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Understanding molecular features that facilitate aggressive phenotypes in glioblastoma
multiforme (GBM) remains amajor clinical challenge. Accurate diagnosis of GBM subtypes,
namely classical, proneural, and mesenchymal, and identification of specific molecular
features are crucial for clinicians for systematic treatment. We develop a biologically
interpretable and highly efficient deep learning framework based on a convolutional neural
network for subtype identification. The classifiers were generated from high-throughput
data of different molecular levels, i.e., transcriptome and methylome. Furthermore, an
integrated subsystem of transcriptome and methylome data was also used to build the
biologically relevant model. Our results show that deep learning model outperforms the
traditional machine learning algorithms. Furthermore, to evaluate the biological and clinical
applicability of the classification, we performed weighted gene correlation network
analysis, gene set enrichment, and survival analysis of the feature genes. We identified
the genotype–phenotype relationship of GBM subtypes and the subtype-specific
predictive biomarkers for potential diagnosis and treatment.
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INTRODUCTION

Glioblastoma multiforme (GBM), which is the grade IV of glioma as defined by the World Health
Organization (WHO), is a highly invasive and devastating primary form of brain cancer. The
complexity and molecular heterogeneity of GBM pose the challenge for accurate diagnosis and
therapy (Verhaak et al., 2010; Zhang et al., 2020). The prognosis for patients with GBM is poor, and
median survival is 12 months (Witthayanuwat et al., 2018). Because of enormous molecular
heterogeneity and difficulty in early diagnosis, the molecular mechanisms of GBM tumorigenesis
are not clear. This leads to ineffective therapeutic intervention, and many patients relapse. However,
with the current treatment options, i.e., surgery, radiotherapy, and chemotherapy, patient life
expectancy can be increased, but these are not curative. To find the remedial solution, understanding
the molecular features and identification of GBM subtypes is crucial. An earlier study shows that
GBM can be classified into four subtypes based on transcriptional features, i.e., classical, neural,
proneural, and mesenchymal. However, recent findings suggest that the neural subtype probably
arises due to the contamination of normal neuronal tissue tumor margins (Wang et al., 2018).
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Therefore, GBM is currently classified into three subtypes. There
are many other studies to find other subtypes using omics and
clinical data (Park et al., 2019). Histopathological-based diagnosis
is the most common method for subtype identification. However,
it often leads to the inaccurate classification of subtypes due to
interobserver variability (Van den Bent, 2010). Accurate
pathological subtype diagnosis is pivotal for optimal patient
management. Because GBM subtypes are histologically and
genetically heterogeneous, they differ in gene expression,
mutation, and epigenetic states, which lead to different
therapeutic responses and clinical outcomes (Brennan et al.,
2013; Zhang et al., 2020).

Recent advances of sequencing technologies have helped
generate massive omics data in cancer, leading to a deep
understanding of the molecular mechanisms in both common
and rare cancers (Mardis and Wilson, 2009; Campbell et al.,
2020). Data from sequencing experiments reveal that cancer
initiation, progression, and maintenance are caused by the
perturbations in multiple genomics and epigenomics factors.
Additionally, genomics and epigenomics biomarkers have
emerged as promising tools for developing the precision
medicine and stratification of cancer subtypes and grades
(Aran et al., 2013; Jurmeister et al., 2019; Jayanthi et al., 2020;
Yoon et al., 2021). Alteration of gene expression and DNA
methylation is the most prominent genomic and epigenomic
event in cancer cells (Chakravarthi et al., 2016). The genome-wide
analysis reveals that changes in gene expression and methylation
patterns in several positions in the genome are strongly associated
with GBM formation and progression (Bozdag et al., 2013; Dong
and Cui, 2019; Vinel et al., 2021). Gene expression and
methylation are both strongly interlinked processes;
methylation levels in promoter regions influence the gene
expression by regulating transcription factor binding (Mallik
et al., 2020b). On many occasions, hypermethylation of CpG
sites on promoter regions inhibits gene expression, whereas
hypomethylation causes higher expression of genes (Moore
et al., 2012). Therefore, classification using multiple “omics”
data, i.e., transcriptome and methylome, can provide optimal
features for the clinical diagnosis of cancer subtypes. However,
enormous amounts of genetic and epigenetic alterations pose
challenges to finding the unique molecular marker for diagnosing
GBM subtypes. Benefitting from recent advances in
computational methods, such as deep learning (DL) and
traditional machine learning (ML), it is possible to scan the
genome-wide transcriptome and methylome data to find the
subtype-specific molecular feature for diagnosis (Qin et al., 2020).

We have implemented ML and DL algorithms for the
precise and accurate classification of GBM subtypes in the
present work. Each data type (i.e., transcriptome and
methylome) and its integrated subsystem were separately
used for classification. We found that the performance of
the convolutional neural network (CNN) was superior
(always >90%) compared with the other ML models. In
addition, we examined the biological relevancy of features
using weighted gene co-expression network analysis
(WGCNA) and Gene Ontology (GO) analysis. Results show
distinct co-expression modules are linked to each GBM

subtype and are associated with subtype-specific biological
functions. Moreover, several genes in the co-expression
module are associated with patients’ survival. Overall, our
findings suggest that a combination of LASSO feature
selection and CNN can classify the subtype of GBM with
higher accuracy and be used for clinical diagnosis.

MATERIALS AND METHODS

Data Collection, Preprocessing, and
Integration
In this study, we analyze TCGA GBM transcriptome (RNA-seq)
and methylome (Illumina Infinium HumanMethylation450
platform) data. The data set was retrieved from UCSC Xena
(https://xena.ucsc.edu/) (Goldman et al., 2020). Log2 (RSEM +1)
(RSEM: RNA-Seq by Expectation Maximization) values for
transcriptome, and β values for methylation were used for
analysis. Next, the low-expression genes were removed from
transcriptome data [log2 (RSEM +1) <0.1 in 90% sample], and
data was scaled before analysis. Based on the clinical information,
patients (n = 155) were divided into three categories based on
cancer subtype, i.e., classical (n = 42), mesenchymal (n = 55), and
proneural (n = 39) for transcriptome data. Similarly, based on the
clinical information, we divided the methylome data (n = 84) into
a particular subtype, i.e., classical (n = 29), mesenchymal (n = 32),
and proneural (n = 23). Next, based on the clinical information,
patients with both transcriptome and methylome profiles in
TCGA were screened to integrate the transcriptome and
methylome data. The total number of these patients with
omics data was 52, including classical (n = 16), mesenchymal
(n = 22), and proneural (n = 14). Due to the unavailability of
healthy patient data for both transcriptome and methylome, we
used the Z-score to classify higher and lower expression of genes
and hyper- and hypo-methylated CpG sites. We calculated the
Z-score for each gene or CpG site in a specific subtype using the
following formula:

Z − score � �x − μ

σ
.

Here, �x represents subtype-specific average expression or
methylation level of a gene/CpG site, and µ and σ represent
the population mean and population standard deviation,
respectively (Bandyopadhyay et al., 2014). We applied
Z-score>1 for higher expression and hypermethylation and
Z-score < -1 for lower expression and hypomethylated on
each subtype of GBM. Next, we screened the higher and lower
expressed genes whose promoter regions were differentially
methylated, considering that the differential methylation in the
promoter regions may alter the corresponding gene’s expression.
Finally, genes with both differential expression patterns and
differential methylation promoter regions were used for
further analysis (Maegawa et al., 2010; Sumithra et al., 2019).
We collected the external data set from the Gene Expression
Omnibus (GEO) repository for validation. GSE145645 was used
to validate the model constructed using transcriptome and
integrated data. GSE145645 contained all the subtypes of
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GBM, i.e., classical (n = 9), mesenchymal (n = 14) and proneural
(n = 9). Models built on methylome data were further validated
using GSE128654, which consisted of classical (n = 11),
mesenchymal (n = 8), and proneural (n = 10) subtypes.

Clustering Using t-SNE and Principal
Component Analysis
The subtype-specific clustering of patients using transcriptome,
methylome, and integrated data was visualized by t-distributed
stochastic neighbor embedding (t-SNE) and principal component
analysis (PCA) (Van der Maaten and Hinton, 2008). t-SNE was
performed using the TSNE package in Python. For each t-SNE
run, 1000 embeddings were created. Apart from that, we used
PCA for better visualization of GBM subtypes; the ggfortify and
cluster packages in R were used.

Features Selection
We performed feature or variable selection to improve the
performance of ML and DL algorithms. The least absolute
shrinkage and selection operator (LASSO) was performed on
all types of preprocessed data (Muthukrishnan and Rohini, 2016).
We used default parameter values for lambda (the tuning factor
that controls the strength of penalty) and dropped those genes
having the coefficient value of zero. LASSO was implemented in
the ScikitLearn (https://scikit-learn.org) package in Python.

MLandDLModels for Classification of GBM
Subtypes
We performed classification on the subtype of GBM as a
multiclassification problem using gene expression levels as
covariates. Several ML and DL algorithms were used for
classification: support vector machine (SVM), random forest
(RF), naïve Bayes (NB), logistic regression (LR), k-nearest
neighbors (kNN), and CNN. SVM is used for the classification
between the classes to find the optimal hyperplane (Afifi et al.,
2017). The optimal hyperplane boundary not only separates the
classes, but also maximizes the margin between the classes. The
margin is the longest distance between the hyperplane and the
nearest data (support vector) in each class. RF is a tree-based
ensemble learning method that constructs several decision trees
and gives the output for classification based on a majority vote
between the estimators (trees). Gaussian NB classifier is an easy
and simple Gaussian distribution that is dependent on the
application of the Bayes theorem (Kaviarasi and Gandhi Raj,
2019). In Gaussian NB, each variable is considered as an
independent variable and trained efficiently in supervised
learning. It requires small measures of training data, which are
essential for characterization and necessary for classification. A
logistic regression classifier predicts the response based on one or
more predictor variables. It measures the relationship between
the categorical dependent variable and one or more independent
variables by estimating probabilities using a logistic function.
kNN (Liu et al., 2012) is a clustering algorithm that is widely used
for pattern classification based on similarity measures. It utilizes
standard Euclidean distance and evaluates the distinguishing

features. kNN estimates the class attribute depending upon a
neighborhood of close (or similar) patterns in the feature space.
CNN is one of the deep feed-forward artificial neural network
architectures that consist of the convolutional layer, activation
function, and pooling layer. Convolution is one type of linear
operation used instead of general matrix multiplication in
convolution layers where filters are applied to original data or
to feature maps in deep CNN. The convolution operation
(denoted by an asterisk) is defined by

f(t) � (xpK)(t),
where the function x (t) is referred to as input,K(t) is referred to
as kernel, and f(t) is referred to as output. In this paper, all ML
classifiers on the Python platform use the sklearn library. The
Keras library was used to construct the model architecture for
CNN. Eight convolutional layers were used for obtaining the best
result. All parameters for CNN are provided in Supplementary
Table S1. Furthermore, parameters were optimized by the grid
search method using the GridSearchCV package in Python. After
obtaining optimal features, stratified k-fold was applied on the
70% training data set, and average performance measures were
recorded. In stratified k-fold CV, the data set is divided into k
independent folds, where k-1 folds were used to train the
network, and the remaining one is reserved for test purposes.
This procedure is then repeated until all folds are used once as a
test set. The final output is then computed by averaging over the
obtained performance parameters from each test set.

Performance Evaluation
The performance of ML and deep learning models was evaluated
using accuracy, recall, precision, F1-score, FPR, GM, and MCC.
At first, we generated a confusion matrix to compute these
performance scores. The confusion matrix is a table that
categorizes the model’s prediction of whether it matches the
actual value. We calculated true positive (TP), true negative (TN),
false positive (FP), false negative (FN) from the confusion matrix
(Mallik and Zhao, 2020). Then, we calculated the accuracy or
success rate as

Accuracy � TP + TN

TP + TN + FP + FN
.

The sensitivity or TP rate of an MLmodel was measured using
the following equation:

Sensitivity � TP

TP + FN
.

The specificity or TN rate of anMLmodel was measured using
the following equation:

Specificity � TN

TN + FP
.

The precision or positive predicted value was measured using
the following equation:

Precision � TP

TP + FP
.
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Ameasure of model performance that combines precision and
recall into a single number is known as the F measure or F1-score.
The following equation was used to compute the F1-score:

F1 − score � 2 × TP

2 × TP + FP + FN
.

Geometric mean (GM) is the average value or mean, which
signifies the central tendency of the set of numbers by taking the
nth root of the product of their values.

Geometricmean � (x1, x2 . . . . . . .xn) 1n.

Mattews correlation coefficient (MCC) measures the
correlation of the true classes with the predicted labels.

MCC � (TPpTN) − (FPpFN)
�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ .

We used the sklearn metrics library in Python to calculate the
above score by importing functions such as confusion_matrix
and classification_performance. Finally, we visualized the model
performance across a wide range of conditions using receiver
operating characteristic curve (ROC) plots using the roc_curve
function.

Ranking of the Model
Algorithm performance was compared using multi-criteria
decision analysis (MCDA)/multi-criteria decision making
(MCDM). The technique for order of preference by similarity
to ideal solution (TOPSIS), an established MCDM method, was
used to rank. Multiple criteria, such as accuracy, sensitivity,
precision, G-mean, F-measure, FPR, and MCC, were used in
TOPSIS (Triantaphyllou, 2000).

Weighted Correlation Network Analysis
We identified co-expressed gene modules and analyzed the
module-trait relationship using the WGCNA package in R
(Langfelder and Horvath, 2008). First, the similarity matrix
between each pair of feature genes in a specific subtype was
measured based on Pearson’s correlation coefficient. Next, we
transformed the similarity matrix into an adjacency matrix. The
soft power β value was calculated for building the proximity
matrix so that the co-expression network conformed to a scale-
free network based on connectivity. Subsequently, we computed
the topological overlap matrix (TOM) and the corresponding
dissimilarity (1-TOM) value. Next, a dynamic tree cut algorithm
was implemented to detect gene co-expression modules. The co-
expression modules were constructed with a cut height of 0.6, and
a minimum module size was set to 10 (transcriptome), 10
(methylome), and 5 (integrated) genes, respectively.

Gene Set Enrichment and Survival Analysis
We performed the biological process and functional enrichment
analysis using Enrichr (Kuleshov et al., 2016). Terms were
considered statistically significantly enriched if the adjusted
p-value was less than 0.05. The gene list from each positively
correlated module was used to examine the enrichment of GO

biological processes andmolecular function terms.We performed
overall survival and log-rank test of a co-expressed module using
the survminer and survival package in R. We calculated the
average expression of all genes in the module. Survival was
compared between two groups: patients with higher (Q75
percentile) and lower ($25 percentile) gene expression levels.
Furthermore, we performed the overall survival analysis of
specific genes using GEPIA (Tang et al., 2017). GEPIA
performs survival analysis based on The Cancer Genome Atlas
(TCGA) gene expression levels and patient clinical information.
Here, the TCGA GBM data set was used for survival analysis.
GEPIA generates Kaplan–Meier plots and performs the log-rank
test to identify the genes associated with patient survival.

RESULTS

The etiology of GBM is associated with the alteration of
transcriptome and methylome patterns. Therefore, the multi-
omics approach that combines genome-wide methylation with
transcriptome (RNA-seq) data can provide novel insights into
biological function and disease mechanisms. In this work, we first
separately analyzed the transcriptome and methylome, and then
we integrated both data types to identify the molecular feature
and classify the GBM subtypes.

Classification of GBM Subtype Using
Transcriptome
The transcriptome data of the GBM at TCGA contained 20,531
genes. After removing the low-expression genes, a total of 14,125
genes were found expressed in all GBM subtypes, including
classical (n = 42), mesenchymal (n = 55), and proneural (n =
39). These genes were taken for further analysis. However, 14,125
genes could not be used as variables for prediction as the data is
high-dimensional, leading to the inaccurate classification of
subtypes. Therefore, we performed the LASSO to reduce the
dimension of data and subsequently for selecting top key feature
genes to enhance the prediction accuracy of the DL and ML
model. LASSO performs L1 regularization and adds a penalty to
the loss function. This penalty contains the absolute value of the
regression coefficients. It attempts to minimize the cost function
and automatically selects relevant features that are useful, and the
remaining features are discarded with a coefficient equal to zero.
The coefficients of the regression variables having nonzero values
were selected as an optimal feature for further processing. A total
of 201 feature genes were obtained after performing the LASSO
analysis (Supplementary Table S2). Next, we performed t-SNE
and PCA to examine the local structure of data, including 14,125
genes and 201 feature genes. We observed improved subtype-
specific separation between patients using 201 feature genes
compared to 14,125 genes, indicating that the LASSO feature
selection method efficiently extracted most variable features from
the transcriptome data (Figures 1B–E). Additionally, the
percentage of variability in principal component 1 (PC1) was
increased in the PCA of 201 feature genes compared with the
preprocessed data (Figures 1D,E). These results indicate that
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information contained in 201 feature genes could separate the
subtype with higher accuracy upon implementing DL and ML
algorithms. However, distinct clusters of subtypes were not
formed either in t-SNE or PCA.

Next, we proceeded to apply DL (CNN) and ML algorithms
(i.e., SVM, KNN, RF, NB, LR) to classify subtypes of GBM using
these feature genes as variables. We divided the data into training
(70%) and test (30%) data sets. Seventy percent of the data was
used for parameter optimization and to assess the performance of
each model. The remaining 30% of data was used for independent
predictors. Additionally, an external data set was also used for the
final validation of models (Figure 1A). In the model training step,

70% of the data was used to obtain the best combination of
hyperparameters using the grid search method for each DL and
ML model. Next, we performed the stratified k-fold cross-
validation (k = 10) on the training data using the optimal
hyperparameters obtained from the grid search and recorded
average performance measures of each model (Table 1). The
performance of the models was evaluated using average accuracy,
recall, precision, F1-score, FPR, GM, andMCC (see materials and
methods). We observed that the prediction accuracy of CNN was
superior (98.56%) compared with the other ML models. Even
standard deviation (±0.03) and FPR (0.01) were minimum in the
case of CNN. The MCC score is 0.97 for CNN, which represents

FIGURE 1 |GBM subtype classification using transcriptome data. (A) The flow chart shows DL andML pipelines using genome-wide transcriptome data to classify
the subtypes. (B, C) t-SNE plots to visualize the subtype-specific clustering of the patients using preprocessed data and features genes. (D, E) PCA plots to visualize the
subtype-specific clustering of patients using preprocessed data and feature genes. (F–K) ROC of various prediction models. ROC plots were generated using a test
data set.
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the excellent correlation between the observed and predicted
classifications. We observed that the performance of other ML
classifiers was also good (accuracy >90%). Therefore, to compare
the overall performance, we performed MCDM using TOPSIS (Si
et al., 2021). All performance measures mentioned in Table 1
were considered for the ranking, and CNN topped the overall
ranking. To validate this observation, we performed the
classification using two data sets, i.e., 30% data as the test data
(or independent data) and an external data set from GEO
(GSE145645). In the test data, the prediction accuracy
(98.56%) of CNN was superior to other ML models and the
MCC score was 0.96 (Supplementary Table S3). It is always
desirable to have a highly sensitive and highly specific model for
diagnosis. Therefore, we visualized the relationship between
sensitivity and specificity using the ROC curve (Figures
1F–K). The ROC curve represents the probability of a TP
result or the test’s sensitivity against the probability of an FP
result for a range of different cutoff points. Figure 1F shows the
area under the ROC curve (AUC) is 0.99 for CNN, indicating that
CNN can classify the GBM subtype with high specificity and
sensitivity for clinical diagnosis. Additionally, classification with
the external data set also represented a similar outcome; i.e., the
performance of CNN was higher (Table 2). While validating with
the external data set, we implemented tenfold cross-validation to
calculate the average performance measure and compared the
model performance by computing the rank. Furthermore, we
compared the classification accuracy of the LASSO feature with
the features selected using the variance. Gene with higher
variance may contain more useful information. We selected
the top 201 variable genes according to the degree of variance
across all samples to compare the performance with LASSO. We
performed the CNN using the same parameters and tenfold
cross-validation. The average accuracy was 84.02% (±0.08).

Therefore, the accuracy of prediction was less than LASSO
features (98.56%). Hence, model building to validation, we
observed that the feature genes from LASSO and CNN were
the best for subtype classification for the transcriptome data.
Therefore, we implemented this framework in subsequent
analysis.

Classification of GBM Subtype Using
Methylome
In the previous section, we classify the GBM subtype using the
transcriptome data (or gene expression data) because the
alteration of gene expression is a hallmark of oncogenesis.
However, the level of gene expression is regulated by DNA
methylation. Therefore, changes in DNA methylation patterns
can play a crucial role in GBM development. Recent studies show
that DNA methylation biomarkers are essential for improving
and designing cancer therapy (Locke et al., 2019). Hence, the
information contained in methylation data could possibly help to
classify the GBM subtype. The genome-wide methylation or
methylome data of 84 GBM patients were retrieved from the
UCSC Xena database. We selected the data from the Illumina
Infinium HumanMethylation450 platform (450K array) that has
4,85,577 probe sites. In this data set, the methylation level is
estimated using the beta value. The beta value ranges from zero to
one, representing the ratio of the intensity of the methylated bead
type to the combined locus intensity. Thus, higher beta values
represent a higher level of DNA methylation,
i.e., hypermethylation and lower beta values represent a lower
level of DNA methylation, i.e., hypomethylation. The recent
reports show that the hypermethylation/hypomethylation level
in the promoter region (e.g., defined as TSS1500 upstream to
TSS200 downstream of TSS, 5′UTR, and first exon; TSS denotes

TABLE 1 | Models performance and ranking for transcriptome data.

Method Performance measures (Average of tenfold cross-validation) MCDM Rank

Accuracy Recall Precision F1-score FPR GM MCC

SVM 91.42% (±0.08) 84.48 91.80 85.51 0.06 91.52 0.82 4
KNN 91.03% (±0.06) 85.78 90.59 86.06 0.07 91.44 0.82 5
RF 93.06% (±0.08) 88.52 93.04 89.15 0.05 93.02 0.85 3
NB 90.15% (±0.07) 86.08 87.16 85.38 0.08 90.52 0.80 6
LR 93.32% (±0.05) 89.47 92.12 89.97 0.05 93.61 0.86 2
CNN 98.56% (±0.03) 97.86 98.36 97.81 0.01 98.64 0.97 1

TABLE 2 | Models performance and ranking for validation data (transcriptome).

Method Performance measures (Average of tenfold cross-validation) MCDM Rank

Accuracy Recall Precision F1-score FPR GM MCC

SVM 79.14% (±0.14) 71.33 63.57 65.68 0.11 84.07 0.71 4
KNN 79.15% (±0.14) 71.33 63.57 65.68 0.11 84.07 0.71 5
RF 80.57% (±0.22) 71.38 65.75 67.54 0.10 85.85 0.66 3
NB 77.59% (±0.17) 68.28 61.90 64.02 0.12 82.99 0.68 6
LR 81.20% (±0.15) 74.68 66.01 68.90 0.10 86.44 0.75 2
CNN 92.70% (±0.12) 90.20 88.77 89.24 0.01 98.25 0.96 1
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transcription start site) and gene body determine the gene
expression level (Sandoval et al., 2011; Yang et al., 2014).
Therefore, we screened the promoter and gene body

methylation data to perform classification because the
alteration of methylation levels in these regions can influence
the gene expression level and subsequently influence the

FIGURE 2 |GBM subtype classification using methylome data. (A) The flow chart shows DL andML pipelines using genome-wide DNAmethylation data to classify
the subtypes. (B, C) t-SNE and PCA plots to visualize the subtype-specific clustering of the patients from features gene. (D–I) ROC of various prediction models. ROC
plots were generated using the test data set.
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biological processes (Dhar et al., 2021). The CpG sites, which
include all promoter regions and the gene body, were screened for
feature selection. By using LASSO, we obtained 498 features CpG
sites (Supplementary Table S2). Next, we examined the subtype-
specific clustering of patients with these 498 features CpG sites
using t-SNE and PCA. Results show that there was slighter
mixing among the different subtypes (Figure 2B,C). Next, we
performed the DL and ML using these 498 CpG sites as variables.
We repeated the same methodology as described in the previous
section. First, the methylome data were divided into training
(70%) and test (30%). The hyperparameters were optimized using
the grid search method, and tenfold cross-validation was
performed on the training data. The average performance
measures were used to select the top-performing model using
MCDM (Figure 2A). The overall performance of CNN was
superior compared with other ML models using methylation
data as well (Table 3). Next, we validated our observation with the
30% test data set (Supplementary Table S4) and an external data
set (GSE128654) (Table 4). ROC plots (Figures 2D–I) show that
the performance of the CNN (AUC = 0.98) was better compared
with other ML models. However, the accuracy value is 89.0%,
which is lower than the ML models. The overall performance of
CNN on external data is superior (Rank = 1, see Table 4). These
results indicate that CNN is the best classifier for predicting the
GBM subtype using DNA methylation data.

Classification of GBM Subtype by
Integrating the Methylation and
Transcriptome Data
There are several studies where only one type of “omics” data is
used, such as either gene expression or methylation data, to
identify the biomarkers or classify the cancers (Díaz-Uriarte

and Alvarez de Andrés, 2006; Wang et al., 2020). However,
DNA methylation and gene expression are integrated
processes that determine cellular fate (Basu and Tiwari, 2021).
The perturbation of gene expression in many human cancers is
due to the change of methylation pattern (Langfelder and
Horvath, 2008). Hence, integrating these strongly interlinked
cellular processes and subsequent analysis could facilitate
finding a more effective diagnostic option (Mallik et al.,
2020a). The patients having both transcriptome and
methylome data were selected for data integration. Next, we
screened the gene and methylation sites based on z-score,
i.e., z > 1 and z < -1 (see materials and methods). A z-score
greater than 1 or less than -1 indicates the expression and
methylation is greater or less than the population mean. We
identified common genes whose expression andmethylation both
are z > 1 or z < -1 in each subtype. Next, we combined all these
genes (n = 4,231) and used their gene expression level to find the
most variable features (n = 75) using LASSO (Supplementary
Table S2). We observed that 75 feature genes form the distinct
subtype-specific clusters with PCA and t-SNE (Figure 3B–E).
Compared with previous features from transcriptome and
methylome data, the feature genes of the integrated data
significantly improve the clustering of the GBM subtype. Next,
we implemented CNN using these feature genes and compared
CNN performance with the other five ML algorithms
(Figure 3A). In this case, the CNN performance was also
ranked on top (Table 5). Furthermore, we validated the model
with 30% test data (Supplementary Table S5) and external data
(Table 6). ROC plots generated using test data explain the decent
performance of CNN (AUC = 0.91 and accuracy = 87.50%)
(Figures 3F–K). The validation with external data showed that
CNNwas the top performer (accuracy = 94.48%) for classification
(Table 6). It can be concluded that in all three types of analysis,

TABLE 3 | Models performance and ranking for methylation data.

Method Performance measures (Average of tenfold cross-validation) MCDM Rank

Accuracy Recall Precision F1-score FPR GM MCC

SVM 90.61% (±0.09) 86.40 87.67 84.49 0.07 90.55 0.81 4
KNN 90.72% (±0.12) 85.86 88.10 84.90 0.07 90.36 0.81 5
RF 91.03% (±0.10) 86.92 89.74 86.33 0.06 90.81 0.82 3
NB 92.34% (±0.08) 88.85 92.63 88.46 0.05 92.03 0.84 2
LR 89.84% (±0.11) 83.71 82.70 81.80 0.08 89.46 0.78 6
CNN 97.54% (±0.05) 96.77 97.71 96.47 0.01 97.47 0.95 1

TABLE 4 | Models performance and ranking for external data (methylation).

Method Performance measures (Average of tenfold cross-validation) MCDM Rank

Accuracy Recall Precision F1-score FPR GM MCC

SVM 82.42% (±0.23) 76.65 73.58 74.60 0.09 85.26 0.76 4
KNN 79.09% (±0.20) 68.00 63.19 64.22 0.13 81.49 0.66 6
RF 82.81% (±0.16) 76.27 70.31 72.29 0.08 88.19 0.78 3
NB 81.52% (±0.15) 71.46 65.50 66.91 0.11 83.45 0.71 5
LR 87.42% (±0.17) 84.34 81.08 82.17 0.05 92.92 0.86 2
CNN 91.91% (±0.13) 90.50 89.15 89.60 0.01 97.63 0.96 1
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CNN efficiently classified the GBM subtypes. However, the
features from integrated data specifically cluster the subtype of
GBM with PCA and t-SNE. Moreover, the consistent all-around
performance of CNN proves that CNN can be used as a
computational tool for the clinical diagnosis GBM subtype.

The Biological Relevance of Features and
Identification of Biomarkers
In the preceding steps, we extracted features from large-scale
transcriptome and methylome data sets to develop the predictive

tool for subtype identification. We observed that selected features
from each type of data have excellent separability power, and
therefore, we achieved classification accuracy >90% in every case.
This indicates that any subset of these features is probably
associated with a particular subtype (or phenotype). Therefore,
further analysis of these features genes can link the genotype to
phenotype. We performed WGCNA to understand genotype-to-
phenotype relationships. WGCNA can find the module of highly
correlated genes and their association with a specific subtype of
GBM (Langfelder and Horvath, 2008). We constructed the co-
expression module using the feature genes expression from

FIGURE 3 | GBM subtype classification using integrated data. (A) The flow chart shows DL and ML pipelines using the integrated data of transcriptome and
methylome to classify the subtypes. (B,C) t-SNE plots to visualize the subtype-specific clustering of patient from features gene. (D,E) PCA plots to visualize the subtype-
specific clustering of patient from features gene. (F–K) ROC of various prediction models. ROC plots were generated using the test data set.
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transcriptome, methylome, and integrated data and examined
their association with specific subtypes. To find the co-expression
module of feature methylation sites, we mapped the methylation
site to gene name and extracted the gene expression data to
construct co-expression modules. To construct the co-expression
modules, we determined the soft threshold, β (β = 4, 6, and 5 for
transcriptome, methylome, and integrated data, respectively)
based on scale independence and mean connectivity
(Supplementary Figure S1). We then merged modules with
similarities above 0.6 for all three types of data. Finally, the
dynamic tree cut showed a gene cluster dendrogram
containing 3, 6, 5 co-expression models in the features of
transcriptome, methylome, and integrated data, respectively
(Figures 4A,E,I). To understand the genotype–phenotype
relationship, we generated the module–trait relationship plot.
We found distinct patterns of association between modules and
subtypes (Figures 4B,F,J). Results show that the blue module
(Figure 4B) was significantly and positively associated with the
proneural subtype (r = 0.53, p = 4E-11). In contrast, it was
negatively associated with the mesenchymal (r = -0.73, p = 2E-
23), and weakly correlated with the classical subtype (r = 0.25, p =
0.004). Similarly, we found a distinct pattern of association
between other modules (i.e., brown and turquoise) and
subtypes (Figure 4B). We observed the same in the features
from the methylome and integrated data. In methylome
(Figure 4F), the brown module significantly and positively
associated with only the proneural subtype (r = 0.33, p =
0.02). The green module is positively associated with the
classical (r = 0.32, p = 0.03) and negatively associated with the
proneural (r = -0.46, p = 9E-04). The blue module is strongly and
positively correlated with the mesenchymal subtype (r = 0.55, p =
4E-05), whereas it was negatively associated with proneural (r =
-0.6, p = 5E-06). However, the feature from the integrated data

showed a more specific module–subtype association. At least one
module was strongly and positively correlated with a specific
subtype. The red (r = 0.64, p = 3E-07), turquoise (r = 0.66, p = 8E-
08), and blue (r = 0.56, p = 1E-05) were explicitly and positively
associated with classical, mesenchymal, and proneural,
respectively (Figure 4J). The module–trait relationship analysis
indicates that integration of transcriptome andmethylome results
in subsets of features strongly correlated with a particular subtype
of GBM. Probably, the integrated data sets are mechanistically
more relevant as the methylation and gene expression are
integrated cellular processes. Next, we performed the gene set
enrichment analysis (GSEA), i.e., GO biological process (BP) and
molecular function (MF), using Enrichr to understand the
biological relevance of each data type’s top three positively
correlated modules (Mallick et al., 2020). We observed that
modules were significantly (adjusted p < .05) associated with
several BP and MF that are linked to oncogenesis. For example,
the turquoise module from the transcriptome data in the classical
subtype is involved in the RIG-I signaling pathway that elicits
RIG-I-like receptors’ expression and activity (RLRs) (Figure 4C).
These receptors stimulate both innate and adaptive immune
responses against tumor antigens and promote the apoptosis
of cancer cells (Bufalieri et al., 2021). In contrast, the brown
module associated with the mesenchymal subtype (leukocyte
adhesion to vascular endothelial cell) may be linked to the
GBM-associated with the endothelial cell, that is, resistant to
cytotoxic drugs, and also less apoptotic than healthy cells
(Charalambous et al., 2006) (Figure 4C). Phosphatidylinositol
3 phosphate activity enriched in the turquoise module, solute
proton symporter activity in the brown module, and syndecan
binding in the blue module are associated with higher tumor
grades and poor prognosis in GBM (Shi et al., 2017) (Figure 4D).
Similarly, we observed that the blue module in the mesenchymal

TABLE 5 | Models performance and ranking for integrated data.

Method Performance measures (Average of tenfold cross-validation) MCDM Rank

Accuracy Recall Precision F1-score FPR GM MCC

SVM 89.94% (±0.10) 86.47 81.11 81.65 0.07 90.02 0.82 5
KNN 91.87% (±0.13) 88.35 82.68 84.57 0.06 91.81 0.84 3
RF 93.67% (±0.10) 88.70 84.63 86.06 0.04 93.52 0.89 2
NB 89.95% (±0.14) 83.16 77.12 79.14 0.08 89.43 0.79 6
LR 92.18% (±0.10) 87.10 81.38 83.43 0.06 91.77 0.85 4
CNN 98.20% (±0.05) 98.44 97.97 97.60 0.01 98.25 0.97 1

TABLE 6 | Models performance and ranking for external data (transcriptome).

Method Performance measures (Average of tenfold cross-validation) MCDM Rank

Accuracy Recall Precision F1-score FPR GM MCC

SVM 63.15% (±0.12) 46.43 35.70 37.89 0.22 68.38 0.38 6
KNN 67.08% (±0.17) 49.56 38.83 42.39 0.20 72.31 0.39 5
RF 80.00% (±0.19) 72.24 66.21 67.70 0.09 85.81 0.73 2
NB 66.14% (±0.17) 55.59 45.69 48.47 0.22 71.35 0.43 4
LR 70.74% (±0.10) 49.26 37.11 41.14 0.16 75.89 0.48 3
CNN 94.48% (±0.11) 94.48 94.48 94.48 0 1 1 1
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FIGURE 4 | Weighted gene co-expression network analysis and gene set enrichment of feature used for model building. (A) co-expression gene module, (B)
module-trait relationship, (C) biological process, and (D) molecular function of feature from transcriptome data. (E) co-expression gene module, (F) module-trait
relationship, (G) biological process, and (H) molecular function of feature from methylome data. (I) co-expression gene module, (J) module-trait relationship, (K) GO
biological process term analysis, and (L) GO molecular function of feature from integrated data.
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and the brown module in the proneural are linked to positive
regulation of GTPase activity and positive regulation of
phosphorylation in methylome data (Figure 4G). These
processes are signatures of GBM formation and progression
(He et al., 2021). Even molecular functions of several co-
expression modules are involved in tumorigenesis, such as
phosphatidylinositol 3, 4, 5 triphosphate binding enriched in
the green module deregulates many key signaling pathways
involving growth, proliferation, survival, and apoptosis in
GBM (Mao et al., 2012) (Figure 4H). Furthermore,
endopeptidase inhibitor activity, GABA receptor activity
enriched in blue and brown modules, respectively, are
predominant events in GBM (Labrakakis et al., 1998; Lin
et al., 2020) (Figure 4H). The gene co-expressed modules in
the integrated data, i.e., and the turquoise module (mesenchymal)
involved with negative regulation of T cell activation and
proliferation is one of the signatures of GBM (Woroniecka
et al., 2018). The MF of the same module shows it is
associated with gap junction channel activity involved in cell
communication, which is also linked to GBM (Aasen et al., 2016)
(Figures 4K,L).

Our results show thatmost of the positively correlatedmodules in
GBM subtypes were involved in several BP and MF. Besides this,
many of these BP and MF are involved in oncogenic processes. This

shows a possibility of identifying these modules’ genes as cancer
biomarkers for therapy or diagnosis. We performed survival analysis
of positively correlated modules (Supplementary Figure S2). The
turquoise module in the integrated feature is significantly (log-rank
test, p = .029) associated with the patient survival. Hence, we
performed survival analysis of all genes separately present in
these modules using GEPIA web tools (Figure 5 and
Supplementary Figure S3). We found several genes that were
present in the co-expression module and also associated with the
patient’s survival (log-rank test, p < .05). The higher expression of
most of the genes was associated with worse survival of the patients,
except DUOX1 (FIGURE 5O) and FOXN2 (Supplementary Figure
S3). However, higher or lower expression of genes associated with
worse survival can be considered biomarkers (Sun et al., 2019; Liu
et al., 2021). Furthermore, several experimental articles confirm the
involvement of these genes in GBM formation and progression. For
example, CCDC8, CLDN1, JMJD8, PTRF, RNF135, and SNX21 in
classical (Berezovsky et al., 2014; Karnati et al., 2014; Pangeni et al.,
2015; Yeo et al., 2016; Huang et al., 2018; Zhang et al., 2019)
(Figure 5A–F); GCNT1, RAB38, HLX, ZDHHC12, SRCRB4D
(SSC4D), GNB2, and LETM2 in mesenchymal (Thaker et al.,
2009; Chen et al., 2014; Toton et al., 2018; Chen et al., 2020;
Bianchetti et al., 2021; Giambra et al., 2021; Katsushima et al.,
2021) (Figure 5G–M); and TOLLIP and DUOX1 (Humbert-Claude

FIGURE 5 | Survival analysis of gene present in co-expression module. (A–F), Kaplan–Meier plots of genes from positively associated modules with the classical
subtype. (G–M), Kaplan–Meier plots of genes from positively associated modules with the mesenchymal subtype. (N,O), Kaplan–Meier plots of genes from positively
associated modules with the proneural subtype. Overall survival was analyzed based on the clinical information of the patients from TCGA and quartile method of 75%
cutoff of higher and 25% cutoff of lower limit (An extended version of this figure is provided in Supplementary Figure S3).
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et al., 2016; Little et al., 2016) in proneural (Figure 5N–O) are linked
to GBM patient survival. The association of genes from the modules
with patient survival shows the possibility to identify them as
subtype-specific prognostic biomarkers. We also observed that
the expression pattern of survival-associated genes varied across
the subtype (Supplementary Figure S4). Furthermore, we illustrated
with gene enrichment analysis that their biological process and
molecular functions are also linked to oncogenic events. Therefore,
these findings confirm the clinical validity of our models and can
provide insight into the complex regulatory processes in different
subtypes of GBM.

DISCUSSION

The present study indicates that DL and ML can be powerful tools
for finding patterns in large-scale genetic and epigenetic data sets
related to human cancer. In general, efficient DL andML tools work
like a black box; researchers or clinicians may not be confident in
diagnosing or classifying cancer patients using these approaches.
However, if the basis of classification is biologically relevant and has
higher accuracy, the diagnosis and patient management are more
assured and systematic. Here, we present a biologically relevant DL-
andML-based framework to classify the subtype of GBM to increase
accuracy in diagnosis; in turn, it can lead to better patient
management. Previous studies try to develop the cancer
classification model using a single type of omics data. Models are
mainly developed for binary classification to identify healthy and
cancer patients. However, we use two types of high-throughput data,
i.e., transcriptome and methylome; integrated forms of these data
were explored to develop the classification framework. Most
importantly, we successfully separate three subtypes, classical,
mesenchymal, and proneural, of GBM. Although we dealt with
multiclass classification problems, we still achieved classification
accuracy >90%. We also compared DL and ML techniques to
identify the most suitable method for interpreting the
transcriptome, methylome, and integrated data. The DL method,
i.e., CNN, outperforms other ML models. Using CNN, we were able
to classify the tumor into the correct subtype from the test and
external cohort. We observed that overall classification performance
was higher using the transcriptome and integrated data than the
methylome data.

Another significant aspect of our findings is the biological
relevance of features and the identification of subtype-specific
prognostic biomarkers. To find the association of feature genes
with specific subtypes, we performed WGCNA. The gene co-
expression module-subtype relation analysis revealed how a
subset of features is strongly and positively correlated with a
particular subtype of GBM. In addition to that, the gene set
enrichment analysis revealed that all positively correlated
modules are biologically relevant even those that are linked to
oncogenic processes. Among all data types, a strong module–trait
relationship was observed in feature genes from integrated data.
Furthermore, we identified several genes present in these co-
expressed modules, which were linked to patient survival. Our
study explained how the feature genes from the DL/ML
framework could be used to find the subtype-specific

biomarkers. Good agreement was found when comparing
prognostic markers from this work against published
experimental data. The feature genes of this study and CNN
can provide assured and clinically relevant deep learning-based
diagnostic tools for the proper treatment of GBM patients.
Furthermore, the results of this work unravel and shed light
on the understanding of genotype-phenotype relationships of the
GBM subtype. Last, much of the research presented in this work
can be applied to other human cancers to design DL-based
diagnostic tools using high-throughput experimental data.
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