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The concentrations of immunoglobulins 
in bovine colostrum determined by the gold 
standard method are genetically correlated 
with their near‑infrared prediction
Angela Costa1, Marco Franzoi1*  , Giulio Visentin2, Arianna Goi1, Massimo De Marchi1 and Mauro Penasa1 

Abstract 

Background:  The quality of colostrum administered to calves is based on its concentration in immunoglobulins G 
(IgG, g/L). Immunoglobulins A (IgA) and M (IgM) are also present but at a lower level. The gold standard reference 
analysis for these traits, radial immunodiffusion, is time-consuming and expensive. In order to define breeding strate-
gies that are aimed at improving colostrum quality in dairy cattle, a large amount of data is needed, and the use of 
indicator traits would be beneficial. In the study presented here, we explored the heritabilities of reference (radial 
immunodiffusion) and near infrared-predicted IgG, IgA, and IgM concentrations and estimated their genetic correla-
tions. First, the colostrum of 765 Holstein cows from nine herds was sampled to perform a reference analysis and the 
near-infrared spectra (400–2500 nm) were stored. We used a calibration set (28% of the initial samples) that was rep-
resentative of the herds and cow parity orders to develop prediction equations for IgG, IgA, and IgM concentrations. 
Finally, these traits were predicted in the validation set (72% of the initial samples) to estimate genetic parameters for 
the predictions. Genetic correlations between reference and predicted values of each trait were estimated through 
bivariate linear animal models.

Results:  The three near-infrared-predicted immunoglobulin fractions were genetically correlated with their refer-
ence value. In particular, the reference and predicted IgG concentrations were strongly correlated at both the genetic 
(0.854 ± 0.314) and phenotypic level (0.767 ± 0.019). Weaker associations were observed for IgA and IgM concentra-
tions, which were predicted with lower accuracy compared to IgG. Simulation analyses suggested that improving 
colostrum quality by selective breeding in Holstein cattle based on near-infrared predicted colostrum immunoglobu-
lins concentrations is feasible. In addition, less than 10 mL of colostrum are needed for spectra acquisition and thus 
implementation of such analyses is possible in the near future.

Conclusions:  The concentrations of colostrum immunoglobulins can be predicted from near-infrared spectra and 
the genetic correlation between the reference and the predicted traits is positive and favourable, in spite of the large 
standard errors of the estimates. Near-infrared spectroscopy can be exploited in selective breeding of dairy cattle to 
improve colostral immunoglobulins concentration.
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Background
The cotyledonary synepitheliochorial placenta of female 
cattle does not allow the direct transfer of immuno-
globulins (Ig) from the dam to the foetus. Therefore, 
compared to other mammals, the quality and volume 
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of colostrum administered to new-born calves are even 
more important. Acquisition of antibodies in calves 
occurs through a rapid and appropriate intake of good 
quality colostrum after birth, i.e., colostrum with a con-
centration of immunoglobulins G (IgG) greater than 
50 g/L [1, 2]. In general, the ‘3Q’ rule (quickness, qual-
ity, and quantity) must be followed so that the optimal 
administration provides more than four litres of good 
quality colostrum during the first 12  h of life [1, 2]. A 
fourth ‘Q’, standing for quota, may be added; in fact, 
the presence of a farm colostrum bank becomes impor-
tant when, for some reasons, a cow does not produce 
enough colostrum for her calf. Immunoglobulins A 
(IgA) and M (IgM) are also present in the colostrum of 
cows, but at lower concentrations compared to that of 
IgG [2, 3]. In calves, a failure of the passive transfer of 
immunity, i.e. of Ig, has negative consequences on sur-
vival rate, health, growth, and performance.

Direct determination of the concentration of antibod-
ies in the colostrum relies on gold standard methods such 
as the radial immunodiffusion (RID), which provides very 
accurate and repeatable results. However, such methods 
are expensive and time-consuming, which hampers the 
quantification of these traits on a large scale. In fact, RID 
analysis requires expert and trained personnel, a 24-h 
incubation until the endpoint, and costs around 100 US $ 
for 20 samples. Therefore, RID is not suitable for a rapid, 
easy, and low-cost collection of data in cattle.

On the one hand, BRIX refractometers are commonly 
used to assess colostrum quality on farms since the cor-
relation between refractive index and IgG concentration 
is moderate to strong, making BRIX a good screen-
ing parameter for management purposes [4, 5]. On the 
other hand, infrared spectroscopy is known to be a rapid 
and cost-effective technique for the analysis of milk and 
dairy products and its effectiveness in predicting several 
difficult-to-measure traits in dairy cattle is well docu-
mented [6, 7]. To our knowledge only a couple of studies 
have discussed the application of near-infrared spectros-
copy (NIRS) on bovine colostrum to determine its gross 
composition and IgG concentration [8, 9]. In both cases, 
the number of samples analysed was relatively small and 
genetic investigations were not carried out. The collec-
tion of colostrum spectra would allow to develop predic-
tion equations for several traits of interest, not only for 
farmers (e.g., IgG concentration), but also for food and 
pharmaceutical industries, which use bovine colostrum 
as an ingredient. Currently, NIRS devices are routinely 
used in both the food and pharmaceutical fields [10, 11], 
but no models have been developed for the colostral con-
tent of antibodies, vitamins, fatty acids, total protein, lac-
tose, and fat.

The aims of the current study were to (i) develop NIRS 
prediction models for IgG, IgA, and IgM concentrations 
in the colostrum of Holstein cows, (ii) estimate the her-
itability and genetic correlations between measured and 
NIRS-predicted concentrations of Ig, and (iii) simulate 
the response to selection on colostrum quality if NIRS 
predictions are used as a proxy. Finally, in order to eval-
uate how the size of the training set affects the genetic 
parameters, different prediction models were developed 
for IgG, which is the predominant colostral immuno-
globulin fraction, by reducing the number of samples 
included in the training set.

Methods
Sampling
Nine commercial Holstein farms in Northern Italy with 
herd size  ranging from 60 to 190 lactating cows were 
enrolled in this study. Vaccination before calving against 
rotavirus, coronavirus, or E. coli was not performed 
on such farms and all the cows were fed a maize-based 
total mixed ration, housed in free stall barns, and milked 
twice-a-day. Colostrum samples were collected from 
spring 2019 to spring 2020, covering all the calving 
seasons.

A detailed sampling protocol was set up using informa-
tion available from the existing literature and was then 
provided to each farmer to explain the objectives and the 
methodology of the trial. According to the protocol, each 
calf  must be separated from the dam immediately after 
birth and was not allowed to suckle. Only the first colos-
trum of supervised calvings collected within 6  h post-
partum was considered. Plastic sterile tubes (120  mL) 
without preservative were provided and used for sample 
collection. Farmers were in charge of colostrum sam-
pling and annotation of the cow ID and calving date on 
the tube. Immediately after collection, colostrum samples 
were frozen and stored at −20 °C. Periodically, colostrum 
samples were retrieved from the farms, transferred to the 
laboratory of the Department of Agronomy, Food, Natu-
ral resources, Animals and Environment of the University 
of Padova (Legnaro, Italy), and stored frozen until the day 
of analysis. In total, 765 samples of purebred Holsteins (1 
sample per cow) were collected.

Reference analysis
Samples were thawed at 4 °C in a water bath overnight 
and were subsequently inverted for homogenization. 
The ‘Bovine IgG RID Kit’, ‘Bovine IgA RID Kit’, and 
‘Bovine IgM RID Kit’ were purchased in advance from 
Triple J Farms (Bellingham, WA, US) and stored at 4 °C. 
Each kit consisted of one plate (24 wells) and three ref-
erence sera. In order to fall within the detection range 
of the assay, each colostrum sample was divided into 
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aliquots which were diluted in pure deionized water, 
i.e., 1:5 (v/v) for IgG and 1:3 (v/v) for IgA and IgM. Sub-
sequently, 5 μL of diluted colostrum was injected in 
each RID plate well. After incubation at 20 °C for 24 h, 
plates were scanned at high resolution and the diame-
ter of the precipitated rings was measured by using the 
software ImageJ [12].

Dilution, RID analyses, and scans were performed 
by the same operator, while each precipitated ring was 
measured in duplicate and the average value was taken as 
the final diameter (mm). For each sample, the diameter 
was used to derive the concentration (g/L) of the target 
component (IgG, IgA, or IgM) using the standard equa-
tion that has been developed specifically for each single 
plate based on known concentrations and diameters of 
the three reference sera. Concentrations of the refer-
ence sera provided by the manufacturer were 1.80, 14.72, 
28.03 g/L for IgG, 0.53, 1.94, 3.87 g/L for IgA, and 0.62, 
2.00, and 3.81 g/L for IgM. The data from the RID analy-
ses were considered inconsistent and set to missing val-
ues when (i) no signal was detected, (ii) the precipitation 
ring was too weak for a correct measurement of the pre-
cipitation diameter, (iii) precipitation rings had an ellipti-
cal shape, and (iv) concentration values were outside of 
the specified kit range. The final number of samples each 
with at least one quantified Ig fraction was 698.

The repeatability of RID analysis was determined prior 
to the beginning of colostrum sampling with a prelimi-
nary test to define the accuracy of the method. In par-
ticular, the intra-assay coefficient of variation ( CVRID , 
%) of samples tested in quintuplicate by a single operator 
was calculated for IgG, IgA, and IgM, respectively. Briefly, 
four colostrum samples were diluted in pure water as 
previously described and inserted in five wells (quintu-
plicate) of each of the three plates (IgG, IgA, or IgM). In 
each plate, the three reference sera were injected. After 
incubation at 20  °C for 24  h, the concentration of the 
target component was derived as described previously. 
Separately for IgG, IgA, and IgM plate, the CVRID was 
calculated as the average of the individual CV of the four 
samples measured in quintuplicate, as:

 where xn and sn are the mean and the standard deviation 
(SD), respectively, of the five concentrations available for 
the same sample. The intra-assay CVRID was 7.56, 2.46, 
and 3.03% for IgG, IgA, and IgM, respectively. Based on 
[13, 14], coefficients lower than 10% can be considered 
as sufficiently precise to allow the use of a single-well for 
each sample to determine the concentration of IgG, IgA, 
and IgM. Hence, each plate (24 wells) allowed to analyse 

CVRID =
[(s1/x1)+ (s2/x2)+ (s3/x3)+ (s4/x4)]

4
· 100,

simultaneously 21 colostrum samples and three reference 
sera.

Near‑infrared prediction
Spectra of colostrum were collected using the visible-
near reflectance infrared instrument DS2500 (FOSS Ana-
lytical A/S, Hillerød, Denmark). The instrument operates 
between 400  nm and 2499.5  nm, with a 0.5  nm resolu-
tion, for a total of 4200 spectral variables. For each sam-
ple, 10  mL of thawed colostrum were dispensed after 
inversion in a slurry cup at room temperature and the 
instrument automatically averaged 32 sub-spectra col-
lected on eight sample areas by rotating the cup. Spectra 
with poor quality, i.e., high SD between sub-spectra, were 
discarded (n = 5). The reference data obtained by RID 
analysis were paired with spectral variables expressed as 
log(1/reflectance). The final NIRS dataset comprised 693 
samples with spectra and at least one reference value.

The obtained dataset was divided into two groups using 
the SURVEYSELECT procedure of the SAS software v. 9.4 
(SAS Institute Inc., Cary, NC, USA). Random sampling was 
performed by setting parity order as strata to ensure that all 
lactations were equally represented in the resulting subsets. 
In particular, the distribution of records across parities 1, 2, 
3, 4, and 5 to 8 was: 28.9, 29.7, 18.4, 12.1, and 10.9%, respec-
tively. For each trait, one subset (28% of the total observa-
tions) was used as calibration set, and the second (72% of 
the total observations) as validation set. The validation set 
was used neither to train nor to optimize the prediction 
models but only to evaluate the performance of the final 
models. Prediction models were developed from the cali-
bration dataset with the WinISI software v. 4.8 (FOSS Ana-
lytical A/S, Hillerød, Denmark) using a modified partial 
least squares algorithm. Different mathematical treatments 
on spectral data were tested: none; detrend; standard nor-
mal variate; standard normal variated and detrend; and 
multiplicative scatter correction. All the previous treat-
ments were tested in combination with derivative and 
smoothing parameters as follows: 0,0,1,1; 1,4,4,1; 1,8,8,1; 
2,5,5,1; 2,10,10,1, where the first digit is the derivative, the 
second digit is the gap over which the derivative was cal-
culated, the third digit is the gap for the first smoothing, 
and the fourth is the gap for the second smoothing. In total, 
25 models were developed for each trait. To avoid overfit-
ting, which results in poor validation performances and 
poor models’ applicability, the number of latent variables 
(LV) used for building the models was carefully tuned. For 
this reason, an internal cross-validation in the calibration 
set was performed using 20 random groups. Within each 
mathematical treatment, the selected number of LV was 
the smallest one with a root mean squared error in cross-
validation (RMSECV) that was not statistically different 
from the lowest RMSECV among all the tested LV [15]. For 
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each mathematical treatment, before the calculation of the 
final model, three steps of modified partial least squares 
algorithm were performed. At each step, the dataset was 
checked for outliers, which were removed before the sub-
sequent iteration. Potential outliers were detected based on 
a (i) spectral H > 10 (H = D2/LV, where D is the Mahalano-
bis distance of each spectra from the spectral centroid), 
(ii) T statistics > 3, (where T is the difference between the 
predicted and reference values estimated by Student’s t 
test), and (iii) X statistics > 10 (an estimation of poorly 
modelled spectra) [16]. Among all the tested mathematical 
treatments, we selected the one that resulted in the low-
est RMSECV. The developed models were used to predict 
the concentrations of IgG, IgA, and IgM in the validation 
set, excluding the predicted samples with a GH > 3.5 and 
NH > 2.0 [17], which are respectively defined as the H dis-
tance from the calibration spectra centroid and the H dis-
tance from the most similar (nearest) calibration spectra.

Number of selected LV, coefficient of determination in 
calibration (R2

C), root mean squared error in calibration 
(RMSEC), coefficient of determination in cross-validation 
(R2

CV), RMSECV, coefficient of determination in external 
validation (R2

V), root mean squared error in validation 
(RMSEV), and the relative RMSEV, which is defined as the 
ratio between the average value of reference data in the val-
idation set and the RMSEV, have been calculated as fitting 
statistics.

Estimation of genetic parameters
A genetic analysis was carried out for each trait using a 
bivariate animal model in which RID measures and NIRS 
predictions obtained from the 100% calibration set (194 
samples) were included as two different traits:

where y is the vector of phenotypic observations of the 
dependent variables (measured and predicted trait); b 
is the vector of fixed effects (parity, calving season, and 
herd); a is the vector of random additive genetic effects; 
e is the vector of random residuals; and X and Z are inci-
dence matrices relating the corresponding effects to the 
dependent variable. Expectations ( E ) of the variables 
were assumed as E(y) = Xb , E(a) = 0 , and E(e) = 0 , 
and the variances of random effects were assumed as 
var(a) = Aσ

2
a and var(e) = Iσ2e , where σ2a is the addi-

tive genetic variance and σ2e is the residual variance, A 
is the pedigree-based relationship matrix, and I is an 
identity matrix of order equal to the number of records. 
The heritability ( h2 ) of both the reference and predicted 
traits was calculated as the ratio of σ2a to the sum of σ2a 
and σ2e . Phenotypic ( rp ) and genetic correlations ( ra ) were 

[

y1
y2

]

=

[

X1 0
0 X2

][

b1
b2

]

+

[

Z1 0
0 Z2

][

a1
a2

]

+

[

e1
e2

]

,

calculated from the estimated phenotypic ( covp1,2 ) and 
genetic covariances ( cova1,2 ) as follows:

where σ2p denotes the phenotypic variance calculated as 
the sum of σ2a and σ2e , and covp is the phenotypic covari-
ance between traits calculated as the sum of the additive 
genetic and residual covariance. To avoid convergence 
issues due to the small variance components, the refer-
ence and predicted IgA and IgM were multiplied by 100. 
The software ASReml v4 [18] was used to perform the 
genetic analyses. The same model was used to estimate 
the correlations between both NIRS and RID values of 
IgG, IgA, and IgM concentrations. Univariate analyses 
were carried out on all the traits to estimate least squares 
means of the previously described fixed effects.

Effect of IgG calibration dataset size on (co)variance 
components
Considering that IgG concentration is the key-trait to 
determine colostrum quality and is the most important 
feature for the passive transfer to calf [19, 20], two subsets 
were extrapolated from the full calibration set (100%), i.e., 
one containing 80% of the samples (n = 156) and a sec-
ond one with 60% of the samples (n = 117). The subsets 
were representative of the variability of herds and parities 
and were used to develop two prediction equations. The 
method adopted to develop prediction models from the 
smaller calibration set was the same as that used for the 
full calibration set and previously described. The idea was 
to check for differences in terms of prediction accuracy, 
heritability of the NIRS-predicted trait, and genetic cor-
relation with the reference IgG concentration when using 
less reference samples. The linear animal model described 
above was used to estimate (co)variance components and 
phenotypic and genetic correlations of reference IgG con-
centration with its NIRS-predictions with different sizes 
of calibration sets. In addition, the difference in terms of 
selection response between reference and NIRS-predicted 
IgG concentrations was estimated as proposed by [21]. 
Briefly, the ratio between the correlated ( �GC , NIRS-pre-
dicted IgG) and the direct response ( �G , reference IgG) to 
selection was used to compare the effectiveness of the ref-
erence trait ( y ) and NIRS-predicted trait ( x):

where i is the selection intensity; rg is the genetic correla-
tion between x and y ; n is the number of daughters per 

rp =
covp1,2

√

σ
2
p1 · σ

2
p2

and ra =
cova1,2

√

σ
2
a1 · σ

2
a2

,

�GC

�G
= i · rg ·

√

√

√

√

√

h2x ·
[

4 + (n− 1) · h2y

]

h2y ·
[

4 + (n− 1) · h2x

] ,
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bull with information, which is assumed here to be equal 
to 70; h2x is the heritability of trait x (at 100, 80, or 60% of 
calibration set); and h2y is the heritability of trait y.

Finally, to estimate the response to selection using vari-
ous combinations of NIRS-predicted IgG, IgA, and IgM, 
different deterministic scenarios with RID IgG concen-
tration as the main breeding goal were simulated [22] 
by using the parameters obtained above, assuming vari-
ous criteria on both the sire and dam sides, considering 
a generation interval of 6 years (sires) and 4 years (dams), 
and fixing the intensity of selection to 1.76 (i.e. the top 
10% of selected individuals).

Results
Data overview and prediction accuracy
The descriptive statistics of the analysed samples are in 
Table  1. The final number of available records ranged 
from 587 for IgA to 697 for IgG. The concentration of IgG 
in samples ranged from 0.68 g/L to 216.70 g/L, averaging 
91.77  g/L. The concentrations of IgA and IgM averaged 
4.80 g/L and 5.07 g/L, respectively, and both exhibited a 
greater coefficient of variation than that of IgG. Approxi-
mately 12% of the samples with information on RID IgG 
had a suboptimal concentration (< 50  g/L). Moreover, 

about 18% of the samples had an IgG concentration lower 
than 60 g/L and 28% of the samples had an IgG concen-
tration lower than 70 g/L.

The calibration performances for the analysed traits 
and the different calibration datasets are in Table 2. The 
R2

C of IgG was greater than 0.95 for all the tested cali-
bration sets, i.e., 100, 80, and 60% of the full set. The 
RMSECV and R2

CV were also similar among the models 
developed for IgG, ranging from 14.22 to 15.93 g/L and 
from 0.79 to 0.84, respectively. Although different scatter 
corrections were selected for each of the three models for 
IgG, the derivative and smoothing parameters were the 
same for all of them, except IgA.

Genetic parameters of reference and predicted 
immunoglobulins concentrations
Preliminary univariate analyses were carried out on 
all the traits to assess the significance of fixed effects 
(Table 3). For the three Ig, the trend across parities and 
across seasons of the NIRS-predicted trait resembled the 
trend of the reference trait and, in all cases, the parity 
effect was highly significant (P < 0.001) in explaining vari-
ability of the trait.

A series of bivariate analyses was used to estimate the 
genetic covariance,  the genetic and residual variances 
and heritability (Fig.  1). Considering all the bivariate 
analyses, the heritability of reference IgG, IgA, and IgM 
concentrations averaged 0.15, 0.13, and 0.24, respectively. 
Compared to these estimates, the average heritability of 
NIRS-predicted IgG and IgM concentrations was lower 
(0.09 and 0.23, respectively), while that of predicted IgA 
was slightly higher than its reference value (Fig. 1).

The range of heritability estimates was smaller 
for predicted IgG than for reference IgG concentra-
tions (0.087 vs 0.112; Table  4), while it was larger for 

Table 1  Descriptive statistics of colostrum concentration of 
immunoglobulins determined by radial immunodiffusion

IgG immunoglobulins G, IgA immunoglobulins A, IgM immunoglobulins M

Trait n Mean Standard 
deviation

Minimum Maximum

IgG, g/L 697 91.77 36.47 0.68 216.70

IgA, g/L 587 4.80 3.03 0.13 22.14

IgM, g/L 674 5.07 2.44 0.18 14.01

Table 2  Summary of statistics of near-infrared prediction models for colostrum immunoglobulins concentrations

SD standard deviation, LV number of latent variables, RMSEC root mean squared error in calibration, R2
C coefficient of determination in validation; RMSECV root 

mean squared error in cross-validation, R2
CV coefficient of determination in cross-validation, RMSEV root mean squared error in external validation, R2

V coefficient of 
determination in external validation, Relative RMSEV relative root mean squared error in external validation, expressed as the ratio between the RMSEV (this table) and 
the mean of the reference trait (Table 1).

IgG immunoglobulins G, IgA immunoglobulins A, IgM immunoglobulins M, MSC multiplicative scatter correction, SNV standard normal variate, DET detrend
a Predicted from NIRS spectra using 100, 80, or 60% of calibration set

Traita, g/L n Mean SD Math treatment LV RMSEC R2
C RMSECV R2

CV RMSEV R2
V Relative RMSEV

IgG

 100% 189 88.39 36.08 MSC 2,5,5,1 14 6.72 0.97 14.22 0.84 25.21 0.63 0.27

 80% 152 91.14 36.28 SNV 2,5,5,1 14 5.26 0.98 14.55 0.84 29.15 0.53 0.32

 60% 115 91.81 35.04 MSC 2,5,5,1 16 3.20 0.99 15.93 0.79 29.46 0.49 0.32

IgA

 100% 153 4.25 2.48 MSC 1,4,4,1 4 1.84 0.45 2.00 0.35 2.23 0.40 0.46

IgM

 100% 187 4.71 2.08 DET 2,5,5,1 2 1.58 0.42 1.73 0.31 2.10 0.32 0.41
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predicted IgM than for reference IgM concentrations 
(0.059 vs 0.033; Table  4). Regarding IgA, the range of 
the estimated heritability was 0.100 for the reference 
and 0.105 for NIRS prediction (Table 4).

The genetic and phenotypic correlations between 
reference and NIRS-predicted traits are in Table  4. 
Regarding reference (RID) traits, the magnitude of the 
phenotypic correlations ranged from 0.520 (IgM and 
IgA) to 0.603 (IgM and IgG), while the genetic corre-
lations were weaker, with a magnitude ranging from 
0.144 (IgA and IgM) to 0.401 (IgG and IgM; Table 4).

The phenotypic correlations between NIRS-pre-
dicted IgG, IgA, and IgM concentrations were strong 
and ranged from 0.740 (between IgA and IgG) to 0.821 
(between IgM and IgG), and the genetic correlations 
were 0.761 (between IgG and IgM), 0.897 (between IgG 
and IgA), and 0.981 (between IgA and IgM). This did not 
corroborate the findings for the reference trait, for which 
the phenotypic correlations between IgG, IgA, and IgM 
were stronger than their genetic counterparts.

A strong genetic correlation was estimated between 
reference and predicted IgG concentrations (0.854), while 
the genetic correlations between reference and predicted 
IgA and IgM concentrations were weaker (Table  4). 
Colostrum IgG concentration was the only trait for which 
the genetic correlation between reference and predicted 
values was stronger than its phenotypic counterpart 
(Table 4). The phenotypic associations between reference 
and predicted IgA and between reference and predicted 
IgM concentrations were 0.554 and 0.583, respectively. 
Table 5 summarizes the results of the bivariate analyses 
carried out for IgG using the different calibration sets 
(full, 80% and 60%) that were generated in this study.

The average heritability of NIRS-predicted IgG con-
centration was similar for the three calibration sets, i.e. 
0.090, 0.102, and 0.108 (Table  5). Both the genetic and 
phenotypic correlations with the reference IgG concen-
tration were strong in all cases, but the phenotypic corre-
lation decreased slightly when the size of the calibration 
set decreased (Table 5). The three NIRS-predicted colos-
trum IgG concentrations (i.e., 100, 80 and 60% of calibra-
tion set) were strongly correlated both phenotypically 
and genetically to each other (Fig. 2) and, in general, the 
genetic correlations tended to be stronger than their phe-
notypic counterparts.

Response to selection was calculated for the breed-
ing scenarios in which RID IgG concentration was con-
sidered as the breeding goal and various combinations 
of colostrum traits were included in the selection index 
(Table 6).

The number of offspring assumed per bull was 30, i.e., 
equal to the minimum number of progeny for officially 
daughter-proven Italian Holstein bulls. If only RID IgG 
concentration was used as selection criterion (base sce-
nario), a potential annual genetic gain of + 2.823  g/L 
could be achievable (Table  6). Moving from 30 to 120 
offspring with a phenotypic RID IgG record on the bulls’ 
side could result in an improved annual genetic gain 
(2.823 vs. 3.228 g/L): + 14.34% compared to the base sce-
nario (Table 6). When only the NIRS-predicted IgG, IgA, 
and IgM concentrations are used as selection criteria 
(alternative scenario ‘IV’) to improve the breeding goal 
(RID IgG), the achievable genetic gain assuming 30 prog-
eny per bull is just 1.46% lower compared to that of the 

Fig. 1  Heritability of reference and infrared-predicted colostrum 
concentrations of immunoglobulins. The indicator (black 
diamonds) corresponds to the average of the heritability estimates 
obtained from the bivariate analyses reported in Table 4, and the 
grey bar indicates the observed range of heritability estimates. 
IgG immunoglobulins G, g/L; IgA immunoglobulins A, g/L; IgM 
immunoglobulins M, g/L
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base scenario (Table 6). Again, a four-fold increase in the 
number of bulls’ progeny with NIRS-predicted IgG, IgA, 
and IgM concentrations (alternative scenario ‘V’) would 
potentially translate into a larger genetic gain compared 
to the base scenario (+ 11.26%; Table 6).

As shown in Fig.  3, the calculations showed that 
selecting for NIRS IgG concentration predicted using 
a calibration set at 100, 80, and 60% resulted in an esti-
mated correlated response of 81, 76, and 79% of the total 
response that can be achieved with the reference RID 
IgG, respectively.

Table 4  Minimum and maximum heritability of colostral immunoglobulins concentrations and their phenotypic (below diagonal) 
and genetic correlationsa (above diagonal)

IgG immunoglobulins G, IgA immunoglobulins A, IgM immunoglobulins M

*Significantly different from zero (P < 0.05)
a Standard errors of estimates are given in parentheses
b Concentrations (g/L) were measured through reference analysis and predicted from colostrum spectra using 100% of the calibration set

Traitb Heritability Reference Prediction

Minimum Maximum IgG IgA IgM IgG IgA IgM

Reference

 IgG 0.060 0.172 – 0.220 (0.733) 0.401 (0.420) 0.854* (0.314) 0.989 (0.560) 0.738* (0.256)

 IgA 0.078 0.178 0.554* (0.036) – 0.144 (0.556) Not converged 0.118 (0.784) 0.262 (0.726)

 IgM 0.216 0.249 0.603* (0.031) 0.520* (0.037) – − 0.050 (0.828) 0.264 (0.470) 0.521 (0.318)

Prediction

 IgG 0.058 0.145 0.767* (0.019) 0.533* (0.036) 0.551* (0.033) – 0.897 (0.443) 0.761* (0.221)

 IgA 0.090 0.195 0.724* (0.024) 0.554* (0.035) 0.567* (0.035) 0.740* (0.022) – 0.981* (0.174)

 IgM 0.195 0.254 0.775* (0.019) 0.569* (0.035) 0.583* (0.032) 0.821* (0.016) 0.778* (0.020) –

Table 5  Heritability of near infrared-predicted immunoglobulins 
G concentrations and their correlations with the reference trait

*Significantly different from zero (P < 0.05)
a Standard errors are given in parentheses

Trait, g/L Heritabilitya Correlationa

Phenotypic Genetic

Near-infrared prediction

 100% calibration set 0.090 (0.147) 0.767* (0.019) 0.854* (0.314)

 80% calibration set 0.102 (0.145) 0.699* (0.024) 0.837* (0.320)

 60% calibration set 0.108 (0.139) 0.680* (0.025) 0.846* (0.317)

Fig. 2  Phenotypic (grey bar) and genetic correlations (black bar) between concentrations of immunoglobulins G (P < 0.05) predicted from NIRS 
spectra using 100, 80, or 60% of the calibration set



Page 9 of 14Costa et al. Genet Sel Evol           (2021) 53:87 	

Discussion
The objective of the present study was to predict colos-
tral IgG, IgA, and IgM concentrations in Holstein cows 
and then to quantify the genetic association between the 
reference and NIRS-predicted Ig concentrations. The 
reference methodology used here was the RID assay. 
Although accurate and repeatable, it is costly, time-con-
suming, and not feasible for large-scale phenotyping. In 
this study, NIRS was proposed as an advantageous alter-
native method for indirect determination of IgG, IgA, 

and IgM concentrations for breeding and management 
purposes. NIRS analysis is known to be easy to carry 
out, rapid, non-destructive, and cost-effective. Moreo-
ver, only a small volume of colostrum (10 mL) is neces-
sary for spectra acquisition. The indirect tools available 
for on-farm Ig prediction are refractometers. Colostral 
BRIX generally assesses the total solids content, which 
is related to IgG concentration, i.e., the target trait for 
quality evaluation. Refractometers can be used on-site 
by farmers without requiring expert personnel, specific 

Table 6  Response to selection in the breeding goala under different scenarios

n number of offspring, Rg response (g/L) per generation, rIH index accuracy, OP own performance, Ry response (g/L) per year, IgG immunoglobulins G (g/L), IgA 
immunoglobulins G (g/L), IgM immunoglobulins G (g/L), RID radial immunodiffusion (direct measure), NIRS near-infrared spectroscopy (indirect measure)
a Colostrum concentration of immunoglobulins G (g/L) measured through gold standard radial immunodiffusion

Scenario Selection criteria Bulls Dams Overall Ry

N Rg rIH OP n Rg rIH

Base RID IgG 30 9.730 0.730 1 3 6.310 0.480 2.823

Alternative

 I RID IgG 120 12.030 0.910 1 3 6.310 0.480 3.228

 II NIRS IgG 30 7.230 0.540 1 3 4.290 0.330 2.028

 III NIRS IgG 120 9.700 0.730 1 3 4.290 0.330 2.462

 IV NIRS IgG + IgA + IgM 30 9.370 0.710 1 3 6.436 0.486 2.782

 V NIRS IgG + IgA + IgM 120 11.410 0.860 1 3 6.436 0.486 3.141

Fig. 3  Heritability (black circles), genetic correlation (black squares), and correlated response (black triangles) for colostrum concentrations of 
immunoglobulins G. Heritability: the average heritability from estimates of bivariate analyses was used for calculations. The correlated response 
was calculated as the ratio between the indirect (based on infrared-predicted trait) and direct (based on reference trait) response to selection. The 
colostrum concentrations of immunoglobulins G was predicted from NIRS spectra using 100, 80, and 60% of the calibration set
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training, and expensive equipment. Nevertheless, the 
correlation between colostrum BRIX refractive index 
and IgG concentration can vary depending on the bovine 
milk samples and often it is not strong [1, 4, 5, 20]. For 
these reasons, NIRS is a promising method to provide 
accurate information not only on colostral IgG concen-
tration, but also on several other traits of interest, such as 
the concentration of total protein, fat, fatty acids, amino 
acids, minerals, vitamins, growth factors, and oligosac-
charides [8, 9, 23].

From a practical point of view, the collection of colos-
trum aliquots for NIRS analysis requires limited extra 
labour at the farm level, since farmers are requested to 
store and label the tubes intended for infrared analysis. 
However, less than 10  mL of colostrum are needed for 
spectra collection through the FOSS DS2500 and most 
dairy farmers already collect and store colostrum to 
resupply the farm colostrum bank [24]. In addition, the 
colostrum sample needs to be only collected once per 
cow in a given lactation and can be stored at a standard 
freezer operating temperature (− 20 °C) until the day of 
analysis. Practically, samples of colostrum that are suit-
able for NIRS analysis can be sent to a laboratory that is 
equipped with a NIR instrument during the monthly visit 
within the official milk recording programme, which also 
allows its evaluation and the storage of compositional 
information for breeding purposes.

The average IgG concentration obtained in our study 
agreed with findings on IgG1 concentrations reported 
for 77 Holstein cows reared on an experimental French 
farm [25]. It is worth noting that bovine colostrum con-
tains two forms of IgG, namely IgG1 and IgG2, with 
concentrations representing 80 and 20% of the total IgG, 
respectively [26]. Le Cozler et al. [25] reported an average 
RID IgG1 concentration of 54.1 g/L in composite colos-
trum with a minimum lower than 10 g/L and a maximum 
of 110.8  g/L. In the same study, significant differences 
were observed in terms of IgG1 concentration between 
the hind (56.2 g/L) and front quarters (53.1 g/L). In our 
study, the RID assay was able to detect the overall IgG 
content, without discriminating between IgG1 and IgG2. 
Our results in Table 1 are consistent with those reported 
by Rivero et  al. [9] on Chilean Holsteins with an aver-
age RID IgG concentration of 93.3  g/L; moreover, the 
average concentrations of IgA and IgM at first milking 
observed in Holstein cows in Brasil [27] were similar to 
those found in our study (Table 1). As suggested by [28], 
differences in Ig concentrations could be attributable to 
the method used for their quantification and to the time 
of sampling. In fact, the concentration of antibodies is 
known to rapidly decrease in cattle during the first hours 
after calving and it can vary if the calf is left with the dam 
and allowed to suckle. Differences with other studies are 

small and may be due to sampling protocol and reference 
analysis. In particular, it is important to highlight that the 
samples used in our study represent the first colostrum, 
because they were collected during a short period of time 
after parturition (6 h, at the latest). In fact, according to 
the protocol adopted, calves were not allowed to suckle 
as they were immediately separated from the dam after 
birth.

The production of low-quality first colostrum, i.e., 
colostrum with an IgG concentration lower than 50 g/L, 
is quite frequent and it concerned 12% of the cows sam-
pled in our study; this phenomenon impairs the passive 
transfer of immunity from the dam to the calf and has a 
negative impact on the calves’ health and performance 
[24].

Prediction accuracy
Infrared prediction models used in this study were built 
to generate potential traits that evaluate colostrum qual-
ity at the population level. The convergence of genetic 
analyses on such traits requires a large number of sam-
ples with NIRS-predicted and reference values. For this 
reason, most samples were included in the validation 
set rather than in the calibration set. To the best of our 
knowledge, few studies have reported NIRS prediction 
models to determine colostrum compounds. By using 
90 samples in the calibration set, some authors have 
reported good NIRS prediction performances for major 
components of the bovine colostrum, such as content in 
total solids, fat, solid non fat (SNF), lactose, and protein 
[8]. Nevertheless, only cross-validation was performed. 
As reported here, there could be a large difference 
between cross-validation and external validation fitting 
statistics (Table 2). In a previous research [9], NIRS pre-
diction models for colostrum IgG content were devel-
oped starting from 157 samples, using a protocol similar 
to that used in our study. The authors [9] reported R2

CV 
and RSMECV of 0.94 and 9.03 g/L, respectively, and the 
reported fitting statistics were better than those obtained 
in our study, but again no external validation was per-
formed. Our findings highlighted the suitability of NIRS-
predicted Ig for genetic investigations and for monitoring 
colostrum quality. Accordingly, the development of more 
robust prediction models, including a larger number of 
samples in the calibration dataset and using more com-
plex algorithms, could definitely be an improvement.

In this study, RMSEV increased as the number of sam-
ples included in the calibration dataset decreased, which 
could indicate overfitting of the models, even if cross-val-
idation was performed for the optimization of the num-
ber of LV, or an insufficient sample size in calibration. 
Moreover, the selected mathematical treatment applied 
to the 80% calibration set differed to that selected for the 
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full and for the 60% calibration sets. Finally, although the 
three sets were similar in terms of mean and variability, 
the samples in the reduced calibration sets were selected 
randomly, which might have excluded (or included) some 
slightly leveraged spectral data.

Genetic variability of colostrum immunoglobulins 
and practical implications
The occurrence of diseases and metabolic disorders in 
dairy cattle are a major source of economic losses for 
farmers. Therefore, the ability to genetically improve 
animal health through selective breeding is receiving 
growing attention worldwide. The presence of exploit-
able genetic variation has been demonstrated for a 
series of animal diseases, such as clinical mastitis, keto-
sis, lameness, metritis, displaced abomasum, and milk 
fever [29–31]. The implementation of breeding schemes 
to genetically improve the health of livestock requires a 
national recording scheme in which diseases and meta-
bolic disorders are systematically registered in a stand-
ardized manner. Scandinavian countries were the first 
to develop recording systems for health traits in cattle 
in the 1970s and currently, udder, and claw health are 
major components in their national selection indexes. 
In these countries, evident and touchable benefits have 
been reported in terms of reducing disease incidence 
[32]. Quantification of the additive genetic variance of 
traits related to the cow or calf immune system, such as 
antibody concentration, has been carried out by several 
authors in different biological fluids, i.e., serum [33–36], 
mature milk [36–38], and colostrum [35]. It has been 
demonstrated that the concentration of Ig in mature milk 
is very low [26, 39], which impairs the accurate deter-
mination of such traits through individual milk spectra 
officially collected across the lactation. To the best of 
our knowledge, no studies have evaluated the correla-
tions between colostral and milk IgG concentrations or 
investigated the feasibility of infrared spectroscopy meas-
ures for predicting milk IgG concentration. If predicting 
colostral IgG concentration from milk spectra at the first 
test-day (first month of lactation) is feasible and accurate, 
it could be a potential strategy to facilitate and promote 
the collection of data on colostrum quality. Compared 
to different strategies, IgG can only be predicted with a 
low coefficient of determination (0.56) based on informa-
tion collected in the previous lactation, e.g., milk, fat and 
protein yield, dry period length and fertility parameters 
in multiparous cows [40]. Investigations have been car-
ried out to determine the gross composition of colostrum 
(fat, protein and lactose concentration), yield (kg) and 
content of energy and total solids, the latter being quanti-
fied with a BRIX refractometer and reported to be asso-
ciated with solids concentration, including IgG [19, 20]. 

The estimated heritability of the BRIX refractive index in 
Greek Holstein was 0.27 (0.09) [20], which is close to our 
value for RID IgG concentration and it is genetically cor-
related with protein content of colostrum (0.97 ± 0.03) 
[20]. The estimated heritability for RID IgG concentra-
tion (0.28 ± 0.14) in Charolais cattle [35] was slightly 
lower than our value for RID IgG. Possible explanations 
are related to differences in terms of sampling protocol, 
statistical model, and thus phenotypic and genetic vari-
ation of the trait. A low genetic correlation (0.12 ± 0.65) 
between RID-measured IgG and ELISA-measured IgG 
concentrations was reported by the same authors [35]. 
To our knowledge, this is the only paper reporting esti-
mates of heritability for IgA (0.05) and IgM concentra-
tions (0.22) in the colostrum. It is worth noting that the 
standard errors of the heritability estimates were large 
and similar to those reported in other recent papers on 
cow colostrum traits, where overall standard errors of 
genetic correlations ranged from 0.03 to 0.73 [20, 35]. In 
fact, some of the correlations shown in Table 4 were not 
significantly different from zero, which is likely due to the 
small sample size that resulted in large standard errors. 
More work is needed to improve the data and reduce the 
standard error of the genetic parameters, including the 
genetic correlations between the three Ig fractions (RID 
and NIRS).

A potential strategy to indirectly improve health and 
welfare in calves is to estimate animal genetic merit for 
colostrum quality. To achieve this goal, large-scale phe-
notyping is fundamental, yet the resources required to 
accurately quantify the concentration of antibodies in the 
colostrum might hamper their implementation in breed-
ing schemes. However, our findings demonstrate that 
NIRS-predicted Ig concentrations are genetically cor-
related with their reference counterparts and show that 
the trends across parities and calving season are similar 
to those observed for the reference trait (Table 3). This is 
particularly true for the IgG which are the most abundant 
immunoglobulins in the colostrum and are reported as 
the most relevant trait to define colostrum quality.

In the alternative scenario ‘I’ (Table 6), the number of 
offspring per bull with RID IgG moved from 30 to 120, 
resulting in augmented cost for RID analysis but in 
greater genetic gain (+ 14.34%) compared to the base 
scenario. The prediction models developed here could 
allow the generation of NIRS-predicted IgG, IgA, and 
IgM concentrations at a negligible cost and on a large-
scale. Yet, selection in Italian Holstein is currently mostly 
genomic and the goal in this case would be to build up a 
reference population with phenotype(s) of interest avail-
able rather than to increase the number of progeny per 
bull. Moreover, using NIRS predictions instead of RID 
traits allows to reduce the costs of phenotyping and to 
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reach a comparable response to selection. Finally, the 
genetic correlations and the correlated responses cal-
culated for IgG predicted from different calibration sets 
further support the use of NIRS-predicted IgG as a proxy 
for breeding purposes. In fact, selecting for NIRS IgG 
concentration that is predicted by using a calibration set 
at 100, 80, and 60% allowed us to obtain a similar corre-
lated response, i.e. equal to 81, 76, and 79% of the total 
response potentially achievable with the reference RID 
IgG concentration, respectively (Fig. 3). This means that 
the loss in accuracy seems to be limited.

Studies that have investigated the association between 
colostral IgG level and subsequent lactation performance 
in female calves are not recent. As an example, calves fed 
four litres of high-quality colostrum showed significantly 
greater milk yield in the first two lactations compared 
to those fed two litres in a study published in 2005 [41]. 
Furthermore, DeNise et  al. [42] in 1989 observed that, 
for each additional unit (g) of serum IgG in female calves 
between 24 and 48 h of age, there was an increase in both 
milk yield (+ 8.5 kg) and fat yield (+ 0.24 kg) in the first 
lactation. In brief, calves with a low plasma IgG level 
(< 10 g/L) at 24 h of age are at major risk of failure of pas-
sive transfer and are more susceptible to disease; farm-
ers should aim at reaching an IgG blood concentration 
higher than 25 g/L in calves at 24 h of age [24]. These ref-
erences support that a positive association exists between 
the calves’ survival, health, and performance and the IgG 
concentration of colostrum, even for colostral IgG con-
centrations greater than 50 g/L. Thus, the greater is the 
IgG concentration, the better is the quality of colostrum 
intended for feeding new-born calves, particularly in the 
first six hours of life. In our study, 12% of the cows pro-
duced colostrum of insufficient quality, i.e., with a RID 
IgG concentration lower than 50 g/L. The concentration 
in IgG is essential for an optimal and successful passive 
transfer of immunity; in fact, colostrum intake in calves 
may be suboptimal in the first hours after birth, e.g., due 
to poor management practices or low inappetence, thus it 
is important to maximise IgG (g) per L. Failure of passive 
transfer is a condition that has negative consequences 
in the short, medium and long term in young animals 
and is reported to be one of the major causes of death in 
early life [24]. A proper postnatal colostrum intake cou-
pled with feeding administration strategies positively 
affect growth rates, health, fertility, and productive per-
formance, and promote the raising of robust future heif-
ers [43]. According to studies carried out in the US and 
Scotland, around 15% of dairy calves experience failure 
of passive transfer [24, 44], corroborating the number of 
suboptimal-quality samples (12%) observed in this study.

It is reasonable to assume that, due to physiological 
limitations, IgG concentration can be improved through 

breeding only up to a certain level in dairy cattle. In addi-
tion, it is likely that colostrum yield (kg) and quality are 
inversely correlated. In this view, ideally, both aspects 
should be combined to define an efficient breeding strat-
egy, e.g., by considering the total amount of IgG yielded 
(g) by a cow in the first 6 h after calving.

A further complication is that the calf breeding value 
must also be accounted for in order to plan robust strat-
egies that are aimed at reducing the incidence of failure 
of passive transfer. Finally, as it can occur on farms using 
an internal colostrum bank, the cow that produces the 
administered colostrum may not be genetically linked to 
the calf.

Conclusions
In this study, we used available samples of first colostrum 
to evaluate the ability of NIRS to predict the concentra-
tion of Ig and assess the genetic correlations between 
the reference and the NIRS-predicted trait. In this view, 
NIRS could be a cost-effective and rapid method to col-
lect phenotypes on colostrum quality for breeding pur-
poses. Both reference and NIRS-predicted IgG, IgA, and 
IgM concentrations were heritable and showed genetic 
variation. In addition, NIRS-predicted IgG, IgA, and 
IgM concentrations were genetically correlated with 
their reference counterparts, particularly in the case of 
IgG, which is in charge of the passive transfer of immu-
nity  from the dam to the calf. Simulations were carried 
out to estimate genetic gain in terms of colostrum quality 
by using estimated genetic parameters. Overall, the simu-
lated scenarios indicated that NIRS-predicted IgG, IgA, 
and IgM concentrations could be exploited in the future 
for selective breeding to improve the quality of first 
colostrum secreted during the post-partum period by the 
mammary gland of Holstein cows. Nevertheless, given 
the large standard errors of the estimated genetic param-
eters, further phenotyping is on-going to improve the 
size of the dataset and explore other genetic and genomic 
aspects. Among the perspectives, the ability of infrared 
spectroscopy to predict colostral IgG concentration from 
milk spectra at the first test-day (first month of lactation) 
could be evaluated, since it would definitely facilitate and 
speed-up the collection of colostrum quality data.
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