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Background: Fecal carriage of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) and carbapenemase-
producing E. coli (CP-EC) is well reported among hospitalized adults and children. However, there are few studies on the carriage
prevalence and ESBL-EC and CP-EC genotypes among healthy children in China.
Patients and Methods: Stool samples were collected from 330 students in 2021 from three randomly selected primary schools in
Changsha, China. ESBL-EC and CP-EC were screened using CHROMagarTM chromogenic plates. ESBL and carbapenemase
production was confirmed using the double-disc synergy test and a modified carbapenem inactivation method, respectively.
Antimicrobial susceptibility was tested using the broth microdilution method. Resistance determinants, virulence factors, and
phylogenetic groups were determined by PCR and sequencing. Multi-locus sequence typing (MLST) was performed (seven house-
keeping genes were amplified and sequenced) on the phylogenic group B2 E. coli to detect high-risk clonal strains such as ST131
E. coli. Then, ST131 E. coli were characterized based on ST131 clades, O-type, and fimH alleles.
Results: In total, 118 (35.8%) ESBL-EC and 3 (0.9%) CP-EC were isolated. blaCTX-M was the most common genotype (27.1%),
identified in all ESBL-EC, except one, which carried blaSHV-12. One isolate with mcr-1 was found amongst ESBL-EC, whereas all
three CP-EC carried blaNDM-1. The predominant sequence type (ST) clones in group B2 were ST131 and ST1193. The prevalence of
ST131 E. coli was 9.9%, displaying serotypes O16 and O25b, fimH alleles 30, 41, and 89, and ST131 clades A and C1-M27.
Conclusion: In this study, high carriage rate of ESBL-EC was found among healthy children, and the dominant ESBL was CTX-
M-14. In addition, high-risk clones (ST131 and ST1193) were also detected. This emphasizes the importance of monitoring ESBL-EC
in community settings.
Keywords: community children, ESBL, CPE, ST131, mcr-1

Introduction
The wide dissemination of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) throughout the world
is a major problem that has resulted in increased global mortality, morbidity, and health-care expenses.1 The emergence
of ESBL-EC is now no longer limited to the clinical setting, and the 15-year combined prevalence of ESBL-EC carriage
has reached 16.5% globally.2 Although individuals carrying ESBL-EC in the intestine are usually asymptomatic, long-
term colonization and high carrying rates of the microbe increase the risk of infection with multidrug-resistant (MDR)
pathogenic bacteria.3 Studies have shown that fecal colonization with ESBL-EC is associated with infection in healthy
individuals.4
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Disconcertingly, there is a certain amount of ESBL-EC in the community. The distribution of sequence types (STs)
and ESBL genes has been reported to be very similar between community fecal isolates and clinical isolates.5 In addition,
with the increasing use of carbapenems and polymyxins, carbapenemase-producing E. coli (CP-EC) and colistin-resistant
E. coli have also been isolated from feces samples procured from the community.6,7 This indicated that community may
be a repository of ESBL-genes, carbapenemase-genes and colistin-resistant genes in the future.

Plasmid-mediated horizontal transfer of resistance genes and the emergence of dominant clones of E. coli can be
among the reasons for the increased global incidence of MDR E. coli, such as plasmids carrying blaCTX-M and the E. coli
ST131 clone.1 CTX-M is currently the most common ESBLs worldwide, and the spread of blaCTX-M is mainly driven by
IncF plasmids, which enable resistance genes to spread widely in communities and hospitals.8–10 E. coli ST131, a high-
risk clone, is a type of extraintestinal pathogenic E. coli (ExPEC) with a multidrug-resistant spectrum that often causes
community- and hospital-acquired infections.11 E. coli ST131 largely belongs to phylogenetic group B2 and can be
divided into clade A, clade B, and clade C based on its fimH allele and O-type.11 Furthermore, E. coli ST131 is usually
related to the production of ESBLs, especially CTX-M-15, CTX-M-14, and CTX-M-27.12

Over the past decade, researches have reported the prevalence of ESBL-producing bacteria carried in the feces of
healthy children.3,7 Among different geographic regions, the separation rate is significantly heterogeneous, ranging from
0.1% to 59%.7,13 Although there have been several reports in China regarding the prevalence of ESBL-carrying
Enterobacteriaceae in healthy populations, most of these were restricted to examination of adults. Data regarding ESBL-
EC and CP-EC carriage among community children in China are limited. Therefore, this study aimed to assess the
current fecal carriage of ESBL-EC and CP-EC in healthy children in China and provide detailed molecular data.

Materials and Methods
Participants
A cross-sectional survey was conducted on healthy children in primary schools in Changsha, Hunan Province, China, in
2021. The resident population of Hunan province is 66,444,864, and Changsha, the capital city of Hunan province, has
a resident population of 1,047,900 (Data updated to May 2021). Taking the geographical center of Changsha City as the
center, the city was divided into four regions according to east, west, south and north directions. Large-scale primary
schools (with more than 2000 students) were included in the selection range, and then schools that were relatively
geographically scattered were considered. Three schools were finally selected in Kaifu District, Yuelu District, and
Changsha County, and the geographic locations were shown in Figure S1. A total of 422 students from these schools
participated in this study. After obtaining parental consent, fresh feces were collected from the children and immediately
sent to the laboratory. In addition, a questionnaire was filled that requested information on the child’s gender, age, class,
history of diarrhea, antibiotic treatments or hospitalization, whether they had pets, and whether they had been in contact
with patients with diarrhea. Healthy children were defined as students who had no symptoms of diarrhea, no history of
antibiotics use within one month, and who were younger than 14 years. Ultimately, 330 students were included in the
study for subsequent analysis. This study was approved by the Ethics Committee of the Xiangya Hospital of Central
South University (reference number 202110445).

Screening of Fecal ESBL-EC and CP-EC Isolates, Species Identification, and
Antimicrobial Susceptibility
Within 4 h of feces sampling, an aliquot of fecal matter was smeared on two types of CHROMagarTM chromogenic plates
(CHROMagar, Paris, France) for the selection of samples containing ESBL-producing and carbapenemase-producing
Enterobacteriaceae isolates. Subsequently, E. coli were identified by MALDI-TOF MS (Bruker Daltonics GmbH,
Bremen, German). The double-disc synergy test and a modified carbapenem inactivation method were used to confirm
the production of ESBL and carbapenemase, respectively, according to Clinical and Laboratory Standards Institute
(CLSI) guidelines.14 The antimicrobial susceptibility was then determined using the broth microdilution method,
including cefazolin, cefuroxime, ceftriaxone, ceftazidime, cefepime, cefoxitin, amikacin, gentamicin, piperacillin/tazo-
bactam, meropenem, tigecycline, aztreonam, levofloxacin, nitrofurantoin, cefoperazone/sulbactam, colistin, minocycline,
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ampicillin, ampicillin-sulbactam, and trimethoprim/sulfamethoxazole. The susceptibility of the strains to other antibiotics
was determined according to the CLSI guidelines, while that to tigecycline and colistin was investigated by the Food and
Drug Administration and EUCAST criteria, respectively. E. coli ATCC25922 was used as the quality control strain.

Detection of Antibiotic Resistance Genes
ESBL-encoding genes blaCTX-M, blaTEM, and blaSHV were screened using multiplex polymerase chain reaction
(PCR) as previously described.15 Specific primers were used to divide the blaCTX-M genes into five phylogenetic
groups, CTX-M-1, CTX-M-2, CTX-M-8, CTX-M-9, and CTX-M-25.16 Except for blaCTX-M-15 that was detected by
PCR,17 other blaCTX-M-positive isolates were determined by sequencing. The sequencing results were analyzed in
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and ResFinder4.1 (https://cge.cbs.dtu.dk/services/ResFinder/). The
presence of plasmid-mediated quinolone resistance determinants (qnrA, qnrB, qnrC, qnrS, aac (6ʹ)-Ib-cr, and qepA)
and the colistin resistance gene (mcr-1) were detected in all the isolates by PCR.18,19 For three CP-EC, PCR was
used to detect the carbapenemase genes (blaNDM-1, blaKPC-2, blaIMP, blaVIM, and blaOXA-48).20

Virulence Genotyping and Phylogenetic Group Detection
The presence of 26 virulence genes was assessed by multiplex PCR, and the virulence score was calculated as described
previously.17 To investigate the phylogeny of ESBL-EC, multiplex PCR was performed according to the protocols
provided by Clermont et al, in which E.coli was divided into seven groups (A, B1, B2, C, D, E, and F).21

Multi-Locus Sequence Typing (MLST)
MLST analysis was performed on the phylogenic group B2 E. coli to screen the high-risk clone ST131. The seven
housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) of B2 E. coli isolates were amplified and sequenced.
The sequencing results were analyzed on PUBMLST (https://pubmlst.org/bigsdb?db=pubmlst_escherichia_seqdef), and
the ST type of each strain was obtained. Furthermore, the carriage of resistance and virulence genes in ST131 and non-
ST131 strains were compared.

Molecular Characterization of ST131
The ST131 clade of all 12 ST131 isolates was screened by multiplex PCR as described by Subramanya et al.17 O-type
and fimH alleles were investigated according to a previous study.22

Statistical Analysis
Categorical data were generally analyzed using the chi-square test or Fisher’s exact test. P < 0.05 was considered
statistically significant. All data analysis was performed using the SPSS software (version 23.0).

Results
Prevalence and Antimicrobial Susceptibility
A total of 330 students (173 males and 157 females) participated in the study belonging to the age group of 6 to 12 years
(average 8.8 years). Of the 330 feces samples, 118 were positive for ESBL production and 3 for carbapenemase
production. For the ESBL-EC isolates, 100% of the isolates were resistant to ampicillin, 99.2% to ceftriaxone, 95% to
cefuroxime, 85.6% to cefazolin, 59.3% to trimethoprim/sulfamethoxazole, 40.7% to levofloxacin, 28.8% to aztreonam,
25.4% to ceftazidime, 17.8% to gentamicin, and 13.6% to ampicillin-sulbactam, while none were resistant to merope-
nem, tigecycline, nitrofurantoin, piperacillin-tazobactam, or cefoperazone/sulbactam. For CP-EC, all of the isolates were
susceptible to amikacin, tigecycline, colistin, and minocycline (Table 1).

Molecular Analysis of the Antibiotic Resistance Genes
The blaCTX-M gene was found in all of the ESBL-EC strains except for one isolate carrying blaSHV-12, while blaTEM was
found in 45.8% of the strains. The PCR and sequencing analysis revealed that the most common blaCTX-M subtype was
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blaCTX-M-14 (27.1%), followed by blaCTX-M-15 (24.6%), blaCTX-M-27 (24.6%), blaCTX-M-65 (8.5%), blaCTX-M-213 (4.2%),
blaCTX-M-55 (4.2%), blaCTX-M-110 (1.7%), and blaCTX-M-24 (0.8%). Additionally, four strains co-harboring multiple
blaCTX-M genes were found, two of which carried blaCTX-M-15 and blaCTX-M-27, one carried blaCTX-M-14 and
blaCTX-M-15, and one carried blaCTX-M-15 and blaCTX-M-213. Three types of the plasmid-mediated quinolone resistance
(PMQR) genes were found: qnrS (22.0%), aac (6’)-Ib (3.4%), and qnrB (1.7%). Notably, one ESBL-EC isolate carried
mcr-1 and all the three CP-EC isolates carried blaNDM-1. The detailed results are shown in Table 2.

Virulence Genotyping and Phylogenetic Group
For ESBL-EC (n=118), the most frequent virulence genes in their genome were fimH (88.1%), fyuA (72.9%), traT
(65.3%), kpsMTII (61.0%), and iutA (54.2%). Other virulence genes, such as papG allele I, gafD, cdtB, and cnf1 were not
present. The median virulence score was 4.2 (ranging from 0 to 15) and approximately 52.5% of the isolates were ExPEC
(Table 3). For CP-EC (n=3), the most frequent virulence genes observed were fimH (66.7%), kpsMTII (66.7%), and traT
(66.7%), and two of the isolates were ExPEC (Table S1). All isolates were classified into seven phylogenetic groups (A,
B1, B2, C, D, E, and F). The results revealed that the majority of isolates belonged to group B2 (33.1%), followed by
groups D (18.1%), B1 (12.4%), F (9.9%), A (9.1%), E (6.6%), and C (2.5%). However, there were ten isolates that could
not be classified into any group (Table S2).

MLST
The strains in the E. coli B2 group were classified into 13 different STs. ST131 (30.0%) was the most common ST,
followed by ST1193 (27.5%), ST95 (10.0%), ST73 (7.5%), and ST2372 (5.0%). In addition, ST14, ST3483, ST4888,
ST4508, ST1163, ST493, ST589, and ST92 each accounted for 2.5% (Table S3).

Table 1 Prevalence of Antimicrobial Susceptibility of ESBL-EC Vs CP-EC from Healthy Children

Antimicrobial Agent ESBL-EC (N=118) CP-EC (N=3)

No. (%) S No. (%) I No. (%) R No. (%) S No. (%) I No. (%) R

CZO 0 (0) 17 (14.4) 101 (85.6) 0 (0) 0 (0) 3 (100)

CXM 3 (2.5) 3 (2.5) 112 (95.0) 0 (0) 0 (0) 3 (100)
CRO 0 (0) 1 (0.8) 117 (99.2) 0 (0) 0 (0) 3 (100)

CAZ 88 (74.6) 0 (0) 30 (25.4) 0 (0) 0 (0) 3 (100)

FEP 66 (55.9) 29 (24.6) 23 (19.5) 0 (0) 3 (100) 0 (0)
FOX 108 (91.6) 1 (0.8) 9 (7.6) 0 (0) 0 (0) 3 (100)

AMK 114 (96.6) 0 (0) 4 (3.4) 3 (100) 0 (0) 0 (0)

GEN 90 (76.3) 7 (5.9) 21 (17.8) 2 (66.7) 1 (33.3) 0 (0)
TZP 117 (99.2) 1 (0.8) 0 (0) 0 (0) 2 (66.7) 1 (33.3)

MEM 118 (100) 0 (0) 0 (0) 0 (0) 0 (0) 3 (100)

TGC 118 (100) 0 (0) 0 (0) 3 (100) 0 (0) 0 (0)
ATM 63 (53.4) 21 (17.8) 34 (28.8) 2 (66.7) 1 (33.3) 0 (0)

AMP 0 (0) 0 (0) 118 (100) 0 (0) 0 (0) 3 (100)

SAM 51 (43.2) 51 (43.2) 16 (13.6) 0 (0) 0 (0) 3 (100)
COL 116 (98.3) 0 (0) 2 (1.7) 3 (100) 0 (0) 0 (0)

MNO 96 (81.4) 13 (11.0) 9 (7.6) 3 (100) 0 (0) 0 (0)

SXT 48 (40.7) 0 (0) 70 (59.3) 0 (0) 0 (0) 3 (100)
LVX 63 (53.4) 7 (5.9) 48 (40.7) 1 (33.3) 1 (33.3) 1 (33.3)

NIT 117 (99.2) 1 (0.8) 0 (0) 2 (66.7) 1 (33.3) 0 (0)

CSL 116 (98.3) 2 (1.7) 0 (0) 0 (0) 1 (33.3) 2 (66.7)

Abbreviations: ESBL-EC, extended-spectrum β-lactamase-producing Escherichia coli; CP-EC, carbapenemase-producing E. coli; R, resistant; I, intermediate; S, susceptible;
CZO, cefazolin; CXM, cefuroxime; CRO, ceftriaxone; CAZ, ceftazidime; FEP, cefepime; FOX, cefoxitin; AMK, amikacin; GEN, gentamicin; TZP, piperacillin/tazobactam; MEM,
meropenem; TGC, tigecycline; ATM, aztreonam; AMP, ampicillin; SAM, ampicillin-sulbactam; COL, colistin; MNO, minocycline; SXT, trimethoprim/sulphamethoxazole; LVX,
levofloxacin; NIT, nitrofurantoin; CSL, cefoperazone/sulbactam.
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E. coli ST131 Characterization
As indicated in Table S4, 12 (9.9%) of the 121 E. coli strains belonged to the ST131 lineage, including seven O16-ST131
and five O25b-ST131 isolates.The fimH alleles of all O16-ST131 isolates were fimH41, and the fimH alleles of O25b-
ST131 isolates were fimH30 (n=4) and fimH89 (n=1). Among the 12 ST131 isolates, clade A (n=8) was the most
common subclade, followed by clade C (n=4) which were C1-M27 subclades. All 12 ST131 isolates were found to
harbor ESBL genes, including blaCTX-M-27, blaCTX-M-14, and blaCTX-M-15. The ST131 isolates had a significantly higher
prevalence rate of blaCTX-M-27 compared with that of non-ST131 isolates (P < 0.05) (Table 2). In general, the virulence
scores of the ST131 isolates were higher than those of the non-ST131 isolates (P < 0.05). In terms of the prevalence of
virulence genes, kpsMII, traT, iutA, fyuA, and PAI appeared more frequently in the ST131 isolates (P < 0.05) (Table 3).

Discussion
This study assessed the fecal carriage of ESBL-EC and CP-EC and their molecular characteristics in healthy children in
China and showed a high rate of ESBL-EC carriage and predominance of the clone ST131 in the B2 group of E. coli. The
correlation between infections caused by ESBL-producing bacteria and their colonization in feces has been

Table 2 Prevalence of Resistant Genes Among 118 ESBL-EC from Healthy Children

Resistant Genes No. (%) of Strains P-valuea

Total (n=118) ST131 (n=12) Non-ST131 (n=106)

ESBL-encoding genes

CTX-M-1 group
blaCTX-M-15 29 (24.6) 1 (8.3) 28 (26.4) 0.289

blaCTX-M-55 5 (4.2) 0 (0) 5 (4.7) 1.000

CTX-M-9 group
blaCTX-M-14 32 (27.1) 1 (8.3) 31 (29.2) 0.176

blaCTX-M-27 29 (24.6) 10 (83.3) 19 (17.9) <0.001
blaCTX-M-65 10 (8.5) 0 (0) 10 (9.4) 1.000
blaCTX-M-110 2 (1.7) 0 (0) 2 (1.9) 1.000

blaCTX-M-213 5 (4.2) 0 (0) 5 (4.7) 1.000

blaCTX-M-24 1 (0.8) 0 (0) 1 (0.9) 1.000
CTX-M-2 group 0 (0) 0 (0) 0 (0) NA

CTX-M-8 group 0 (0) 0 (0) 0 (0) NA

CTX-M-25 group 0 (0) 0 (0) 0 (0) NA
CTX-M-1/CTX-M-9 group

blaCTX-M-14+blaCTX-M-15 1 (0.8) 0 (0) 1 (0.9) 1.000

blaCTX-M-15+blaCTX-M-213 1 (0.8) 0 (0) 1 (0.9) 1.000
blaCTX-M-15+blaCTX-M-27 2 (1.7) 0 (0) 2 (1.9) 1.000

SHV 1 (0.8) 0 (0) 1 (0.9) 1.000

TEM 54 (45.8) 7 (58.3) 47 (44.3) 0.379

Fluoroquinolones-resistance genes
qnrA 0 (0) 0 (0) 0 (0)

qnrB 2 (1.7) 0 (0) 2 (1.9) 1.000

qnrC 0 (0) 0 (0) 0 (0)
qnrS 26 (22.0) 0 (0) 26 (24.5) 0.353

aac (6’)-Ib 4 (3.4) 0 (0) 4 (3.8) 1.000

qepA 0 (0) 0 (0) 0 (0)

Colistin-resistance gene

mcr-1 1 (0.8) 0 (0) 1 (0.9) 1.000

Note: aP- value < 0.05 are bolded.
Abbreviations: NA, not available; bla, beta-lactamase; ESBL, extended-spectrum beta-lactamase.
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demonstrated.4 The emergence of resistant bacteria in intestinal commensal flora is a serious threat, as the intestine is an
important site for the transmission of bacterial resistance, which may consequently lead to an increased risk of
community- or hospital-acquired resistant infections.23 Considering that the antimicrobial use for children differs from
that for adults and that studies on fecal carriage of resistant bacteria in children have been mainly focused in a clinical
setting, there is a need to monitor the prevalence of resistant bacteria in children in the community. To the best of our
knowledge, this is the first systematic study focusing on the fecal carriage of ESBL-EC and CP-EC in healthy children
from a community in China.

The carriage of ESBL-EC in feces was 35.8% in this study, which is higher than that in a study based in Taiwan
(5.1%), in which the study population comprised of community children that were hospitalized within three days.24 The

Table 3 Prevalence of Virulence Traits Among 118 ESBL-EC from Healthy Children

Virulence Genes No. (%) of Strains P-valuea

Total (n=118) ST131 (n=12) Non-ST131 (n=106)

Adhesin-associated

papAH 14 (11.8) 1 (8.3) 13 (12.3) 1.000
papEF 23 (19.5) 2 (16.6) 21 (19.8) 1.000

papC 21 (17.8) 2 (16.6) 19 (17.9) 1.000

papG allele I 0 (0) 0 (0) 0 (0) NA
papGII/III 5 (4.2) 1 (8.3) 4 (3.8) 0.421

papG allele II 14 (11.9) 2 (16.6) 12 (11.3) 0.634

sfa/focDE 7 (5.9) 0 (0) 7 (6.6) 1.000
afa/draBC 11 (9.3) 1 (8.3) 10 (9.4) 1.000

sfaS 3 (2.5) 0 (0) 3 (2.8) 1.000

focG 3 (2.5) 0 (0) 3 (2.8) 1.000
fimH 104 (88.1) 12 (100.0) 92 (86.8) 0.356

nfaE 2 (1.7) 0 (0) 2 (1.9) 1.000

gafD 0 (0) 0 (0) 0 (0) NA

Capsule-associated

kpsMTII 72 (61.0) 11 (91.7) 61 (57.5) 0.027
kpsMTIII 2 (1.7) 0 (0) 2 (1.9) 1.000

kpsMT K5 33 (27.9) 6 (50.0) 27 (25.4) 0.092

kpsMT K1 34 (28.8) 3 (25.0) 31 (29.2) 1.000

Toxin-associated
cdtB 0 (0) 0 (0) 0 (0) NA

cnf1 0 (0) 0 (0) 2 (1.9) NA

hlyA 4 (3.4) 1 (8.3) 3 (2.8) 0.353

Siderophore-associated

iutA 64 (54.2) 10 (83.3) 54 (50.9) 0.037
fyuA 86 (72.9) 12 (100.0) 74 (70.0) 0.035

Others
cvaC 10 (8.5) 0 (0) 10 (9.4) 0.596

PAI 45 (38.1) 11 (91.7) 34 (32.1) <0.001
traT 77 (65.3) 12 (100.0) 65 (61.3) 0.008
rfc 2 (1.7) 1 (8.3) 1 (0.9) 0.194

Virulence score† 4.2 (0–15) 7 (5–11) 5 (0–15) 0.003

ExPEC 62 (52.5) 9 (75.0) 53 (50.0) 0.132

Notes: aP-value < 0.05 are bolded; †median (range); ExPEC, extraintestinal pathogenic E.coli, E.coli containing two of these five virulence genes (papAH/papC, sfa/focDC,
afa/draBC, iutA, kpsMT II) is defined as ExPEC.
Abbreviations: NA, not available; ExPEC, extraintestinal pathogenic E. coli.
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higher prevalence in this study may be related to high contact rates between school children, indicating that schools
may play a role in the transmission of ESBL-producing bacteria. In the study by Bunt et al, daycare center attendance
has been shown to be a risk factor for preschoolers carrying ESBL/AmpC-producing bacteria.25 The prevalence of
ESBL-EC carriage in the healthy children in the present study was higher than that in France (7.6%) and Spain
(31%)26,27 and lower than that in Cambodia (55%) and Pakistan (43%),28,29 which may be partly due to the differences
in sanitary conditions, climate, and eating habits in different regions of the world. Although the carriage rate of ESBL-
EC in this study was relatively high compared to that observed in the above studies, it was still lower than that in
pediatric patients in China, which has been reported to be 46.7%.30 Moreover, Babu et al reported that fecal carriage of
ESBL-producing Enterobacteriaceae in hospitalized patients was almost twice as high as in healthy individuals.31 In
addition, the carriage of CP-EC in the present study was 0.9%, which is lower than that of outpatient (1.4%) and
inpatient children (1.9%) in Shanghai, China.20,32 Although few countries have reported CP-EC carriage among
community healthy children to date, a report from Pakistan showed that a quarter of infants in their research harbored
CP-EC, indicating that the intestine of healthy children may be a reservoir of CP-EC and should be considered as
a serious health issue.29

The global distribution of CTX-M variants showed that the CTX-M-1 group (especially CTX-M-15) was the
dominant genotype in most regions, while the CTX-M-9 group (especially CTX-M-14) was dominant in China.1,33 In
consistent with the above report, CTX-M-14 was the predominant CTX-M subtype in this study. The prevalence of CTX-
M-27 was 24.6%, higher than the results of our previous study of healthy adults in 2015 (15.0%).34 Such an increase has
also been seen in France, where the proportion of CTX-M-27 increased from 4.5% to 25% between 2010 and 2015
among the 1886 children screened.26 Furthermore, in the present study, we observed a significantly higher prevalence rate
of blaCTX-M-27 among ST131 isolates than that in non-ST131 samples. In line with this, Birgy et al also reported a high
proportion of CTX-M-27 in ST131 isolates.26 Therefore, ST131 isolates may play a role in the transmission of
blaCTX-M-27.

Like the resistance pattern of ESBL-EC from pediatric patients, ESBL-EC isolates from healthy children were highly
resistant to ampicillin, ceftriaxone, and cefazolin, and were susceptible to meropenem, colistin, and tigecycline.30 This
underscores the importance of investigating resistant strains in human fecal matter, as clinical strains may originate from
the intestinal tract. Fluoroquinolones are first-line antimicrobial agents for E. coli infections but they are not recom-
mended for children.35 Surprisingly, the isolates in this study showed up to 40.7% resistance to levofloxacin, and the
resistance to ciprofloxacin reported in pediatrics was also as high as 60%.30 The reason for this high resistance rate may
be related to the PMQR genes, which can undergo horizontal transfer between strains.35 PMQR genes were also detected
in 27.1% of the ESCL-EC strains in this study. However, the mechanisms of the high resistance to fluoroquinolones in
children remain to be explored further.

Infections due to carbapenem-resistant Enterobacteriaceae (CRE) in children are often associated with adverse
clinical outcomes.36 Disconcertingly, we found three E. coli strains carrying blaNDM-1 gene. In 2016, a study conducted
in eastern China also reported that NDM-1 was the major carbapenemase produced by ESBL-EC isolated from the feces
of outpatient children. NDM-1 is a metal-β-lactamase (MBL) and cannot be inhibited by β-lactamase inhibitors, which
significantly limits the utility of β-lactam-β-lactamase inhibitors, such as ceftazidime-avibactam.37 A systematic review
showed that blaNDM-1 was the most common carbapenem-resistant genotype causing neonatal sepsis in China.38

Therefore, given the complexity of treating CRE (especially MBL-induced CRE) infections, it is necessary to monitor
the prevalence of such resistant bacteria among commensal bacteria.

In addition, a lot of focus has recently been drawn to the emergence of mcr-1. A high prevalence of mcr-1 in healthy
children has been reported in Bolivia (38.8%) and Lebanon (33.3%).39,40 However, the carriage of mcr-1 in the intestine
of healthy children remains understudied in China. Only Hu et al reported a carriage rate of 9.6% for mcr-1 among
hospitalized children who did not suffer from diarrhea.41 In our study, two ESBL-EC isolates showing colistin-resistance
were identified, one of which co-harbored both mcr-1 and blaCTX-M-14 and was isolated from a child with pets, including
dogs and pet mice. This was consistent with a report from Guangzhou, China, suggesting that animals may be the source
of presence of mcr-1 in humans.42 Colistin resistance in another isolate may be mediated by other subtypes of the mcr
gene or other resistance mechanisms, which needs further investigation.
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Pathogenic E. coli strains are usually assigned to the B2 phylogenetic group,43 which accounted for the main
proportion (33.1%) in our research, in which ST131 E. coli was the predominant clone. ST131 ESBL-EC is commonly
found in community-acquired infections, and ST131 carriers can transmit it within the families,44,45 highlighting the
potential health threat from ST131 carriers. Even though in this research, it was found that the detected ST131 ESBL-EC
carried several virulence genes (kpsMTII, traT, iutA, fyuA, and PAI), the carrier did not show infection symptoms. ESBL
and virulence genes (fyuA) were the risk factors of E. coli infection.46 However, the occurrence of infection is also host-
dependent. Therefore, infection by the virulent ST131 E. coli does not necessarily occur when the body is immuno-
competent and the intestinal barrier is intact. Ferjani et al reported that E. coli carried virulence genes and resistance
genes in the feces of healthy children.47 Barrios-Villa et al reported four ST131 E. coli strains isolated from healthy
humans with a high adherence/invasive phenotype.48

O25b has traditionally been considered the predominant serotype of ST131, but the prevalence of E. coli O16-
ST131 has increased significantly in recent years.49 In our study, the detection rate of O16-ST131 was higher than that
of O25b-ST131, which was consistent with our past results of a study on healthy adults in Changsha.34 The rise of
O16-ST131 may be related to the improvement of novel PCR detection methods.22 Clade A ST131 E. coli pre-
dominated (66.6%) in our study and the others belonged to clade C1-M27 (33.3%); moreover, in another multi-center
study, it was observed that all clade A ST131 E. coli were associated with the community infections.50 This finding
implies clade A may become a major clade of ST131 in the community in China. However, a similar study in France
reported that the predominant ST131 clade was clade C (74%), followed by clade A (26%).51 This may be due to the
geographical differences between the two regions. Additionally, C1-M27 is a novel subclade of clade C1 carrying
CTX-M-27, which has a higher degree of dissemination in the hospital setting.52 Currently, clade C1-M27 has
emerged and become prominent in many countries, such as Japan and Canada,53,54 and the present study is the first
to show the presence of clade C1-M27 in China. More studies are needed to further monitor the prevalence of this
clade.

Notably, ST1193 accounted for a high proportion of the B2 group. E. coli ST1193 was first described in 2012, and its
incidence has risen dramatically in recent years.55 Birgy et al reported a significant increase (from zero to 9.3%) in the
detection of E. coli ST1193 among children with febrile urinary tract infections in France from 2014 to 2017.56 Ding et al
found that E. coli ST1193 accounted for 21.4% of E. coli clinical isolates that cause neonatal invasive infections in the
population of China.57 Meanwhile, clones related to urinary tract infection were also detected, such as ST95 and ST73.
The current findings suggest that the specific global risk clones are lurking in humans, even in non-clinical settings,
which also poses a potential but not negligible risk to public health.

The study has several limitations. First, although we chose three schools from different urban areas to represent
the characteristics of the Changsha region, inevitably, the representativeness of our study population remains limited.
In addition, there was one colistin-resistant isolate in need of further research to explore its resistance mechanism.

Conclusion
In conclusion, high fecal carriage and significant CTX-M genetic diversity of ESBL-EC were detected in children from
Changsha, China. The emergence of the mcr-1 gene, blaNDM-1 gene, and ST131 E. coli (especially C1-M27) among
community children should not be taken lightly.
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