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Abstract

Motivation: The application of next-generation sequencing in research and particularly in clinical

routine requires valid variant calling results. However, evaluation of several commonly used tools

has pointed out that not a single tool meets this requirement. False positive as well as false nega-

tive calls necessitate additional experiments and extensive manual work. Intelligent combination

and output filtration of different tools could significantly improve the current situation.

Results: We developed appreci8, an automatic variant calling pipeline for calling single nucleotide

variants and short indels by combining and filtering the output of eight open-source variant calling

tools, based on a novel artifact- and polymorphism score. Appreci8 was trained on two data sets

from patients with myelodysplastic syndrome, covering 165 Illumina samples. Subsequently,

appreci8’s performance was tested on five independent data sets, covering 513 samples. Variation

in sequencing platform, target region and disease entity was considered. All calls were validated

by re-sequencing on the same platform, a different platform or expert-based review. Sensitivity of

appreci8 ranged between 0.93 and 1.00, while positive predictive value ranged between 0.65 and

1.00. In all cases, appreci8 showed superior performance compared to any evaluated alternative

approach.

Availability and implementation: Appreci8 is freely available at https://hub.docker.com/r/wwuimi/

appreci8/. Sequencing data (BAM files) of the 678 patients analyzed with appreci8 have been

deposited into the NCBI Sequence Read Archive (BioProjectID: 388411; https://www.ncbi.nlm.nih.

gov/bioproject/PRJNA388411).

Contact: sarah.sandmann@uni-muenster.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Precision medicine is on its way to revolutionizing patient care.

Individual therapeutic strategies are increasingly applied to provide

every patient with the most suitable treatment. An important aspect

for realizing personalized medicine with respect to genetically

related diseases, including cancer, is the correct determination and

interpretation of mutations (Ashley, 2016; Dey et al., 2017). In the

course of the last years, this is increasingly done by next-generation

sequencing (NGS) (Park et al., 2013).

Different from Sanger sequencing (Sanger et al., 1977), NGS

provides a solution for detecting variants with variant allele frequen-

cies (VAFs) below 20% (Mohamed et al., 2014). Furthermore,

sequencing can be performed consuming only a fraction of time and

costs (Loman et al., 2012), which enables the analysis of selected

target regions as well as a patient’s whole exome or even whole

genome.

When using NGS it is essential to be able to rely on variant call-

ing results that are valid. Ideally, the analysis pipeline applied in re-

search and particularly also in clinical routine has to feature both

high sensitivity and high positive predictive value (PPV). However,

all NGS platforms more or less suffer from systematic as well as ran-

dom sequencing errors (Bragg et al., 2013; Hoffman et al., 2009;

Liu et al., 2012; Yeo et al., 2014). Previously, we performed re-

sequencing experiments involving several patients with myelodys-

plastic syndrome (MDS) that were sequenced on Illumina NextSeq,

Ion Torrent PGM and Roche 454 platforms. These experiments

revealed considerable differences in the number of true variants and

artifacts reported per sample (Sandmann et al., 2017). These differ-

ences could be observed when comparing different sequencing plat-

forms as well as when comparing two runs on the same platform.

The analysis of two Illumina data sets (HiSeq and NextSeq), cov-

ering altogether more than 150 patients with MDS indicated that

additional differences in variant calling results can be expected

when considering different variant calling tools (Sandmann et al.,

2017). We considered all currently available open-source variant

calling tools for NGS data. However, only 8 out of 43 tools were ap-

plicable on our sets of non-matched targeted sequencing data.

Evaluation of these eight tools revealed that not a single tool suc-

ceeded in detecting all mutations present in the two data sets.

Furthermore, no tool showed sensitivity and PPV � 0:95 for both

data sets. Our observations are conform to the results of other stud-

ies comparing variant calling tools (Cornish and Guda, 2015;

Hwang et al., 2015; Zook et al., 2014).

These studies point out the necessity for a variant calling pipeline

that is able to detect variants with both high sensitivity and high

PPV—even at low allelic frequencies. Additionally, the pipeline’s

performance should be independent of the analyzed data set, not in-

volve re-calibration with new training data in case of new experi-

ments and not include validation of each variant call by Sanger

sequencing as proposed for current pipelines by Mu et al. (2016).

Furthermore, application should be possible even in the absence of

normal controls, which is a common scenario as pointed out by

Kalatskaya et al. (2017).

In this paper, we present ‘appreci8’—a Pipeline for PREcise vari-

ant Calling Integrating 8 tools. The pipeline automatically performs

variant calling of single nucleotide variants (SNVs) and short indels

integrating eight open-source variant calling tools. The calls are

automatically normalized, combined and filtered on the basis of a

novel artifact- and polymorphism score. The scores categorize a

variant as either likely pathogenic mutation, polymorphism or arti-

fact. Our tool is applicable to any type of NGS data.

To train our pipeline, we analyzed two sets of non-matched tar-

geted sequencing data, covering 165 MDS patients sequenced on

Illumina HiSeq, resp. Illumina NextSeq. An intersecting target re-

gion of 42 322 bp was considered. Performance of our pipeline was

tested analyzing five independent sets of targeted sequencing data,

differing from the training sets in varying degrees [sequencing plat-

forms: Illumina HiSeq, HiScanSQ, NextSeq and Roche 454; target

region: 42 322–958 547 bp; disease entity: MDS and acute myeloid

leukemia (AML)]. Appreci8’s ability to separate true variants from

artifacts with allelic frequencies down to 1% was evaluated. We

compared our pipeline’s performance to every individual tools’ per-

formance, all possible combined approaches and an alternative ver-

sion of our pipeline.

2 Materials and methods

2.1 Variant calling pipeline
Appreci8 is a completely automatic pipeline for performing SNV

and indel calling. An overview of the pipeline is provided in

Figure 1.

BAM files containing the raw aligned reads per sample form

the input for our variant calling pipeline (see Supplementary

Section 3 for information on sequence alignment). Variant calling is

automatically performed on eight different tools: GATK 3.3-0

HaplotypeCaller (DePristo et al., 2011), Platypus 0.8.1 (Rimmer

et al., 2014), VarScan 2.3.9 (Koboldt et al., 2012), LoFreq 2.1.2

(Wilm et al., 2012), FreeBayes 1.0.2 (Garrison and Marth, 2012),

SNVer 0.5.3 (Wei et al., 2011), SAMtools 1.3 (Li et al., 2009) and

VarDict (Lai et al., 2016). For each caller, the default recommended

options are used. The only exception is the VAF threshold in case

of FreeBayes and SNVer, which is lowered to 0.01 (default 0.20,

resp. 0.25).

The resulting raw output per caller is filtered to remove all off-

target calls. Subsequently, the remaining calls are combined (see

Supplementary Section 4) and annotated using SnpEff (Cingolani

et al., 2012). The user can choose between an annotation using

ENSEMBL (Aken et al., 2016) or RefSeq (O’Leary et al., 2016).

Furthermore, it is optional to report the annotation of all possible

transcripts or just the annotation for selected transcripts. For our

training and evaluation of appreci8, we removed all calls that are

according to SnpEff located in the 30-UTR, 50-UTR, downstream,

upstream, intron, intergenic, intragenic, protein–protein contact and

in the splice site region (intron_variantþsplice_region_variant).

Furthermore, silent mutations were removed. By concentrating on

coding, non-synonymous variants, we focus our analysis on those

variants that are best characterized with respect to biological truth

Fig. 1. Overview of the analysis performed by appreci8
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for all data sets considered. However, this filtration is not fixed, but

can be adjusted.

For all remaining calls, appreci8 determines a first set of charac-

teristics: the number of reference reads (#REF), the number of

alternate reads (#ALT), the depth (DP) and the VAF. These charac-

teristics are determined for all reads and for the forward- and reverse

reads separately. Furthermore, the mean base quality (PHRED

value) for the reference- (BQ ref ) and alternate allele (BQ alt) are

determined. As some of the tools apply specific steps of local

realignment, all parameters are determined on the basis of the raw

alignment data that have already been used for variant calling.

Assuming that a decision on a call—whether or not it is true—is

only possible in case of sufficient coverage, we remove all calls with

number of alternate reads (#ALT) <20, depth (DP) <50 or

VAF < 1%. Furthermore, we remove all calls with BQ alt < 15 or

BQ diff ¼ BQ ref � BQ alt > 7 (for details see Supplementary

Section 5.1). All parameters may be easily adjusted depending on

the sequencing data that are analyzed, e.g. in case of low-coverage

whole-genome sequencing (WGS) data.

Finally, a second set of characteristics is determined for the

remaining calls. These include the results of an automatic check of

the databases ESP6500 (http://evs.gs.washington.edu/EVS/), 1000

Genomes (The 1000 Genomes Project Consortium, 2015), dbSNP

(Sherry et al., 2001) (build 138 and build 138 excluding sites

after 129), ExAC (Lek et al., 2016), Cosmic (Forbes et al., 2015)

(CodingMuts, NonCodingVariants, CompleteExport and Complete

Export.fail, 17.02.2016) and ClinVar (Landrum et al., 2016) (com-

mon and clinical, 03.02.2016; common no known medical impact,

03.02.2016). Additionally, Provean 1.1.5 (Choi et al., 2012) is used

to determine the influence of every variant on the corresponding

protein.

Integrating all information characterizing a call, an artifact

score—separating true from false positive calls—is calculated.

Furthermore, a polymorphism score—identifying likely poly-

morphisms—is calculated. The general principle of filtration with

appreci8 based on these two scores is displayed in Figure 2.

The artifact score separates all calls into two initial categories:

‘Potential variants’ and ‘Potential artifacts’ (see Supplementary Fig.

S3 for details). Subsequently, the polymorphism score is evaluated.

It allows for separating ‘Possible mutations’ from ‘Possible polymor-

phisms’. However, for the final decision on these calls, the artifact

score is reconsidered. It is adjusted on the basis of the polymorphism

score as well as call characteristics. This enables the final classifica-

tion of ‘Possible mutations’ and ‘Possible polymorphisms’.

In addition to separating mutations from polymorphisms, the

polymorphism score enables the identification of ‘Polymorphisms’

in the initial set of ‘Potential artifacts’ (see Supplementary Fig. S4

for details). As some polymorphisms feature characteristics that are

typical for artifacts, these calls would be misclassified on the basis of

the artifact score alone, but are correctly classified by the combin-

ation of both scores.

The optimal weighting and combination of the different call

characteristics for the calculation of the artifact- and polymorphism

score is determined using two training sets (see Supplementary

Sections 5.2 and 5.3 for details). The performance of appreci8 is

evaluated analyzing five independent test sets.

2.2 Data sets analyzed
To train our variant calling pipeline—appreci8—two well character-

ized sets of amplicon-based targeted sequencing data are investi-

gated. Both data sets result from MDS patients, covering an

intersecting target region of 42 322 bp (19 genes). ‘Training set 1’

comprises 54 samples sequenced on Illumina HiSeq, using HaloPlex

for target enrichment. ‘Training set 2’ comprises 111 samples

sequenced on Illumina NextSeq, using TruSight DNA Amplicon

Sequencing Panel Library Prep Kit (see Table 1).

To test the performance of appreci8 on independent data, we

consider five additional sets of amplicon-based targeted sequencing

data: ‘Test set 1’ covers Illumina HiSeq sequencing data (using

HaloPlex for target enrichment) from 237 MDS patients. ‘Test set 2’

covers Illumina HiSeq sequencing data (using HaloPlex for target

enrichment) from 46 MDS patients. ‘Test set 3’ covers Roche 454

(Janitz, 2008) sequencing data (using GS FLX Titanium SV emPCR

Kit Lib-A) from 89 MDS patients. In case of these three test sets the

same target region is analyzed as in the two training sets. ‘Test set 4’

covers Illumina NextSeq sequencing data (using TruSight DNA

Amplicon Sequencing Panel Library Prep Kit) from 22 patients with

acute myeloid leukemia (AML). Different from the first three test

sets, a larger target region comprising 125 459 bp is analyzed in this

case. ‘Test set 5’ covers Illumina HiScanSQ sequencing data (using

HaloPlex for target enrichment) from 119 patients with AML.

Again, a larger target region comprising 958 547 bp is analyzed.

In case of all data sets, patient material was collected and ana-

lyzed in accordance with the relevant ethical guidelines and regula-

tions. Informed consent was obtained from all subjects. Sequencing

data (BAM files) of the 678 patients have been deposited into the

NCBI Sequence Read Archive (BioProjectID: 388411; https://www.

ncbi.nlm.nih.gov/bioproject/PRJNA388411).

We decided to choose these data sets for training and testing, as

they are all well characterized with respect to biological truth.

Furthermore, the sets allowed us to investigate if appreci8’s per-

formance is dependent on the sequencing technique, the target re-

gion and the disease that is considered.

2.3 Validation
For the initial training of appreci8 and its subsequent evaluation, we

only consider data sets with validated mutations. Validation was

achieved using three different approaches: (i) a selected set of calls

(mutations, polymorphisms and artifacts) was validated using

Sanger sequencing. However, as variants with a VAF below 20%

Fig. 2. General principle of filtration with appreci8. Calls are classified as

‘Mutations’, ‘Polymorphism’ or ‘Artifact’ on the basis of an artifact- and a

polymorphism score
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are difficult to confirm with this sequencing technique, (ii) we

re-analyzed a subset samples by the same or another technique as

validation. Six samples were re-analyzed on Illumina NextSeq. Nine

samples were re-analyzed on Ion Torrent PGM (Rothberg et al., 2011).

Twenty-two samples were analyzed on Roche 454 and Illumina

NextSeq. NPM1 mutations were validated by LightCycler (Roche,

Mannheim, Germany) based melting curve analysis (Schnittger et al.,

2005). As additional validation (iii), all calls reported in case of the two

training sets were manually investigated by two independent experts.

The variant-specific characteristics as well as the calls themselves in

the IGV (Robinson et al., 2011) were considered. In case of the five

test sets, all calls categorized as true were manually investigated.

Furthermore, variant-specific characteristics of all calls categorized as

polymorphisms and artifacts were investigated.

3 Results

A variant calling pipeline’s main task is successfully calling true var-

iants with high sensitivity and automatically discarding artifacts.

Variants themselves can be subdivided into benign variants that are

present in the general population, i.e. germline single nucleotide

polymorphisms (SNPs) and indel polymorphisms, and possibly

pathogenic variants, i.e. SNVs and indels. In cancer, most pathogen-

ic mutations are somatically acquired and tumor cell specific. While

the correct classification of polymorphisms versus pathogenic muta-

tions is in some cases straight forward, it may often prove to be chal-

lenging due to lack of germline material, variants of uncertain

clinical significance or subclonal variants. When considering a com-

plete ClinVar (Landrum et al., 2016) export (August 2, 2016), the

list contains 130 097 variants in total. About 32.63% are classified

as variants of ‘uncertain clinical significance’ (24.02%) or variants

with information on clinical significance ‘not provided’ (8.61%).

Only 9.66% are classified as ‘benign’, 20.31% are classified as

‘pathogenic’. For these reasons, we consider the automatic separ-

ation between artifacts and true variants as the main task of our

pipeline. The automatic separation between benign and pathogenic

variants is considered an add-on and is presented in the supplement

(see Supplementary Section 10).

3.1 Training appreci8
To train our variant calling pipeline, we use two well characterized

NGS data sets. Although both sets are derived from patients with

the same disease—MDS—and the same target region is analyzed,

they differ in the enrichment technologies and sequencing platforms.

Therefore, we expect to find different characteristics for both data

and also variant calls.

Supplementary Table S1 shows that both training sets differ con-

siderably in their main data characteristics. While training set 2

features higher mean coverage, the set is also characterized by

16% more background noise compared to training set 1. This

characteristic is expected to have negative influence on PPV (see

Supplementary Section 9 for information on how background noise

was calculated).

Variant calling results with respect to sensitivity and PPV are dis-

played in Figure 3 and summed up in Table 2 (for details see

Supplementary Tables S3 and S4 and Supplementary Data S1 and S2).

The performance of every single tool—GATK, Platypus, VarScan,

LoFreq, FreeBayes, SNVer, SAMtools and VarDict—is compared to

appreci8. Additionally, we evaluate two alternative approaches in de-

tail: ‘8 tools’ considers all variants that have been reported by at least

one out of eight tools and no further steps of filtration. ‘Single-

appreci8’ is an experimental variant of our algorithm. Every sample is

evaluated independently. Any information on other samples analyzed

Table 1. Main characteristics of the training- and test sets analyzed with appreci8

Set n Sequencer Disease Target [bp] Coverage Background

all Coding >50x (%) noise

Training 1 54 Illumina HiSeq MDS 42 322 23 162 95 5:39 � 10�3

2 111 Illumina NextSeq MDS 42 322 23 162 97 6:26 � 10�3

Test 1 237 Illumina HiSeq MDS 42 322 23 162 92 4:15 � 10�3

2 46 Illumina HiSeq MDS 42 322 23 162 93 5:02 � 10�3

3 89 Roche 454 MDS 42 322 23 162 84 3:63 � 10�3

4 22 Illumina NextSeq AML 125 459 78 866 99 6:63 � 10�3

5 119 Illumina HiScanSQ AML 958 547 218 179 94 1:56 � 10�3

Fig. 3. Relation between positive predictive value and sensitivity in case of

GATK, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools, VarDict, the

combined output of all tools (eight tools), single-appreci8 and appreci8 in

training sets 1 and 2

Table 2. Positive predictive value and sensitivity in case of GATK,

Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools, VarDict,

the combined output of all tools (eight tools), single-appreci8 and

appreci8 in training sets 1 and 2

Approach Training set 1 Training set 2

Sens PPV Sens PPV

GATK 0.92 0.85 0.82 0.71

Platypus 0.93 0.80 0.83 0.42

VarScan 0.89 0.97 0.47 0.73

LoFreq 0.91 0.35 0.78 0.23

FreeBayes 1.00 0.03 0.99 0.02

SNVer 0.93 0.92 0.55 0.07

SAMtools 0.85 0.87 0.64 0.77

VarDict 0.97 0.96 0.94 0.15

8 tools 1.00 0.03 1.00 0.02

single-appreci8 0.98 0.98 0.99 0.35

appreci8 0.98 0.99 0.98 0.94
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in the same run is disregarded (see Supplementary Sections 6 and 7 for

details on the two alternative approaches). In all cases, we only con-

sider calls with sufficient coverage and VAF � 1%, as we assume that

validation of variants with lower VAFs or insufficient coverage is not

feasible without further sequencing experiments.

Figure 3 illustrates the data-dependent performance of the eight

individual variant calling tools. While all tools succeed in calling

variants with sensitivity above 0.80 in case of training set 1, only

four tools—GATK, Platypus, FreeBayes and VarDict do so in case

of training set 2. However, when aiming for sensitivity of at least

0.95, which appears to be a more apt threshold for usage of NGS in

clinical routine, only two tools—FreeBayes (0.99) and VarDict

(0.97)—succeed in case of training set 1 and only one tool—

FreeBayes (0.99)—succeeds in case of training set 2.

While sensitivity is an essential aspect of any variant calling pipe-

line, so is PPV. False positive mutations can have serious consequen-

ces for the treatment of a patient. Furthermore, using a tool that

reports thousands of calls per patient increases the risk of overlook-

ing the actual true mutations among the many artifacts.

Regarding training set 1, six out of eight tools feature PPV above

0.80 (VarDict performs best with PPV ¼ 0.96). FreeBayes, however,

shows the lowest PPV (0.03). The tool reports 290 true variants and

8040 artifacts. Regarding training set 2, not a single tool reaches a

value of 0.80 or above. FreeBayes reports 627 out of 631 true var-

iants and 40,159 artifacts (PPV ¼ 0.02).

When combining the output of all tools, we succeed in calling all

variants present in both training sets (sens ¼ 1.00). This is not

possible with any of the considered individual tools. However, as

PPV is 0.03 in case of training set 1 and 0.02 in case of training set

2, the need for filtration is obvious. Application of our appreci8

pipeline leads to a considerable increase in PPV—to values higher

than any of the individual tools—while sensitivity is only marginally

reduced. Comparing single-appreci8 to appreci8, only minor differ-

ences can be observed in case of training set 1. As regards training

set 2, the application of appreci8 leads to a considerable improve-

ment in the results (PPV ¼ 0.35 versus PPV ¼ 0.94). Evaluation of

the artifact- and polymorphism score removes 1% of the artifacts in

training set 1 and 21% in training set 2.

3.2 Testing appreci8
To test appreci8, we consider five independent, well characterized

data sets (for data characteristics see Supplementary Table S2).

Variant calling results with respect to sensitivity and PPV are

displayed in Figure 4 and Table 3 (for details see Supplementary

Tables S5–S9 and Supplementary Data S3–S7).

Test sets 1 and 2 result from the same sequencing platform as

training set 1. Furthermore, the same target region and disease is

considered as is the case for both training sets. Therefore, we expect

all tools as well as our pipeline to show results comparable to train-

ing set 1.

When comparing Figures 1 and 2, it is clear that the results are

indeed comparable. Sensitivity of the individual variant calling tools

is above 0.80. FreeBayes, VarDict and LoFreq succeed in calling

Fig. 4. Relation between positive predictive value and sensitivity in case of GATK, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools, VarDict, the com-

bined output of all tools (eight tools), single-appreci8 and appreci8 in test sets 1–5

appreci8 4209

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty518#supplementary-data
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013; 
Deleted Text:  
Deleted Text:  
Deleted Text: , 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  &hx2013; 
Deleted Text:  &hx2013;, 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty518#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty518#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty518#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty518#supplementary-data


variants with sensitivity above 0.95 (test set 1: FreeBayes: 0.99,

VarDict: 0.96, LoFreq: 0.98; test set 2: FreeBayes: 0.99, VarDict:

0.99, LoFreq: 0.98). Six out of eight tools feature PPV above or

close to 0.80. Again, FreeBayes shows the lowest PPV (test set 1:

0.02; test set 2: 0.01). In contrast to training set 1, VarDict’s PPV is

only 0.78 in test set 1 and 0.30 in test set 2.

The combined output of all tools leads to sens ¼ 1.00 in case of

both test sets. PPV ¼ 0.02 for test set 1 and PPV ¼ 0.01 for test set

2. Application of single-appreci8 leads to a minor decrease in sensi-

tivity and to a considerable increase in PPV. Both test sets show a

further clear improvement of the results when applying appreci8 in

its actual functionality (test set 1: sens ¼ 0.98, PPV ¼ 0.99; test set

2: sens ¼ 1.00, PPV ¼ 0.99). Evaluation of the artifact- and poly-

morphism score removes 2% of the artifacts in test set 1 and 9% in

test set 2.

To test appreci8’s robustness with respect to variation in the

sequencing technique, we analyzed Roche 454 data (test set 3), al-

though the pipeline was exclusively trained on Illumina data.

Regarding the individual tools, sensitivity ranges between 0.91 and

0.99, while PPV ranges between 0.07 and 0.68. By combining the

output of all variant calling tools, sensitivity increases to 0.99, while

PPV is 0.05. Application of single-appreci8 leads to an improvement

in the results. The overall best results can, however, be observed

when applying appreci8 (sens ¼ 0.99, PPV ¼ 0.76). Remarkably,

97% of the artifacts are filtered because of their artifact- and poly-

morphism score.

To test appreci8’s robustness when considering a bigger target

region and a different disease entity, we analyzed test sets 4 and 5.

Both data sets result from patients with AML and cover a consider-

ably bigger target region (test set 4: 125 459 bp, test set 5:

958 547 bp in comparison to 42 322 bp for the MDS training sets).

Test set 4 underlines the data-dependent performance of individ-

ual variant calling tools. Low sensitivity (ranging between 0.64 and

0.95) and low PPV (ranging between 0.01 and 0.73) is observed for

the eight tools. Combining the output of all tools leads to sensitivity

of 0.99 and a PPV of 0.01. Application of single-appreci8 leads to a

minor decrease in sensitivity and an increase in PPV. Application of

appreci8 leads to further improvement of the variant calling results

(sens ¼ 0.93, PPV ¼ 0.65).

Considering test set 5, FreeBayes and VarDict feature again high-

est sensitivity of all individual variant calling tools (FreeBayes: 0.95,

VarDict: 0.96, other tools: 0.71–0.91). Higher values of PPV can be

observed in comparison to all previously analyzed data sets. Even

FreeBayes features PPV of 0.25 (other tools: 0.81–0.99). The com-

bined output of all tools leads to sens ¼ 0.99 and PPV ¼ 0.25.

Application of single-appreci8 results in a minor decrease in sensitiv-

ity and to a considerable increase in PPV. Application of appreci8

leads to the best variant calling results that can be observed for this

data set (sens ¼ 0.99, PPV ¼ 0.99).

Analyzing the influence of reoccurring variants, it can be

observed that appreci8 performs equally well—detecting variants

known from the training sets as well as unknown variants (see

Supplementary Section 13).

4 Discussion

In the context of high-throughput research sequencing and personal-

ized medicine, NGS provides a powerful tool. When considering

variant calling results, it is therefore essential to be able to rely on a

tool with stable and high sensitivity as well as high PPV. However,

the analysis of seven data sets of non-matched amplicon-based tar-

geted sequencing data, covering 678 samples from patients with

hematological malignancies, shows that no individual tool meets

these requirements.

We developed a pipeline, appreci8, that automatically combines

and filters the variant calling results of eight different tools.

Appreci8 succeeds in separating true calls from artifacts in all ana-

lyzed data sets with sensitivity ranging between 0.93 and 1.00 and

PPV ranging between 0.65 and 1.00. Appreci8’s performance is in

all cases superior to the best individual tool as well as to alternative

combined approaches. Application of appreci8 on additional

Illumina data sets (HiSeq, MiSeq and NextSeq), which were not part

of this study (data available on request) as well as Ion Torrent

data (see Supplementary Section 11), shows comparable results.

Application of appreci8 on a public targeted sequencing data set

(Sequence Read Archive, project PRJEB14077) shows comparable

results as well (see Supplementary Section 12). Our results indicate

that appreci8 is a pipeline that can generally be applied on NGS

data, independent of the sequencing technique, the disease entity or

the genes that are studied.

It should also be noted that appreci8 is able to automatically ex-

clude polymorphisms, while all the other individual tools require

manual filtration of polymorphisms or—in case of GATK—filtra-

tion on the basis of predefined polymorphism files.

Table 3. Positive predictive value and sensitivity in case of GATK, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools, VarDict, the

combined output of all tools (eight tools), single-appreci8 and appreci8 in test sets 1–5

Approach Test set 1 Test set 2 Test set 3 Test set 4 Test set 5

Sens PPV Sens PPV Sens PPV Sens PPV Sens PPV

GATK 0.92 0.82 0.90 0.73 0.95 0.31 0.86 0.73 0.92 0.94

Platypus 0.93 0.81 0.93 0.83 0.97 0.13 0.91 0.30 0.90 0.94

VarScan 0.84 0.84 0.82 0.73 0.91 0.51 0.73 0.55 0.71 0.94

LoFreq 0.98 0.29 0.98 0.71 0.94 0.31 0.73 0.01 0.79 0.88

FreeBayes 0.99 0.02 1.00 0.01 0.99 0.07 0.95 0.01 0.96 0.25

SNVer 0.91 0.91 0.94 0.81 0.97 0.10 0.64 0.04 0.73 0.98

SAMtools 0.82 0.83 0.81 0.75 0.93 0.68 0.70 0.53 0.86 0.99

VarDict 0.96 0.78 0.99 0.30 0.99 0.25 0.91 0.09 0.97 0.83

8 tools 1.00 0.02 1.00 0.01 0.99 0.05 0.99 0.01 1.00 0.25

single-appreci8 0.99 0.88 1.00 0.76 0.99 0.36 0.93 0.19 0.96 0.97

appreci8 0.98 0.99 1.00 0.99 0.99 0.76 0.93 0.65 1.00 1.00
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It can be discussed, why we chose exactly this set of variant call-

ing tools. Altogether, we used all available open-source tools that

could be applied on our sets of non-matched targeted NGS data.

However, performing variant calling with eight instead of one tool

has negative influence on run-time if a high-performance server is

not available. Furthermore, post-processing—which is inevitable—is

time-consuming as well. We cannot exclude the possibility that

seven or even less tools might also lead to acceptable results—

dependent on the analyzed data set. However, for the calculation of

the artifact- and the polymorphism score, the number of callers and

even the specific callers that detect a variant are important charac-

teristics. Decreasing the number of tools would thus have negative

influence on appreci8’s overall performance.

Analysis of the overlapping calls, reported by two to eight tools,

indicates that a mere combination of tools—even those with differ-

ent variant detection algorithms—would not be beneficial (see

Supplementary Section 8).

It can also be questioned, why we chose our set of 41 conditions

that are evaluated to calculate the artifact- and the polymorphism

score. On the one hand, our selection covers all classical characteristics

that are considered when separating true from false positive calls, e.g.

coverage, base quality and strand bias. On the other hand, we addition-

ally consider novel characteristics, e.g. the number of tools calling a

variant or the Provean score. Altogether, our categories represent the

joined experience of biological and bioinformatical experts. Instead of

being a black box, our algorithm aims at comprehensibly reproducing

a biologist’s manual work when investigating a raw list of calls.

The weights we assigned to the different conditions were deter-

mined exploratively to optimize performance of appreci8 in case of

the two training sets. The results we observe regarding the independ-

ent test sets are comparable. Still it is possible that another weight-

ing or evaluation of the conditions might have led to even better

results. Alternatively, we could have used decision tree learning or

estimated a model, e.g. a generalized linear model. The parame-

ters—the conditions in our case—and their weights would have been

selected with the help of a model selection approach and an infor-

mation criterion (Sandmann et al., 2017). However, the determined

model or decision tree would be exclusively based on the two train-

ing sets. On the contrary, our approach additionally considers long-

time experience of molecular biology experts.

Another approach would be to apply deep learning to estimate

the best model, like Esteva et al. (2017) did. However, this approach

has the disadvantage of being another black box. Manual adapta-

tion of the parameters or their weighting based on e.g. new experi-

ence or updates of the data bases is not possible.

On purpose, we did not include any platform specific character-

istics or filtration steps. Appreci8 was developed as a thoroughly

automatic pipeline that does not require data-dependent re-calibra-

tion. Still—if desired—a user has the possibility to adjust thresholds,

e.g. regarding coverage if low-coverage WGS instead of high-

coverage targeted sequencing data is analyzed. Furthermore, we did

not consider any tool-specific filtration steps or changes in the tool-

specific parameters for variant calling. These might have significant

influence on the different tools’ sensitivities and PPVs. However,

GATK is the only tool that proposes precise thresholds for filtration.

All the other tools do not. Additionally, no tool provides data-

dependent recommended configurations for variant calling. Due to

the high number of possible configurations, we decided to treat all

callers equally, not apply any tool-specific filtration steps and stick

to the default options for variant calling.

An essential aspect of our analysis is the correct classification of

all variant calls. We did not validate every single call by

re-sequencing the corresponding sample on the same or another

platform. Instead, a majority of calls were validated by expert-based

review. It could be argued that this approach may have led to mis-

takes. However, we were facing more than 180 000 calls in total,

i.e. on average almost 270 calls per patient. By performing re-

sequencing experiments in case of exemplary mutations, polymor-

phisms and artifacts, we showed that our classification was indeed

correct. Furthermore, expert-based review involved evaluation of

various databases, base qualities, coverage, allelic frequencies, the

predicted effect on protein level and manual inspection using IGV,

considering the sample in question and other samples in the same

run. For these reasons, we estimate the risk of mistakes in the classi-

fication to be low and not to influence our overall results.

It can be observed that even when using appreci8, sensitivity and

PPV are still lower than 1.00. Detailed analyses of the false positive-

and false negative calls reveal that many feature an artifact score

between �1 and 1 (threshold for true positive calls: �1). This obser-

vation suggests that additional analyses of calls with an artifact

score close to the threshold could be useful. We are currently testing

an approach evaluating the signal-to-noise ratio as described by

Kockan et al. (2017) in combination with base qualities.

Regarding run-time, we are currently testing a speed-up version

of our pipeline that improves the analysis of whole-exome sequenc-

ing and WGS data. Previous analyses have shown that it is not advis-

able to use the multi-threading modes of the variant calling tools

(Sandmann et al., 2017).

While germline samples can already be analyzed with appreci8,

automatic filtration of germline calls by matched sample analysis is

not yet available. We are currently investigating an algorithm for

automatic filtration of germline calls from matching, as well as

pooled control samples with our appreci8 pipeline. As soon as this

approach is available, it will be interesting to compare appreci8

with popular tools for matched sample analysis, e.g. MuTect2

(Cibulskis et al., 2013).

Considering the ongoing development in the field of variant call-

ing, it appears useful to make appreci8 more flexible with respect to

the variant calling tools that are considered. We are currently testing

an extension of appreci8 that allows the user to select his own set of

variant calling tools to consider. Tool versions and configurations

used for variant calling will be user-definable. A graphical user inter-

face will be provided to facilitate application of appreci8.

5 Conclusion

To consider variant calling results in research and in clinical routine,

it is necessary to have a tool with stable, high sensitivity as well as

high PPV. However, the analysis of seven data sets, covering 678

samples from patients with hematological malignancies, shows that

no individual tool meets these requirements.

We developed a pipeline, appreci8, that combines and filters the

variant calling results of eight different tools. Appreci8 succeeds in

separating true calls from artifacts in all analyzed data sets with sen-

sitivity ranging between 0.93 and 1.00 and PPV ranging between

0.65 and 1.00. Appreci8’s performance is in all cases superior to the

best individual tool.
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