found that males exhibited greater leftward asymmetry than females.45 It has been demonstrated that the left NbM has higher neuronal

density, while the right NbM has higher glial cell density, and the asymmetry in BF structures tends to be sex–dependent, with a tendency

toward somewhat greater asymmetry in males.46 Our findings highlighted the possibility of differing temporal dynamics in Ch4 atrophy be-

tween the two hemispheres in females and the importance of considering sex differences in AD–related research.

In the longitudinal study, we found that there was sexual dimorphism in the changes in BF subregion volumes during the normal aging

process. Aging appeared to have a minimal effect on BF volume in the male general elderly population. However, there was a significant

decrease in the BF volume with increasing age in females. Previous research findings indicated that sex hormones influence the function

of cholinergic neurons in animals and humans. There was a higher proportion of neurons showing cytoplasmic androgen receptor expression

in females compared tomales.23 An animal experiment showed that estrogen had a protective effect on bothmale and female BF cholinergic

fibers, and the therapeutic potential of estrogen decreased with increasing age.47 The BFCS has been found to undergo moderate neuro-

degeneration during normal aging.27 A recent review demonstrated a correlation between cognitive impairment and the decline in cholin-

ergic cell numbers during aging,48 and our study indicated that this impairment might be more prominent in females. These observations

suggested a potential sexual dimorphism in the changes of BF volume during the normal aging process.

Table 4. The comparisons of BF subregion volumes of three follow–up visits

Characteristics

Baseline

(n = 77)

Month–18

(n = 77)

Month–36

(n = 77)

F value

interaction

p value

interaction F value p value

Baseline vs.

Month–18

Baseline vs.

Month–36

Month–18 vs.

Month–36

Age range 61–86 – – – – – – – – –

Sex Males (n = 40), Females (n = 37) – – – – – – –

MMSE 28.96 G

1.175

28.86 G 1.189 28.90 G 1.107 0.262 0.770 0.262 0.770 1.000 1.000 1.000

LBF 0.250 G

0.028

0.249 G 0.027 0.245 G 0.030 0.217 0.806 3.309 0.074 1.000 0.176 0.611

RBF 0.178 G

0.019

0.178 G 0.019 0.174 G 0.020 1.335 0.269 3.772 0.065 1.000 0.173 0.220

BF Asymmetry 0.338 G

0.095

0.334 G 0.088 0.337 G 0.091 0.178 0.837 0.120 0.887 1.000 1.000 1.000

LBF1–3 0.105 G

0.014

0.106 G 0.015 0.105 G 0.014 0.111 0.895 0.354 0.791 1.000 1.000 1.000

RBF1–3 0.064 G

0.012

0.063 G 0.011 0.061 G 0.011 0.049 0.952 7.319 0.009 1.000 0.041 0.153

BF1–3

Asymmetry

0.493 G

0.183

0.507 G 0.188 0.530 G 0.186 0.085 0.918 3.715 0.065 1.000 0.169 0.611

LBF4 0.145 G

0.019

0.143 G 0.018 0.140 G 0.019 0.785 0.459 6.046 0.014 1.000 0.041 0.537

RBF4 0.114 G

0.012

0.115 G 0.013 0.113 G 0.014 2.311 0.106 0.844 0.558 1.000 1.000 1.000

BF4 Asymmetry 0.228 G

0.115

0.220 G 0.102 0.211 G 0.108 0.236 0.790 1.730 0.275 1.000 0.611 1.000

Data was presented as meanG standard deviation. All p values were calculated by using linear mixed effect model. p values corrected by False Discovery Rate

(FDR) correction were considered statistically significant and represented as bold and slant bodies.

n, the number of subjects; MMSE,Mini–Mental State Examination; LBF, left basal forebrain; RBF, right basal forebrain; BF Asymmetry, volumedifference between

the left and right basal forebrain; LBF1–3, left basal forebrain Ch1–3; RBF1–3, right basal forebrain Ch1–3; BF1–3 Asymmetry, volume difference between the left

and right basal forebrain Ch1–3; LBF4, left basal forebrain Ch4; RBF4, right basal forebrain Ch4; BF4 Asymmetry, volume difference between the left and right

basal forebrain Ch4.
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Limitations of the study

There are several limitations that should be considered in the present study. First, it should be noted that the diagnosis ofMCI andADwas not

confirmed through the demonstration of AD biomarkers, which is a more precise strategy. Second, we did not take into account certain elec-

trophysiological parameters of the participants, such as bodymass index, blood pressure, blood lipids, and alcohol consumption, which have

been shown to impact the volume of brain regions.49–52 Finally, we did not investigate the relationship between cognitive functions, such as

episodic memory and executive function, and the volume of specific subregion of the BF. We intend to include cognitive measures in future

research to better understand how changes in BF volume correlate with cognition.
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Figure 3. The volumes of the BF subregion of three follow–up visits

No significant differences were observed in the volume of BF subregion inmales across the three follow–up visits, indicating that aging had aminimal effect on BF

volume in healthy older males. However, there was a significant decrease in the volume of RBF and LBF4 during the normal aging process in females. (*p < 0.05,

**p < 0.01, ***p % 0.001, linear mixed effect model, FDR corrected).
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Table 6. The comparisons of BF subregion volumes in females of three follow–up visits

Characteristics

Baseline

(n = 37)

Month–18

(n = 37)

Month–36

(n = 37) F value p value

Baseline vs.

Month–18

Baseline vs.

Month–36

Month–18 vs.

Month–36

Age range 61–83 – – – – – – –

MMSE 29.05 G 0.970 28.84 G 1.236 28.92 G 1.090 0.599 0.554 0.904 1.000 1.000

LBF 0.239 G 0.023 0.238 G 0.022 0.233 G 0.024 2.970 0.126 1.000 0.247 0.540

RBF 0.173 G 0.017 0.172 G 0.018 0.167 G 0.016 8.576 0.009 1.000 0.036 0.036

BF Asymmetry 0.322 G 0.103 0.322 G 0.091 0.327 G 0.102 0.118 0.907 1.000 1.000 1.000

LBF1–3 0.097 G 0.012 0.098 G 0.010 0.098 G 0.011 0.098 0.907 1.000 1.000 1.000

RBF1–3 0.063 G 0.011 0.062 G 0.010 0.060 G 0.009 4.751 0.042 1.000 0.223 0.247

BF1–3 Asymmetry 0.440 G 0.191 0.450 G 0.186 0.479 G 0.199 2.100 0.203 1.000 0.528 0.950

LBF4 0.142 G 0.016 0.140 G 0.017 0.135 G 0.017 5.948 0.027 1.000 0.036 0.247

RBF4 0.110 G 0.011 0.110 G 0.011 0.107 G 0.011 2.819 0.126 1.000 0.368 0.540

BF4 Asymmetry 0.247 G 0.112 0.239 G 0.090 0.227 G 0.104 0.504 0.780 1.000 1.000 1.000

Data was presented as meanG standard deviation. All p values were calculated by using linear mixed effect model. p values corrected by False Discovery Rate

(FDR) correction were considered statistically significant and represented as bold and slant bodies.

n, the number of subjects; MMSE,Mini–Mental State Examination; LBF, left basal forebrain; RBF, right basal forebrain; BF Asymmetry, volumedifference between

the left and right basal forebrain; LBF1–3, left basal forebrain Ch1–3; RBF1–3, right basal forebrain Ch1–3; BF1–3 Asymmetry, volume difference between the left

and right basal forebrain Ch1–3; LBF4, left basal forebrain Ch4; RBF4, right basal forebrain Ch4; BF4 Asymmetry, volume difference between the left and right

basal forebrain Ch4.

Table 5. The comparisons of BF subregion volumes in males of three follow–up visits

Characteristics

Baseline

(n = 40)

Month–18

(n = 40)

Month–36

(n = 40) F value p value

Baseline vs.

Month–18

Baseline vs.

Month–36

Month–18 vs.

Month–36

Age range 64–86 – – – – – – –

MMSE 28.88 G 1.343 28.88 G 1.159 28.88 G 1.137 0.001 1.000 1.000 1.000 1.000

LBF 0.260 G 0.028 0.259 G 0.028 0.257 G 0.031 0.853 0.650 1.000 1.000 1.000

RBF 0.182 G 0.019 0.183 G 0.020 0.181 G 0.022 0.455 0.815 1.000 1.000 1.000

BF Asymmetry 0.353 G 0.086 0.344 G 0.085 0.346 G 0.079 0.205 0.815 1.000 1.000 1.000

LBF1–3 0.112 G 0.013 0.112 G 0.015 0.111 G 0.013 0.293 0.815 1.000 1.000 1.000

RBF1–3 0.065 G 0.012 0.064 G 0.013 0.062 G 0.013 3.122 0.486 1.000 1.000 1.000

BF1–3 Asymmetry 0.541 G 0.163 0.559 G 0.177 0.577 G 0.162 1.784 0.574 1.000 1.000 1.000

LBF4 0.149 G 0.021 0.147 G 0.019 0.145 G 0.020 1.346 0.574 1.000 1.000 1.000

RBF4 0.118 G 0.012 0.119 G 0.013 0.119 G 0.014 1.174 0.574 1.000 1.000 1.000

BF4 Asymmetry 0.229 G 0.119 0.203 G 0.110 0.197 G 0.110 1.694 0.574 1.000 1.000 1.000

Data was presented as meanG standard deviation. All p values were calculated by using linear mixed effect model. p values corrected by False Discovery Rate

(FDR) correction were considered statistically significant and represented as bold and slant bodies.

n, the number of subjects; MMSE,Mini–Mental State Examination; LBF, left basal forebrain; RBF, right basal forebrain; BF Asymmetry, volumedifference between

the left and right basal forebrain; LBF1–3, left basal forebrain Ch1–3; RBF1–3, right basal forebrain Ch1–3; BF1–3 Asymmetry, volume difference between the left

and right basal forebrain Ch1–3; LBF4, left basal forebrain Ch4; RBF4, right basal forebrain Ch4; BF4 Asymmetry, volume difference between the left and right

basal forebrain Ch4.
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Guanghui Yu

(ghyu@sdfmu.edu.cn).

Materials availability
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Data and code availability

� The Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Aging dataset is available at: https://aibl.org.au/.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Aging (https://aibl.org.au/) is a prospective longitudinal study that

conducts follow–up assessments at 18–months intervals.53 This study focuses on early detection and lifestyle interventions, encompassing

patients with AD andMCI as well as HCs. The participants were long-term residents ofMelbourne and Perth, Australia, with themajority being

of Caucasian, but the AIBL study does not collect information regarding race or ethnicity. Exclusion criteria for the present study included

participants with schizophrenia, bipolar disorder, Parkinson’s disease, symptomatic stroke, dementia other than AD, a Geriatric Depression

Score (GDS) of 5 or higher, psychiatric illnesses, cancer, uncontrolled diabetes, a history of head injury with over 1 h of post-traumatic amnesia,

a history of alcoholism, and contraindications for MRI scanning.

In the cross–sectional study, 221 participants (AD = 71, MCI = 73, HCs = 77) were recruited from AIBL. The MCI group was defined by the

International Working Group onMild Cognitive Impairment criteria,54,55 and AD patients were defined by the National Institute of Neurolog-

ical and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association criteria.56 The longitudinal

study involved 77 cognitively normal older adults (40 males and 37 females) from AIBL who were aged between 61 and 86 years at baseline.

All participants had the same number of follow–up visits, the baseline, month–18, and month–36, and they all successfully completed the as-

sessments and remained cognitively normal at each visit. It’s worth noting that the subjects in the longitudinal study were identical to the HCs

in the cross-sectional study.

All of the subjects signed consent forms to undergo MRI and neuropsychological assessment for clinical investigation and research. This

study was approved by the institutional ethics committees of Austin Health, St Vincent’s Health, Hollywood Private Hospital, and Edith Cowan

University.

METHOD DETAILS

MRI data acquisition method details

T1–weighted imageswere acquired on Siemens 3.0 TMR scanner (Trio/Skyra/Verio). All of the participants received anMRI scan using a three–

dimensional magnetization–prepared rapid acquisition gradient–echo (3D–MPRAGE) sequence. The parameters were as follows: repetition

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Australian Imaging, Biomarkers and

Lifestyle (AIBL) Flagship Study of Aging

Kathryn A Ellis et al.; Int Psychogeriatr.

2009 Aug; 21(4):672-87. https://doi.org/

10.1017/S1041610209009405.

https://aibl.org.au/

Software and algorithms

Computational Anatomy Toolbox (CAT 12) Neurolmaging Tools & Resources Collaboratory https://neuro-jena.github.io/cat/

Statistical Parametric Mapping (SPM 12) https://github.com/spm/ https://www.fil.ion.ucl.ac.uk/spm/

Statistical Product and Service Solutions (SPSS 25.0) The IBM SPSS software platform https://www.ibm.com/spss
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time (TR) = 2300 ms; echo time (TE) = 2.98 ms; inversion time (TI) = 900 ms; flip angle = 9�; field of view (FOV) = 240 mm 3 256 mm; slice

thickness = 1.2 mm; axial slices = 160; voxel size = 1 mm 3 1 mm 3 1.2 mm.

Image processing and volume estimation of BF

Structural MRI images were preprocessed using an automated program within the Computational Anatomy Toolbox (CAT12, https://neuro-

jena.github.io/cat/) in Statistical Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/). All of the individual data were processed

by: 1) skull–stripping of the brain; 2) a spatial adaptive nonlocal means denoising filter; 3) bias correction; 4) affine registration; and 5) align-

ment of T1–weighted images with the anterior and posterior commissure line on the sagittal plane, followed by segmentation into GM, white

matter (WM), and CSF. The volume of BF cholinergic nuclei, including Ch1–Ch3 and Ch4, was further calculated using cytoarchitecture prob-

abilistic maps of compartments of the BF magnocellular system57 in the Anatomy toolbox in SPM.58 In addition, the total intracranial volume

(TIV) was calculated for statistical analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

The volumes of the left basal forebrain (LBF), right basal forebrain (RBF), LBF Ch1–Ch3 (LBF1–3), RBF Ch1–Ch3 (RBF1–3), LBF Ch4 (LBF4), and

RBF Ch4 (RBF4) were obtained in the previous step. The asymmetry indices of BF, BF1–3, and BF4 were also calculated as the difference be-

tween the right and left volumes dividedby theirmean (in percent).59 Statistical analyseswere performedwith SPSS (version 25.0, Armonk,NY,

USA). Data were expressed as meanG standard deviation. Taking into account that MRI scans were acquired at three different scanning cen-

ters, with two in Melbourne utilizing Siemens 3T Trio and Siemens 3T Skyra scanners, and one in Perth using Siemens 3T Verio scanner,60 we

further employed an empirical Bayes approach known as ComBat to remove scanner effects.61

Cross–sectional study

The Pearson Chi–square test was employed to compare the categorical variable (sex). One–way analysis of variance (ANOVA) was utilized to

analyze the differences in continuous variables such as age and Mini–Mental State Examination (MMSE) scores. The significance level was set

at p < 0.05.When comparing the volumes of BF subregion, we first normalized the effect of TIV by dividing the volume of each brain region by

its corresponding TIV. Subsequently, one–way analysis of covariance (ANCOVA) was applied to compare the differences among the three

groups, with age as covariates. Post hoc analysis was conducted using a two–sample t test. In addition, we assessed the interaction effect

between group and sex. The p values were considered to be significant after the Benjamini and Hochberg (False Discovery Rate, FDR) correc-

tion for the multiple comparison correction. The significance level was set at p < 0.05 (*p < 0.05, **p < 0.01, ***p % 0.001).

Longitudinal study

Given the potential correlations and interdependencies between brain regions volumes at each follow–up, longitudinal data were investi-

gated using Linear mixed-effects models, which can effectively analyze unbalanced longitudinal data and maximize statistical power.62

The volume of BF subregion was considered the response variable, subject ID was included as a random effect, and both sex and follow–

up time were entered as fixed effects. Additionally, we evaluated the interaction effect between time and sex. We conducted pairwise

comparisons to assess the differences between two follow–up visits. The p values were considered to be significant after FDR correction

for multiple comparisons, and the significance level was set at p < 0.05 (*p < 0.05, **p < 0.01, ***p % 0.001).
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