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Scientific discovery as a combinatorial
optimisation problem: How best to
navigate the landscape of possible
experiments?
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A considerable number of areas of bioscience, including

gene and drug discovery, metabolic engineering for the

biotechnological improvement of organisms, and the

processes of natural and directed evolution, are best

viewed in terms of a ‘landscape’ representing a large

search space of possible solutions or experiments popu-

lated by a considerably smaller number of actual

solutions that then emerge. This is what makes these

problems ‘hard’, but as such these are to be seen as

combinatorial optimisation problems that are best

attacked by heuristic methods known from that field.

Such landscapes, which may also represent or include

multiple objectives, are effectively modelled in silico,

with modern active learning algorithms such as those

based on Darwinian evolution providing guidance, using

existing knowledge, as to what is the ‘best’ experiment

to do next. An awareness, and the application, of these

methods can thereby enhance the scientific discovery

process considerably. This analysis fits comfortably with

an emerging epistemology that sees scientific reasoning,

the search for solutions, and scientific discovery as

Bayesian processes.
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Introduction

It can be of considerable value to knowwhat makes a scientific
problem ‘hard’ and why it is so, since such knowledge can, of
itself, point to the best ways of attacking it. Indeed hardness
and feasibility arguably represent the two chief attributes
underpinning a sensible choice of a scientific problem to take
on [1]. Many scientific problems can be set down in a way that
makes them ‘bounded’, in that there are a discrete (if large)
number of possible solutions, and where the quality of the
‘objective function’ (the solution) is known or at least recog-
nisable. Examples of such problems might be ‘find me a gene
that significantly affects process X (e.g. the flowering time [2]
or root length [3] in a plant)’, ‘find me a small molecule drug
that at 1 mM inhibits the activity of enzyme Y by at least 50%’
or ‘find me a set of three enzymes, the removal (or modifi-
cation) of each of which would lead to the maximum increase
in the biotechnological production of molecule Z’.

Such problems are in fact surprisingly common in biology,
even if it is possibly uncommon to set them out in this way,
and the purpose of this essay is to point out that there are
methods for attacking this general class of problem that are
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extremely effective and whose more widespread deployment
would thus be of considerable scientific (and biotechnologi-
cal) benefit. The general class of problem is known as a
combinatorial optimisation problem, and is widely visualised
in terms of a ‘landscape’, in which the ‘position’ in the land-
scape represents a candidate solution while the height
represents a measure of the quality of the candidate solution
at that point in the ‘search space’ or landscape of possible
solutions. Finding the ‘best’ solution thus involves moving
around the landscape according to an algorithm of some kind.
The basic problems are (i) that the difficulty of finding ‘the
best’ or ‘a good’ solution scales exponentially with the number
of variables in the system, and (ii) that a genuine certainty that
one has found the best possible solution means trying each of
them (which is usually unfeasible).

Problems of this type are known as non-polynomial (NP)-
hard problems (e.g. [4, 5]), the number of possible solutions is
typically astronomical, and thus most strategies (known as
heuristic methods [6]) simply seek a ‘good’ but not provably
optimal solution.

The question of how best to move around this kind of
landscape is thus equivalent in scientific discovery to deter-
mining in a principled or formal manner what is the ‘best’
experiment to do next. This is clearly a very general question,
as the number of possible experiments is unfeasibly large; the
job of the scientist is thus to choose from them effectively.

A ‘mindmap’ [7] setting out the main contents of this essay
is given in Fig. 1.

Scientific problems scale exponentially with the number
of variables – an example using macromolecular
sequences

It is worth exploring a little this question of exponential
scaling with the number of variables. To do so I choose a
biological example based on aptamers. Aptamers are sequen-
ces of nucleic acids that can bind a target ligand (e.g. [8]). Take
the case where one seeks a DNA aptamer with the tightest
binding coefficient for such a target ligand [9–11]. If we con-
sider 30mers, in which each position can be A, T, G or C, the

number of possible 30mers is 430, which is �1018, and even if
arrayed as 5 mm spots the array would occupy 29 km2 [9]!
Clearly the number of possibilities scales exponentially with
the number of bases in the nucleotide string (i.e. the
variables). The lifetime of the known Universe in seconds is
�1017 [12], so it is obvious that we cannot try them all.

For proteins undergoing natural or directed evolution, and
using only the 20 ‘common’ amino acids, the number of
sequence variants for M substitutions in a given protein of
N amino acids is 19M:N!

ðN�MÞ!M! [13]. For a protein of 300 amino acids
with changes in just 1, 2 and 3 amino acids this is 5,700, ca. 16
million and ca. 30 billion. Even for a very small protein of
N ¼ 50 amino acids, the number of variants exceeds 1012 when
M ¼ 10. The same combinatorial formula applies to finding
the subset of k enzymes out of n that one might wish to change
for some benefit; if n is 1,000 (a reasonable number for
metabolism [14, 15]), for k ¼ 1, 2, 3, 4, 5 and 6, these numbers
are 1,000, 499,500, 166,167,000, 41,417,124,750, 8.25 � 1012

and 1.37 � 1015. These numbers are already experimentally
intractable for k ¼ 3, which leads to a number of important
conclusions. First, if (as is the case) most biological processes
are controlled by multiple gene products, looking ‘under the
lamppost’ at any number of individual gene products will be
much less successful than seeking solutions among the much
larger number of combinations of gene products [16].
Secondly, this alone in part explains the enormous historical
difficulty in developing strains by randommutation and selec-
tion for the improvement of fermentation processes. It also
indicates the utility of first having a computer model of the
system with which one can explore, far more effectively, the
landscape of possibilities. Knowledge of where one is in
the search space – of in this case sequences (strings) – can
definitely help in its search (e.g. [9, 10]).

‘Ruggedness’ reflects the nature of landscapes and the
ease with which they may be searched effectively

Another issue that contributes to the difficulty of navigating
these landscapes – and one can indeed make a mental picture
of them as being like natural landscapes – is that they are

Figure 1. A ‘mind map’ [7] setting out the main contents of this
paper. To read it start at ‘12 o’clock’ and read clockwise.
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rugged, in the sense that to access a larger peak the ‘journey’
may mean descending to a (‘fitness’) level lower than where
one is presently. This concept of a fitness landscape is of
course Sewall Wright’s metaphor [17], and means that it is
normally necessary to explore less-fit solutions en route to the
discovery of a ‘better’ solution (‘reculer pour mieux sauter’
[18]). In one nicely done in silico example, nearly one third of
improved variants required this [19].

There are a very large number of quantitative metrics
(summarised in ref. [20]) for what ‘ruggedness’ means, but
in general if small changes in the position in a landscape
correspond to small changes in fitness while large changes in
landscape position correspond to large fitness changes the
landscape may be regarded as smooth. On the other hand if
the two quantities (fitness and distance) are essentially uncor-
related the landscape is rugged. The basic problem is that we
typically know only a tiny fraction of the landscape (and the
effective structure of the landscape does depend on what
kinds of moves are possible). From what we know, e.g. from
the existence of divergent evolution, most landscapes are
comparatively rugged, withmany synergistic or epistatic inter-
actions (i.e. the value of one variable can influence strongly
the optimum value of another variable). In one example of our
own, looking at the effect of changing parameters in a simple
model [21, 22] of oscillations in the NF-kB signalling pathway,
the effect of one parameter could be qualitatively different
(causing oscillation frequency to go up or down) depending on
the value of a second parameter [23]. This is straightforwardly
a consequence of the nonlinearity of most biochemical kinetic
rate equations [24], together with the existence of feedback
loops.

In general, cases where the effect of one variable on the
behaviour of a system also depends on the value of another
variable are referred to as epistatic. Such epistasis is readily
observed via the co-evolution of protein residues [25] or as
‘classical’ epistasis in genetic analysis (see e.g. [16]). Note too
that individual residues can evolve at substantially different
rates (heterotachy). Overall, the ruggedness of practical land-
scapes (we do not consider pathological ones such as a ‘needle
in a haystack’) makes it much harder to search them effectively
than if they were smooth, so many more experiments may be
necessary without a good heuristic.

Heuristic approaches to NP-hard
optimisation problems

The flood of scientific data is increasing relentlessly, and this
offers many novel opportunities. However, because of the
effective impossibility of exploring entire search spaces exper-
imentally for all but comparatively small problems (albeit
high-throughput methods are opening up many more possi-
bilities than were previously thought reasonable – e.g. [10]),
we seek good but not provably optimal solutions. As men-
tioned above, these are typically referred to as heuristic
methods. Many effective strategies have been realised for
pursuing this kind of search, which in many ways amounts
to understanding and modelling the landscape itself, often in
a manner that allows one to improve the selection of which

sample to test (i.e. experiment to do) at each iteration [26], a
method generally known as Active Learning (e.g. [27]).

Many algorithms have been applied to these kinds of
problem, and because they are essentially iterative in nature,
they might be considered to be evolutionary in character, and
indeed a major clade of optimisation strategies are known by
terms such as evolutionary algorithms (EAs), evolutionary
computing, evolutionary search or genetic search.

Evolutionary computation and genetic
programming

A field that has been rather explicit in its view that the solution
of many scientific and technological problems is to be seen as
a combinatorial optimisation problem is that of evolutionary
computing (see e.g. [6, 28–31]).

In evolutionary computing, as in ‘real’ (biological) evol-
ution, there is a population of candidate solutions to a prob-
lem, each of which exhibits a level of ‘fitness’ (or more than
one if the problem is multi-objective; see below). What con-
stitutes this fitness (in terms of an objective function) is deter-
mined by the experimenter, but it is likely to include the
quality of the solution and possibly also its parsimony (pref-
erence for the simplest model that is still capable of explaining
all features of the system). When the fitnesses of the members
of the population are evaluated there is then a selection step in
which a subset of members are retained in the population and
then modified, by processes akin to mutation and recombina-
tion, to produce a subsequent generation whose fitnesses are
then evaluated, and so on. When the objective functions are
adequately satisfied, whichmaymeanwhen there is no further
resource to explore the problem, the system stops and returns
its optimal solution(s).

Many specific types of EA exist. One reason for this is that it
can be proven (the so-called ‘no free lunch’ theorem) that
which is ‘best’ depends entirely on the structure of the dataset
under consideration [32, 33], with none being better than any
others, including random search, when integrated over all
possible datasets. However, we regard EAs as a superset of
the essential kinds of strategy that can be adopted for navi-
gating these very large search spaces of potential answers in
the hope of finding ones that work adequately. Often it is not
known a priori which algorithmmay be best for which dataset.
Trying several may be of value. Combining even ‘weak’ algor-
ithms is known to be much more effective than choosing just a
single ‘strong’ one [34].

Multiobjective optimisation

Thus far it has been implicit that the optimisation of just a
single output (e.g. an enzyme activity or the productivity
of a fermentation process) was being sought. In practice,
most problems are characterised by the fact that there
are multiple things that one might wish to optimise.
There are therefore trade-offs in that a solution optimal for
one objective may be sub-optimal for another. These are
known as multi-objective optimisation problems, and some
are summarised in refs. [35, 36], while some of the algorithms
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that have been used for attacking them can be found in
relevant surveys (e.g. [37]).

These trade-offs are usually expressed in terms of the so-
called Pareto or ‘non-dominated’ front, represented by solutions
that are best in terms of at least one objective and not worse in
terms of any other. The Pareto optimal set of solutions (indi-
viduals) consists of all those that it is impossible to improve in
any objective without a simultaneous worsening in some other
objective, and is illustrated diagrammatically in Fig. 2.

Most of the examples we are looking at here are also
implicitly multi-objective in nature, e.g. in terms of optimising
a protein we might wish it to have a very high kcat but also to
survive at elevated temperatures or in high concentrations of
solvent (the choosing of which is itself a combinatorial and
multi-objective problem [38]), which might themselves cause
kcat to vary slowly over time. A very common set of problems is
represented by those for which a ‘better’ solution is also a more
expensive one, and thus cost is typically one criterion of the
(multi-)objective function. Typically the choice of solutions
from the Pareto front is at the behest of the experimenter,
and for this reason we shall largely ignore multi-objectivism
since our focus is on the combinatorial issue. One point worth
making, however, is that the more objectives one includes the
more nearly does the search approach a random search.

Some specific examples of combinatorial
optimisation problems in biology

The aptamer example given above is formally equivalent to
any problem of ‘directed protein evolution’, protein structure
prediction or folding. In addition, it is worth highlighting the
following problems as best approached via combinatorial
optimisation: drug discovery; optimising cocktails of known
drugs; identifying targets for metabolic engineering. I ignore
other quite general NP-hard problems such as ‘clustering’
where there can be many objects and variables (e.g. [39–41]).

Drug and chemical discovery

Drug discovery is a tricky and costly process [42], and nowa-
days usually involves the search for a molecule that can bind
tightly to (and inhibit) a chosen molecular target.

However, because of the multiple valencies of carbon, and
its ability to bind withmany other multivalent atoms such as N
and O and the monovalent H, Cl, Br and F, the number of
possible molecules with a given number of such atoms is
enormous – tens of millions even formolecules withmolecular
masses below 160 Da and atom numbers of C, N, O and F up to
11 [43] and ignoring stereoisomers. Reymond and colleagues
have recently extended the analysis to the ca. 977 million
compounds with 13 atoms of C, H, N, O, S and Cl [44] (and
see http://www.dcb-server.unibe.ch/groups/reymond/). Few
of these compounds have been made, and with a realistic drug
discovery space of maybe 1060 compounds [45] most will not.
Indeed even most simple heterocycles have not been explored
at all.

An emerging solution to this is to ‘evolve’ molecules with
desirable properties by bringing together fragments that them-
selves are not optimal – so-called fragment-based drug (or
lead) discovery (e.g. [46]). In this case, discovery proceeds in a
manner analogous to that of the evolutionary search described
above, where each population member is a molecule repre-
senting a candidate solution. The fitness (e.g. binding
strength) of the various solutions is evaluated and then
solutions mutated and/or recombined to make different and
often larger molecules (since these will tend to have more
atoms that can bind to the target). In each generation only a
few hundred molecules are typically used, rather than the tens
of thousands or even millions available in pharmaceutical
drug libraries. Candidate solutions can be screened virtually
by performing a quantitative structure-activity analysis at
each step, i.e. providing a computer model that effects a
mapping between known structures and their fitnesses, then
assessing the quality of potential leads in silico. This is made
considerably easier by the online listings of huge numbers of
commercially available molecules, e.g. in the ZINC database
http://zinc.docking.org/, chosen subsets of which from the
virtual screening can then be tested experimentally. (A similar
approach using virtual screening with aptamers was
extremely successful [9].) Note too that other aspects may
need to be optimised, e.g. the likelihood that such molecules
will be substrates for cellular drug transporters (e.g. [47–49]).

The discovery of an individual substance – here a phar-
maceutical drug – from a potentially gigantic catalogue of
possible substances clearly requires effective means of search-
ing for it. A related problem is finding appropriate mixtures or
cocktails from a potentially large set of combinations of known
substances.

Optimising multiple drugs or drug targets

There is increasing recognition that to be effective (whether
singly or in combination), pharmaceutical drugs must affect
multiple steps simultaneously [50–52]. This follows in part
from the facts that (i) the flux through networks is very rarely
controlled by a single step as this is a systems property [53],
and (ii) biological systems have tended to evolve towards

Objective Bj

Objective A

Figure 2. A two-objective optimisation problem, illustrating the non-
dominated or Pareto front. In this case we wish to maximise both
objectives. Each individual blob is a candidate solution, with the filled
ones representing the approximation (based on the examples tested)
to the Pareto front.
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robustness (if modifying just one parameter causes death then
evolution soon selects against such a cell or organism).
However, by and large we still lack good biochemical network
models [54, 55] over which to reason.

Clearly the combination formula given above shows that
the number of combinations scales exponentially with the
number of real and possible choices one can make, and if
there are n separate candidate drugs the possible number if all
may be used is 2n (each is either used or not used).

Again, a number of recent examples (e.g. [52, 56]) show
how a heuristic search of combinations of drugs with ‘known’
individual targets can swiftly lead to effective solutions, often
involving synergy such that lower concentrations of poten-
tially toxic individual components can be used.

Optimising such mixtures is effectively the same as opti-
mising the components of a medium for improving the pro-
ductivity of a fermentation for biotechnology, and Weuster–
Botz and colleagues have developed such a strategy to great
effect (e.g. [57]). The same applies to the optimisation of any
‘recipe’ or process that has a number of possible components
and steps whose nature and/or properties may be varied.

Optimising enzyme manipulations for metabolic
engineering or synthetic biology

Optimising biotechnological processes in the modern era is
probably best seen to involve choosing the enzymes that most
need modification and then optimising them individually by
directed evolution [58]. Finding a simple combination of
enzymes to manipulate for improving a desirable trait is
formally equivalent to finding a (small) set of drug targets,
and is certainly a combinatorial optimisation problem, and it
does seem to be the case that a small number of carefully
chosen targets can often have large effects (e.g. [14, 59–61]).
Historically we lacked both the necessary models [53] and the
molecular biology techniques, and progress was both slow
and empirical [62]. In particular, if we need to manipulate just
four enzymes out of say 1,000 (a typical number for microbial
metabolic networks [15, 63, 64]), the number of combinations
is about 41 billion, somewhat beyond the typical abilities of a
wet lab. However, such a number can be tested in silico in a
comparatively short time (and, like most such analyses [20],
the test can be parallelised perfectly). This explains the need
for having a half-decent in silico model with which to work
and make predictions.

In a particularly nice example from ‘white’ or industrial
biotechnology, this is exactly what Sang Yup Lee and co-

workers did [14] for improving (considerably) the production
of valine in Escherichia coli, first exploring in silico the �108

search space to find three enzymes from ca. 1,000 tomanipulate,
and then doing so experimentally. Broadly similar strategies
have proved efficacious for a variety of other products [58].

The role of computers in scientific
discovery

The treatment of many or most scientific problems as combi-
natorial problems is to be seen as a subset of a broader field
that seeks to formalise the use of computers or ‘artificial
intelligence’ in scientific discovery (e.g. [26, 65, 66]), with
the metric of whether such results are ‘human-competitive’
[67] being at least one measure of success. Indeed, every
experiment consists of various steps with different properties
that can be varied independently and this is why designing an
experiment is a combinatorial problem.

Learning can be effected through association of patterns

The present kind of principled reasoning approach usually
involves some kind of association or pattern matching analysis
based on data mining techniques, and is to be seen as a kind of
inductive reasoning [68] in which paired data are used as
inputs to a learning system from which more general rules
are expected to emerge [69]. Starting with the DENDRAL sys-
tem [70–73] that sought implicitly to learn rules for molecular
decomposition in mass spectrometers, and thereby the identi-
fication of molecules from their mass spectra (‘from spectrum
to structure’ [74]), a number of computer-based scientific dis-
covery systems have been proposed. A couple of reviews may
be cited (e.g. [65, 75]), and I list some of the specific systems in
Table 1. A number of these are iterative, and even closed-loop
(requiring no human intervention) whereby the results of the
analysis lead to the proposal and performance of the next ‘wet’
experiment in a series (active learning – see above) as the
system learns to optimise what it seeks to discover.

The role of the scientific literature and ontologies

The means of capturing, encapsulating and transmitting
knowledge lies at the heart of science, and from the compu-
tational point of view the literature remains an imperfectly
accessed resource [90, 91]. It is not even easy to answer well
the question ‘which is the best paper for me to read next?’.

Table 1. Some of the systems that have been devised for automating the process of scientific reasoning

Name Field of endeavour Selected references

Dendral (and meta-dendral) Mass spectrometric identification of molecules [70, 72, 73]
Bacon Thermodynamics, heat capacity and heat flow [76]
Fahrenheit Electrochemistry [77]
Not named Quantum control of chemical reactions [78–80]
The robot scientist Yeast metabolism [27, 81–84]
The robot chromatographer Chromatographic optimisation [85, 86]
Not named/Eureqa Dynamics [87, 88]
Clade Aptamer evolution [9–11,75,89]
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More importantly, it is the general concept of semantics that
differentiates raw text from text with meaning (e.g. [92–95]).
Nowadays it is considered that the use of RDF triples for simple
relationships and for more complex ones the more full-blown
ontologies – of which the Gene Ontology [96] (http://www.ge-
neontology.org/) is probably the best known to biologists – is
the most effective means with which to imbue text with mean-
ing as part of the general computational area known as text
mining (e.g. [92, 97]). Since much knowledge can be encoded
as graphs, the Systems Biology Markup Language [98] – which
is designed for describing them in a principled manner –
seems a natural means of doing this [99], especially since it
can reference its own ontology directly (e.g. [15, 100–102]).
This involves in part finding the literature that provides the
evidence for a particular pathway; the converse problem
(‘given the literature, construct the pathway’) is an important
direction, but considerably harder.

One major difficulty with conventional ontologies is that
they do not easily deal with (i.e. reconcile) contradictory state-
ments; for this, and for inferencing more generally, some kind
of weighting system is required.

The Bayesian analysis of scientific
reasoning and scientific discovery

A comparatively recent development (e.g. [68, 103–108]) is the
recognition that the application of the methods of Bayesian
inference provides a straightforward and natural means of
understanding the relative roles of old and newer evidence
in the development of theory and belief. Certainly, one can
hardly deny that science and other endeavours involve a
continuing series of inferences based on incomplete data.
In the classical form (e.g. [109–113]), Bayes’ rule (more accu-
rately the rule of Bayes, Price and Laplace [107]) simply states
that a new set of observations (‘evidence’) of B regarding two
events A and B adds to or otherwise our belief in a particular
point of view of A according to the Bayes formula

PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ

where P(AjB) is the ‘posterior’ or conditional probability of A
given B, P(BjA) is the conditional probability of A given B (also
known as the likelihood), P(A) is the ‘a priori’ or prior prob-
ability of A in absence of the extra knowledge provided by
measurement of B, while P(B) is the prior (or marginal) prob-
ability of B. (In many experimental set-ups, A is to be seen as a
‘cause’ of the experimentally observable ‘effect’ B.)

Ascertaining posterior probabilities

To see how this works, imagine members of two tribes (let us
call them Hawks and Jets) who inhabit an island. There are 1.5
times as many Hawks as Jets. All Hawks wear blue tunics but
for Jets 50% wear blue tunics and 50% wear brown tunics. If
you meet a person wearing a blue tunic what is the probability
that they are a Jet?

If P(A) is the a priori probability of being a Jet, it is
0.4. P(B), the a priori probability of wearing blue, is

0.6 þ (0.5 � 0.4) ¼ 0.8. P(BjA), the probability of wearing
blue if you are a Jet is 0.5. Application of the Bayes formula
therefore gives the requested probability P(AjB), the prob-
ability of being a Jet given that you are observed to be wearing
blue, as 0.5 � 0.4/0.8 ¼ 0.25. These binary outcomes can be
put into a tabular form, where the fraction of ‘Blue Jets’ to
‘total Blues’ is clearly 20/80 ¼ 0.25.

Explicit benefits of knowing priors

Bayesian analysis also allows one to take priors into account
in a way that so-called frequentist statistics do not. In binary
outcomes (true/false) in diagnostic tests e.g. for disease we can
have four outcomes: true positives (TPs), false positives (FP),
true negatives (TN) and false negatives (FN). The sensitivity of
the test (see e.g. [114]) describes its ability to spot positive
results (i.e. the person tested has the disease for which the test
is diagnostic):

Sensitivity ¼ TP=ðTPþ FNÞ

While the specificity determines the ability of the test to detect
negative results (i.e. correctly to identify those who do not
have the disease)

Specificity ¼ TN=ðTNþ FPÞ

Suppose one has developed a diagnostic test for a disease that
has a sensitivity of 99% and a specificity also of 99%. On most
grounds this might seem an excellent test, but this ignores the
priors. Imagine now a (real) population in which only 1% of
the individuals in the population actually has the disease,
which is not unreasonable.

If A is the disease, and B a positive result, application of
the Bayes formula gives

PðAÞ ¼ 0:01; Pð� AÞ
� where �Ameans not having the diseaseÞ is 0:99

PðBjAÞ ¼ 0:99 as the test is 99% sensitive and specific

and P(B) ¼ 0.99 � 0.01 þ 0.99 � 0.01 ¼ 0.0198, so P(AjB),
the probability of having the disease given a positive result,
is 0.99 � 0.01/0.0198, which is only 0.5. So despite the very
high sensitivity and specificity of the diagnostic, the very low
prevalence of the disease (the prior), means that actually the
test (and probably any individual test. . .) is rather poor.

The equivalent table (rounded to integers for 1,000 tests) is
as follows:

Diseased Not diseased Total

Disease predicted 10 10 20
Disease not predicted 0 980 98
Total 10 990 1,000

Hawks Jets Total

Blue 60 20 80
Brown 0 20 20
Total 60 40 100
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A Bayesian view of the alteration of scientific beliefs
based on new evidence

More recently, Bayesian thinking has been applied in terms of
how new evidence alters our degrees of belief about some-
thing, as part of the scientific process. As recently phrased by
Tenenbaum et al. [108],

‘‘Background knowledge is encoded through a constrained
space of hypotheses H about possible values for the latent
variables, candidate world structures that could explain the
observed data. Finer-grained knowledge comes in the ‘prior
probability’ P(h), the learner’s degree of belief in a specific
hypothesis h prior to (or independent of) the observations.
Bayes’s rule updates priors to ‘posterior probabilities’ P(hjd)
conditional on the observed data d:

PðhjdÞ ¼ Pðd jhÞPðhÞ
P

h02H Pðd jh0ÞPðh0Þ /Pðd jhÞPðhÞ:

The posterior probability is proportional to the product of the
prior probability and the likelihood P(djh), measuring how
expected the data are under hypothesis h, relative to all other
hypotheses h0 in H.’’

Thus, in a series of experiments in an experimental pro-
gram, one chooses an experiment based on some background
knowledge and performs the experiment. The results of the
experiment add to the background knowledge for the next
experiment that one chooses to do, and so on. Thus, in the
Bayesian view, the priors represent the existing knowledge
from previous experiments, that are clearly a function of how
much of the search space has already been searched and to
what effect. The posterior probabilities are updated via the
new set of data, and the new ‘knowledge’ is encoded in the
degree of belief.

Thus, if we take a protein directed evolution example,
where one is seeking to find out which kinds of sequences
(and/or structures) exhibit a high kcat for a suitable enzyme
activity, the background knowledge is represented by any
known enzymes or sequences associated with an activity
of interest (that may be a catalytic activity similar but not
identical to that being sought). The prior probabilities are
encapsulated in any known sequence-activity relationships
previously existing that lead one to test some related ones in
the experiment at hand. Following the new experiments (that
measure pairs of sequences and activities), the posteriors, that
are the priors for the next experiment, have to be readjusted
since the new data modify the previous structure-activity
relationship.

This seems to translate naturally into the recognition that
many scientific problems are combinatorial problems with a
large but effectively bounded search space and as we improve
our knowledge of the search space we thereby increase our
degree of belief in any more general properties of that search
space (in the previous example a sequence-activity relation-
ship, represented in ref. [9] via a so-called ‘random forest’. In
another example, Bayesian methods can usefully be applied
to the analysis and ranking of network or systems biology
models that start with observables and seek the underlying
parameters or causes (e.g. [115–118]).

Concluding remarks

Scientific discovery and reasoning can usefully be seen as an
iterative cycle linking more inductive phases of hypothesis
generation and more deductive activities involving the testing
of the hypotheses so generated [69]. However, this leaves open
the question of the means for optimising the former phase.
This is the subject of the present work, where I have set out the
view that this is best seen as a combinatorial optimisation
problem over a search space of possible experiments.

To this end, I have provided a series of examples in which
scientific problem domains are easily recognisable effectively
as combinatorial optimisation problems, where a very large
search space admits a considerably smaller solution space of
‘adequate’ answers. If one accepts that any scientific problem
has a number of solutions that is much smaller than the
‘possible’ numbers of experiments that might seek them,
the same holds true more generally. Since searching a combi-
natorial landscape computationally (i.e. in silico) is consider-
ably more rapid and efficient than is performing ‘real’
experiments at every point, it is clear that we need much more
effective models of biology than we have today [54]. This
impels us to create and to analyse them as part of the iterative
process of scientific discovery.
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55. Thiele I, Palsson BÄ. 2010. A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nat Protoc 5: 93–121.

56. Feala JD, Cortes J, Duxbury PM, Piermarocchi C, et al. 2010. Systems
approaches and algorithms for discovery of combinatorial therapies.
Wiley Interdiscip Rev Syst Biol Med 2: 181–93.

57. Havel J, Link H, Hofinger M, Franco-Lara E, et al. 2006. Comparison of
genetic algorithms for experimental multi-objective optimization on
the example of medium design for cyanobacteria. Biotechnol J 1:
549–55.

58. Lee JW, Kim TY, Jang YS, Choi S, et al. 2011. Systems metabolic
engineering for chemicals and materials. Trends Biotechnol 29: 370–8.

59. Thomas H, Thomas HM, Ougham H. 2000. Annuality, perenniality and
cell death. J Exp Bot 51: 1781–8.

60. Patil KR, Rocha I, Förster J, Nielsen J. 2005. Evolutionary program-
ming as a platform for in silico metabolic engineering. BMC
Bioinformatics 6: 308.

61. Warner JR, Reeder PJ, Karimpour-Fard A, Woodruff LB, et al. 2010.
Rapid profiling of a microbial genome using mixtures of barcoded
oligonucleotides. Nat Biotechnol 28: 856–62.

62. Kell DB, van Dam K, Westerhoff HV. 1989. Control analysis of microbial
growth and productivity. Symp Soc Gen Microbiol 44: 61–93.

63. Feist AM, Herrgard MJ, Thiele I, Reed JL, et al. 2009. Reconstruction
of biochemical networks in microorganisms. Nat Rev Microbiol 7:
129–43.

64. Dobson PD, Smallbone K, Jameson D, Simeonidis E, et al. 2010.
Further developments towards a genome-scale metabolic model of
yeast. BMC Syst Biol 4: 145.

65. Langley P, Simon HA, Bradshaw GL, Zytkow JM. 1987. Scientific
Discovery: Computational Exploration of the Creative Processes.
Cambridge, MA: MIT Press.

66. Hunter A, Liu WR. 2010. A survey of formalisms for representing and
reasoning with scientific knowledge. Knowl Eng Rev 25: 199–222.

67. Koza JR, Keane MA, Streeter MJ, Mydlowec W, et al. 2003. Genetic
programming: routine human-competitive machine intelligence. New
York: Kluwer.

68. Chalmers AF. 1999. What is This Thing Called Science? An Assessment
of the Nature and Status of Science and Its Methods. Maidenhead: Open
University Press.

69. Kell DB, Oliver SG. 2004. Here is the evidence, now what is the
hypothesis? The complementary roles of inductive and hypothesis-
driven science in the post-genomic era. BioEssays 26: 99–105.

70. Buchanan BG, Feigenbaum EA. 1978. DENDRAL and META-
DENDRAL: their application dimensions. Artif Intell 11: 5–24.

71. Lederberg J. 1987. How DENDRAL was conceived and born. ACM
Symp Hist Med Informatics. http://profiles.nlm.nih.gov/ps/access/
BBALYP.pdf.

....Prospects & Overviews D. B. Kell

Bioessays 34: 236–244,� 2012 WILEY Periodicals, Inc. 243

P
ro

b
le

m
s

&
P

a
ra

d
ig

m
s



72. Feigenbaum EA, Buchanan BG. 1993. DENDRAL and META-
DENDRAL: roots of knowledge systems and expert system applications.
Artif Intell 59: 223–40.

73. Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. 1993.
DENDRAL – a case study of the first expert system for scientific hypoth-
esis formation. Artif Intell 61: 209–61.

74. Farrelly C, Kell DB, Knowles J. 2008. Predicting molecular structure
using ant colony optimization: a preliminary study. LNCS 5217:
120–31.

75. Knowles J. 2009. Closed-loop evolutionary multiobjective optimization.
IEEE Comput Intell M 4: 77–91.

76. Bradshaw GF, Langley PW, Simon HA. 1983. Studying scientific dis-
covery by computer simulation. Science 222: 971–5.

77. Żytkow JM, Zhu J, Hussam A. 1990. Automated discovery in a chem-
istry laboratory. In Dietterich T, Swartout W, eds; Proc. Eighth Nat. Conf.
on Artif. Intelligence. Boston: AAAI Press. pp. 889–94.

78. Judson RS, Rabitz H. 1992. Teaching lasers to control molecules. Phys
Rev Lett 68: 1500–3.

79. Daniel C, Full J, Gonzalez L, Lupulescu C, et al. 2003. Deciphering the
reaction dynamics underlying optimal control laser fields. Science 299:
536–9.

80. Rabitz H. 2003. Shaped laser pulses as reagents. Science 299: 525–7.
81. Whelan KE, King RD. 2004. Intelligent software for laboratory auto-

mation. Trends Biotechnol 22: 440–5.
82. King RD, Rowland J, Oliver SG, Young M, et al. 2009. The automation

of science. Science 324: 85–9.
83. King RD, Rowland J, Aubrey W, Liakata M, et al. 2009. The Robot

Scientist Adam. Computer 42: 46–54.
84. King RD. 2011. Rise of the robot scientists. Sci Am 304: 72–7.
85. O’Hagan S, Dunn WB, Brown M, Knowles JD, et al. 2005. Closed-

loop, multiobjective optimisation of analytical instrumentation: gas-
chromatography-time-of-flight mass spectrometry of the metabo-
lomes of human serum and of yeast fermentations. Anal Chem 77:
290–303.

86. O’Hagan S, Dunn WB, Broadhurst D, Williams R, et al. 2007. Closed-
loop, multi-objective optimisation of two-dimensional gas chroma-
tography (GCxGC-tof-MS) for serum metabolomics. Anal Chem 79:
464–76.

87. Bongard J, Lipson H. 2007. Automated reverse engineering of nonlinear
dynamical systems. Proc Natl Acad Sci USA 104: 9943–8.

88. Schmidt M, Lipson H. 2009. Distilling free-form natural laws from
experimental data. Science 324: 81–5.

89. Rowe W, Wedge DC, Platt M, Kell DB, et al. 2010. Predictive models
for population performance on real biological fitness landscapes.
Bioinformatics 26: 2125–42.

90. Hull D, Pettifer SR, Kell DB. 2008. Defrosting the digital library: biblio-
graphic tools for the next generation web. PLoS Comput Biol 4:
e1000204.

91. Attwood TK, Kell DB, McDermott P, Marsh J, et al. 2009. Calling
International Rescue: knowledge lost in literature and data landslide!
Biochem J 424: 317–33.

92. Ananiadou S, Kell DB, Tsujii J. 2006. Text Mining and its potential
applications in Systems Biology. Trends Biotechnol 24: 571–9.

93. Goble C, Wolstencroft K, Goderis A, Hull D, et al. 2007. Knowledge
discovery for biology with Taverna: producing and consuming semantics
in the Web of Science. In Baker CJO, Cheung K-H, eds; Semantic Web:
Revolutionising Knowledge Discovery in the Life Sciences. New York:
Springer.

94. Rzhetsky A, Seringhaus M, Gerstein M. 2008. Seeking a new biology
through text mining. Cell 134: 9–13.

95. Pettifer SR, Thorne D, McDermott P, Marsh J, et al. 2009. Visualising
biological data: a semantic approach to tool and database integration.
BMC Bioinformatics 10: S19.

96. Ashburner M, Ball CA, Blake JA, Botstein D, et al. 2000. Gene
Ontology: tool for the unification of biology. Nat Genet 25: 25–9.

97. Ananiadou S, Pyysalo S, Tsujii J, Kell DB. 2010. Event extraction
for systems biology by text mining the literature. Trends Biotechnol
28: 381–90.

98. Hucka M, Finney A, Sauro HM, Bolouri H, et al. 2003. The systems
biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 19: 524–31.

99. Kell DB, Mendes P. 2008. The markup is the model: reasoning
about systems biology models in the Semantic Web era. J Theor Biol
252: 538–43.

100. Lister AL, Lord P, Pocock M, Wipat A. 2010. Annotation of SBML
models through rule-based semantic integration. J Biomed Seman 1: S3.
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