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Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is
an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently
reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1
matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix
(ECM) remodeling, cell migration and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the
focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our
findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of
pericellular proteolysis is a fundamental aspect of PCP in migrating cells.

During zebrafish gastrulation, PCP is defined as the elongation and
mediolateral alignment of cells as they engage in polarized behaviors
including collective or group migration.1-4 Over a decade ago it was
recognized that homologs of proteins regulating PCP in cuticular
structures of Drosophila melanogaster also control PCP in gastrula
cells.2,5,6 Zebrafish gastrulation mutant embryos such as trilobite/
vangl2 exhibit a PCP phenotype characterized by shortened and
broadened embryonic body axes.2,7,8 It is generally thought that
vertebrate PCP signaling regulates the formation, polarization, and/
or stabilization of actin-rich membrane protrusions.9 This concept is
largely based on data from the fly wing epithelium demonstrating
that PCP proteins restrict the formation and localization actin-rich
structures.10 Indeed, Rho family small GTPases are known regulators
of the actin cytoskeleton and influence gastrulation cell movements
in the Xenopus laevis embryo.11-13 Disruption of membrane protrusive
activity in the zebrafish gastrula is thought to underlie the PCP defect
in trilobite/vangl2 mutant embryos.2 However, in migrating cell
populations the establishment of PCP must be coordinated with
other proteins/pathways regulating motility including those affecting
ECM remodeling and cell-matrix adhesion.14 Therefore, identifica-
tion of additional proteins regulating gastrulation cell movements
and determination of how they interact with PCP signaling is crucial.

Previously our lab demonstrated that Mmp14 is required for PCP
and exhibits a strong genetic interaction with knypek/glypican4,15 a
Wnt co-receptor necessary for proper gastrulation cell movements.4

Subsequently we showed that a fibronectin- and laminin-containing

ECM network develops coincidently with the timing of PCP
establishment.16 By late gastrulation stages fibronectin and laminin
form two layers; one between the ectoderm and mesoderm germ
layers and a second localizing beneath (and surrounding) deep
mesodermal and endodermal cells.16 Notably, utilizing a cancer cell
culture model we further demonstrated that human VANGL2
regulates cell surface MMP14 expression, MMP2 activation, and
invasion through an ECM barrier.17 Taken together, our previous
data suggested a mechanistic connection between the establishment
of PCP in migrating cells and matrix metalloproteinase-dependent
ECM remodeling.

In our recent work, we hypothesized that the transmembrane
PCP protein VANGL2 directly regulates cell surface levels of
MMP14 by controlling its trafficking to or from the plasma
membrane.18 To test this possibility we transfected human
fibrosarcoma HT-1080 cells with either VANGL2 or control
siRNAs and performed various endocytosis and recycling assays.
These cells are frequently used to address mechanisms of MMP14
trafficking and localization to specific vesicular compartments.19,20

Utilizing a biochemical assay based on biotin labeling of cell surface
proteins followed by shifting the temperature to 37°C, it became
clear that VANGL2 knockdown cells have a defect in MMP14
endocytosis. Significantly, loss of VANGL2 function did not
globally disrupt trafficking as indicated by endocytosis of transferrin.

In the embryo VANGL2 homologs are thought to function at
the plasma membrane but their expression has been reported in
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both membrane and vesicular compartments,21,22 a finding that
we also observed in HT-1080 cells.18 Thus it was unclear whether
VANGL2 signaling acted at the cell surface to influence MMP14
internalization. Previous data showed that endocytosis of MMP14
could be regulated downstream of focal adhesion kinase (FAK)
phosphorylation at Y-397.23 This suggests that MMP14 traffick-
ing might be coordinated with integrin function and the
formation of cell-matrix adhesions. Indeed, we demonstrated that
VANGL2-dependent effects on cell surface MMP14 required
Y-397 phosphorylation of FAK.18 These results suggest that in
HT-1080 cells VANGL2 regulates MMP14 endocytosis at the
level of the plasma membrane.

Based on our cell culture data we further hypothesized that
zebrafish trilobite/vangl2 mutant embryos have increased matrix
metalloproteinase activity. By extracting total embryo protein
under conditions that maintain enzymatic activity, we were able
to perform protease assays using fluorogenic gelatin and collagen
IV substrates. We found that trilobite/vangl2 mutant embryos
have significantly more protease activity than wild-type controls
and that this activity could be suppressed using broad-spectrum or
Mmp14-specific inhibitors.18 Moreover, by knocking down
Mmp14 in Vangl2 loss of function embryos we were able to
suppress the gastrulation cell movement defect indicating that
Mmp14 acts downstream of Vangl2. We next determined
whether loss of Vangl2 function during gastrulation affected
formation of an ECM network. By immunolabeling for
fibronectin and performing confocal microscopic imaging we
showed that trilobite/vangl2 mutant embryos have decreased
ECM.18 These biochemical and molecular genetic data indicate
that Vangl2-dependent regulation of Mmp14 activity is required
for fibronectin remodeling in the zebrafish gastrula embryo. It is
also likely that Mmp14 acts on additional ECM and non-ECM
substrates to influence PCP during gastrulation.

In the fly wing epithelium, Van Gogh restricts or localizes the
activity of other PCP proteins to specific polarized cellular domains.24

We therefore wondered whether human VANGL2 regulates cell
surface proteolytic activity and focal matrix degradation at polarized
plasma membrane structures including protrusions and invadopodia.
First, we incubated HT-1080 cells on fluorescent gelatin for 20 h and
quantified the total degradation area in relation to cell number. Here,
the focal ECM degradation areas detected resembled footprints or
tracks created by protease activity that is associated with membrane
protrusions (Fig. 1A). Our data show that VANGL2 siRNA
transfected cells have significantly more degradation areas per cell
than controls (Fig. 1A and B) though the average size is not increased
in VANGL2 knockdown cells (Fig. 1C). In contrast to the
degradation areas produced by membrane protrusions, invadopodia
are dot-like F-actin-rich structures that are formed at certain cell-
matrix contact sites and exhibit increasedMMP14 activity and ECM
degradation.25 To visualize invadopodia, we incubated HT-1080
cells on fluorescently labeled gelatin for 5 h prior to fixation and
imaging. We identified actin-positive punctae that both co-labeled
with cortactin and overlapped with foci of matrix degradation
(Fig. 1D). These structures are thus considered invadopodia25 and
were quantified in VANGL2 and control non-targeting siRNA
transfected cells. Our results indicate that VANGL2 knockdown cells

have more invadopodia than controls (Fig. 1E and F). Notably, the
size of invadopodium and their associated matrix degradation spots
appeared larger in VANGL2 knockdown cells than controls
(Fig. 1E). However, because HT-1080 cells are highly motile on
2D ECM substrates,17 we were unable to quantify the focal
degradation spots produced specifically by the invadopodia of
individual cells. Together, our results support the notion that
increased cell surface proteolytic activity in VANGL2 knockdown
cells increases total focal matrix degradation and affects the formation
or stability of invadopodia. Our data are consistent with observations
that loss of MMP14 function disrupts both invadopodia formation
and proteolytic activity.26,27

In summary, we have demonstrated that the PCP protein
VANGL2 regulates MMP14 endocytosis and cell surface activity
and that this membrane-tethered protease functions downstream
of zebrafish Vangl2 to influence both ECM remodeling and
gastrulation cell movements.18 Together with other work,28-30

these data suggest that the regulation of vesicular trafficking events
may be a broadly applicable mechanism underlying the
establishment of PCP in diverse cell types. We have now shown
that human VANGL2 also impacts the focal degradation of ECM
and the formation or stability of invadopodia. It will now be
important to determine how zebrafish Vangl2 function influences
polarized cell behaviors underlying collective or group migration.
During gastrulation, migrating cells interact with ECM proteins
but do not plow through or invade an ECM barrier.16 In this
context, we suggest that tight regulation of cell surface MMP14
activity at cell-matrix focal adhesions is required to restrict
membrane protrusive activity to specific cellular domains.

Materials and Methods

Control and VANGL2 knockdown cells were generated as
described.17 The QCMTM gelatin invadopodia assays were
performed and quantified according to manufacturer instructions
(Millipore, ECM670). In each experiment 20,000 HT-1080 cells
were plated per well of an 8-well chamber slide. The total number of
degradation spots formed after 20 h incubation (including both
invadopodia and other protrusive membrane structures) was
quantified from three independent experiments (12 images per
experiment = 36 fields of view analyzed,. 500 cells per condition).
The number of invadopodia formed after 5 h was also quantified
from three independent experiments (20 cells per experiment = 60
total cells per condition). Only cells with at least one invadopodium
were analyzed. Cortactin antibody labeling (Millipore clone 4F11;
1:500 dilution) was detected using a mouse Cy5 secondary antibody
(Jackson ImmunoResearch; 1:400 dilution). Statistical significance
was calculated utilizing the unpaired Student’s ttest.
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Figure 1. VANGL2 regulates the focal degradation of ECM by HT-1080 cancer cells. (A) Total degradation areas observed after 20 h incubation on
FITC-labeled gelatin (actin-labeled images also shown). Quantification of (B) average number of degradation areas formed (normalized to total cell
number) and (C) average size of each degradation area with standard deviations and medians (black boxes). (D) Invadopodia formed after 5 h incubation
on FITC-labeled gelatin as visualized by phalloidin (to label actin), cortactin, and matrix degradation (arrows). Area within the white box is magnified
in adjacent panel. (E) Invadopodia formation in control non-targeting (NT) and VANGL2 siRNA transfected cells. Arrows denote matrix degradation spots
co-localizing with actin foci (only one spot is highlighted per cell). (F) Quantification of the average number of invadopodia per cell with standard
deviations and medians (black boxes). (B and F) Asterisks indicate p-value less than 0.01. Scale bars = 10 mm.
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