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Abstract

The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in
Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being.
Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For
example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to
address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite
markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia.
The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further
analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could
only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with
previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species
of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for
fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen.
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Introduction

African trypanosomes cause disease of high morbidity and

mortality in sub-Saharan livestock, and it is estimated that

controlling the disease would benefit the agricultural industry by

US$1300 million per annum [1]. One of the major causative

agents of livestock disease is Trypanosoma congolense, which is

transmitted by the tsetse fly (Glossina spp.). While there is a large

body of information on the prevalence, epidemiology and

distribution of this parasite, many important basic questions about

the biology of this parasite have not been addressed, including the

question of whether a system of mating occurs, although this has

been shown to occur in the related species Trypanosoma brucei [2].

This question is fundamental to our understanding of trypanosome

biology and diversity and the evolution of meiosis in these ancient

eukaryotes. Drug resistance to the available trypanocides is an

increasing problem for T. congolense [3,4] and its spread is a major

concern for the sustainable control of the disease. Thus the

existence (or not) of mating would also be important at a practical

level in terms of the spread of such traits.

The related parasite, T. brucei, has a Mendelian system of

mating involving meiosis [2,5]. Mating is a non-obligatory process

[6], which occurs in the salivary glands of the tsetse fly vector [7,8].

T. brucei, along with Trypanosoma cruzi [9], are the only species of

kinetoplastid parasite in which mating has been experimentally

studied [5] and, after many years of controversy [10–12], there is

also strong evidence that some field populations of T. brucei

undergo frequent mating, while others (the human infective

subspecies) show evidence for asexual expansion of particular

genotypes [13]. Whether T. congolense also undergoes mating is

unclear because the current evidence on this question is limited.

For example, although monophyletic with T. brucei, T. congolense is

clearly evolutionarily distinct [14,15], and differs biologically as

the life cycle does not involve infection of the salivary glands of the

tsetse fly [16]. As mating in T. brucei occurs in the salivary glands,

there is a reasonable expectation that mating may not occur in T.

congolense. The available data on T. congolense population diversity

comes from isoenzyme electrophoresis, and analysis of groups of

field isolates has shown genetic heterogeneity with the subdivision

of the species into three genetically distinct subgroups, designated

as: ‘Savannah’, ‘Kilifi’ and ‘Forest’ [17,18]. The isoenzyme data

have been analysed using a range of criteria to test for the

existence of mating [19] and the results indicate high levels of

heterozygosity, overrepresentation of identical genotypes and

linkage disequilibrium, leading to the conclusion that this species

was predominantly clonal. However, the samples used in these

analyses originated from diverse regions of Africa and the dates of

isolation ranged widely. Thus the observed linkage disequilibrium
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could be explained on the basis of temporal, genetic or geographic

substructuring, and indeed the analysed samples included

representatives of the three different subgroups (Savannah, Forest

and Kilifi) that are predicted to be genetically isolated. An

additional consideration is that all strains used in these studies

were expanded by growth in rodents or culture prior to analysis

and such expansion is now known to cause potential problems of

genotype selection, as illustrated by studies on T. b. gambiense [20].

Thus the conclusion that T. congolense is predominantly clonal and

rarely undergoes genetic exchange is questionable and requires

rigorous reassessment using an appropriate sampling strategy,

designed to eliminate the potential confounding factors described

above.

Clonality, within the context of trypanosome populations, can

theoretically arise from two sources [21]. Firstly, there is the

potential for true mitotic clonality due to the non-obligatory nature

of mating (i.e. genotypes will expand clonally within mammals and

in tsetse if there is predominantly transmission without mating).

Second, there might be ‘reproductive clonality’, whereby organisms

become genetically homogeneous due to being reproductively

isolated and mating intragenotypically. However, there is very little

evidence for the latter scenario in populations of trypanosomes.

Therefore, the description of ‘clonal’ populations in trypanosomes

does not mirror that of organisms where sex is an obligatory part of

the life cycle such as P. falciparum [22,23], where mating occurs

during every transmission through a mosquito vector, and where

selfing, and therefore reproductive clonality, readily occurs. In

trypanosomes, ‘clonal’ refers to populations with a few predominant

genotypes that are largely propagated mitotically, and in which

genetic recombination occurs very rarely during vector transmis-

sion. Therefore, the aim of this study is to determine the extent of

any mating in the tsetse that can be discerned, despite the

undoubted mitotic reproduction within mammals and tsetse

vectors. By ‘clonal’ we are referring to mitotic clonality i.e. mitotic

propagation in the absence of mating in the tsetse.

Analysis of genes from plants, fungi and animals with known

roles in meiosis has defined a core set of so called meiotic genes

(DMC1, SPO11, MND1, MSH4, MSH5, HOP1, HOP2 &

REC8/RAD21 [24]) and orthologues of these have been identified

in a number of protozoan parasites including Giardia intestinalis, T.

brucei, T. cruzi and Leishmania major [25,26]. The presence of these

genes has been used to argue that meiosis occurs in these protists

and we have identified orthologues of all these genes in the T.

congolense genome sequence (http://www.genedb.org/genedb/

tcongolense/), showing that the genetic template that may encode

meiotic machinery is present, so this species hypothetically has the

potential to undergo meiosis and thus have a system of mating.

Based on these considerations, our aim was to determine

whether mating takes place in T. congolense using a population

genetics approach. To do this, a panel of species-specific

polymorphic microsatellite markers, were developed and used to

genotype T. congolense isolates from a large temporally and spatially

contiguous set of samples from horses, donkeys and cattle in The

Gambia. Analyses of the data obtained allowed the determination

of the population structure and the role of mating in the

generation of the observed diversity. These findings provide an

important new insight into the basic biology of one of the major

cattle pathogens of sub-Saharan Africa.

Results

Marker analysis
Microsatellite markers were identified by screening of the T.

congolense genome sequence (http://www.genedb.org/genedb/

tcongolense/) with Tandem Repeat Finder software [27], which

resulted in the identification of over 4500 loci containing repeats.

25 candidate microsatellite loci were selected based upon repeat

fidelity, and these were tested initially against a reference panel of

T. congolense isolates to determine the level of polymorphism and

potential subgroup-specificity, and against T. brucei and T. vivax

genomic DNA to ensure species-specificity. Seven microsatellites

(TCM1-7) showed no amplification with T. brucei or T. vivax DNA,

but polymorphic amplified products were detected in all of the T.

congolense Savannah subgroup used as a reference panel (14 isolates

from seven countries). However, there was no product detectable

by gel electrophoresis for TCM3 for any of the three T. congolense

Forest subgroup isolates, suggesting that this locus either has a

polymorphism in the primer site, or is not present in the T.

congolense Forest genome. In addition, no product was detectable

for TCM1, TCM2, TCM3 or TCM4 for the one T. congolense Kilifi

subgroup sample tested, also suggesting polymorphism or absence

of the loci. This indicates that TCM3 may be suitable for use as a

marker to differentiate between T. congolense Savannah, and T.

congolense Forest and Kilifi.

A total of 535 field samples from the Central region of the

Gambia (276 horses, 75 donkeys, 184 cattle) were tested for the

presence of T. congolense using PCR of the species-specific

minichromosomal satellite repeat marker and 133 samples were

PCR positive for T. congolense Savannah (80 horses, 26 donkeys and

27 cattle – a prevalence of 28.9% in horses, 34.6% in donkeys and

14.6% in cattle). No T. congolense Forest infections were detected

(from hereon ‘T. congolense’ refers to T. congolense Savannah). Eighty

four of the 133 T. congolense positive samples amplified for all seven

microsatellite loci (51 horses, 12 donkeys and 21 cattle).

Polymorphism was evident for all seven loci and ranged from six

alleles for TCM4 to 13 alleles for TCM5 (Table 1; for allele sizes

and allele frequency data see Tables S3 and S4, respectively).

There were 17 samples with detectable mixed infections (as

defined by Peak Scanner detecting more than two alleles at at least

one locus) giving a prevalence of mixed infections within the T.

congolense positive samples of 20.2%, with only one sample being

identified as mixed at more than one locus. While this is the most

likely explanation of samples with three alleles at a locus, the

possibility of triploidy cannot be ruled out, as this has been

observed in T. brucei genetic hybrids for some markers after mating

events [28,29]. Treating the samples as a single population, all

seven loci exhibited heterozygote deficiency based on a lower

Table 1. Marker polymorphism, heterozygosity and selfing in
the Gambian population (n = 89*).

Locus Na{ Ho He FIS s p Ne No

TCM1 8 0.25 0.73 0.66 0.79 0.28 6.9 1

TCM2 9 0.17 0.71 0.77 0.87 0.32 9.2 1

TCM3 9 0.51 0.77 0.33 0.49 0.14 1.8 1

TCM4 6 0.25 0.56 0.58 0.73 0.21 3.9 0

TCM5 13 0.42 0.83 0.50 0.67 0.23 4.6 0

TCM6 9 0.51 0.71 0.29 0.45 0.12 1.3 0

TCM7 8 0.49 0.75 0.34 0.51 0.15 1.9 4

*see materials and methods.
{Abbreviations: Na = number of alleles, Ho = observed heterozygosity,
He = expected heterozygosity, FIS = inbreeding coefficient, s = predicted selfing
rate, p = frequency of predicted null alleles, Ne = number of predicted
homozygous nulls, No = number of observed homozygous nulls.

doi:10.1371/journal.pone.0005564.t001

Mating in T.congolense
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value of observed heterozygosity compared to expected (Table 1)

resulting in a positive inbreeding coefficient ranging from 0.29 to

0.77. These results are unlikely to be due to allele drop out as the

method used for DNA and marker amplification had previously

been shown to eliminate this problem [30].

Genetic analysis
To further examine the level of diversity in the population,

multilocus genotypes (MLGs) were derived for each isolate from

the genotyping with the seven microsatellite markers and these

were used to construct a dendrogram of similarity, by calculating

Jaccard’s coefficient for all pairwise comparisons (Fig. 1). The

Gambian T. congolense population formed one large group, with

little bootstrap support for differentiation within the sample set,

except for one small subgroup (samples 111, 1065, 2021, 3005,

3022 and 3033) with strong bootstrap support (100, Fig 1). The

values for all other key nodes within the cluster were less than four.

A total of 80 distinct MLGs were identified in the 84 samples

indicating very little evidence for clonal expansion of particular

genotypes. The four duplicated genotypes were tested for clonality

using MLGsim [31], and the Psex values for each MLG expansion

were not significant at the p,0.01 threshold for three of the

duplicated genotypes (samples 119 & 2081, 3008 & 3011, 3010 &

3021), which indicated that the repeated MLGs had arisen

through independent recombination (data not shown). The fourth

duplicate (samples 103 and 2010) was highly significant at the

p,0.01 threshold and fell well outside the distribution of simulated

values, suggesting that it had arisen through clonal replication.

The dendrogram shows a high level of genetic diversity between

isolates, albeit with many common alleles, that is difficult to

account for solely by mutation and asexual reproduction.

Allele frequencies and MLGs were then used to analyse linkage

disequilibrium, agreement with Hardy-Weinberg predictions and

the extent of any population differentiation or substructuring.

When the population was analysed for agreement with Hardy-

Weinberg predictions, there was significant deviation from Hardy-

Weinberg equilibrium at all loci (Table S5). When linkage

equilibrium was analysed between pairwise combinations of loci

(Table S6), more than half (13/21) loci combinations were in

linkage disequilibrium. To estimate the level of linkage disequi-

librium in the population as a whole, the Standardised Index of

Association (IS
A; an average measure over all loci) was estimated

and the IS
A value indicates that the population is in linkage

disequilibrium (Table 2; IS
A = 0.039, VD.L), although this value is

close to the zero value for linkage equilibrium (see Materials and

Methods for a detailed explanation of VD and L). To test if this

departure from LE was due to the presence of MLG duplicates,

these were removed, but the population remains in linkage

disequilibrium (data not shown), thus showing that it does not have

an epidemic structure (where underlying mating is masked by the

short-term clonal expansion of a predominant genotype [10]).

The lack of linkage equilibrium and deviation from Hardy-

Weinberg could arise for a number of reasons other than limited

genetic exchange and these include cryptic speciation, temporal,

host or micro-geographic substructuring as well as genetic

substructuring as a result of immigration. To investigate potential

substructuring, STRUCTURE software was employed [32].

Permutations of the number of clusters (K) from 1–10 (a cluster

being equivalent to a subpopulation) were evaluated for the T.

congolense data set using the method of Evanno et al [33] (Fig. S1).

Based on this analysis there is evidence for substructuring and the

most likely number of subpopulations is four (W, X, Y, Z; Fig. 2).

The model used in the simulations assumed correlated allele

frequencies within populations, and admixture allowed for mixed

ancestry within individuals. Each vertical bar in Fig. 2 represents

an individual and the amount of each of the four colours in an

individual indicates the proportion of that individual’s genetic

makeup that derives from each of the four subpopulations as

assigned by STRUCTURE. Therefore, the subpopulations

identified are suggested by STRUCTURE to be distinct, but

there has been a degree of genetic exchange between them, as

Figure 1. Dendrogram of T. congolense multilocus genotypes
(MLGs)(n = 84). Bootstrap values were calculated from 100 iterations
and are shown at relevant nodes. The coloured bars indicate which
subpopulation the individual is assigned to by STRUCTURE (red = W,
green = X, blue = Y, yellow = Z).
doi:10.1371/journal.pone.0005564.g001

Table 2. Standardised Index of Association for the Gambian
T. congolense population as a whole (All samples), and when
separated into subpopulations by STRUCTURE (W, X, Y, Z).

Population n* IS
A P value VD L LE/LD

All samples 84 0.039 0.01 2.13 1.70 LD

W 14 0.095 0.01 1.52 1.19 LD

X 27 0.006 0.45 1.03 1.16 LE

Y 17 0.074 0.01 1.54 1.34 LD

Z 26 0.067 0.01 1.94 1.63 LD

*Abbreviations: n = number of samples, ISA = standardised index of association,
VD = variance of pairwise differences, L = 95% critical value for VD, LE = linkage
equilibrium (shown in bold type), LD = linkage disequilibrium.

doi:10.1371/journal.pone.0005564.t002

Mating in T.congolense
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evidenced by the individuals with mixed ancestry. If subpopula-

tions are pre-defined based on host or date of sampling they do not

correspond to the subpopulations inferred by STRUCTURE

(Fig. 2, compare A with B and C) and so these parameters can be

eliminated as the basis for the substructuring. Other data [34]

available (place of sampling, packed cell volume of host, diagnosis

by microscopy, and age of host) also did not correlate with the four

subpopulations. Each of the inferred subpopulations was then

tested for agreement with Hardy-Weinberg predictions and

although none of the four subpopulations show agreement for all

loci, some loci are in agreement with the values predicted for a

randomly mating population (Table S5). Analysis of linkage

equilibrium (LE) between alleles at all pairwise combinations of

loci showed that only 8/21 combinations are in linkage

equilibrium when all isolates are treated as a single population,

but in the sub populations the number in LE doubled (W, 16/21;

X, 18/21; Y, 15/21; Z, 16/21; Table S6). To further test the level

of linkage disequilibrium in the subpopulations, the index of

association was measured (IS
A; Table 2) and the largest

subpopulation (X) shown to be in LE, thus indicating frequent

mating within this population. As the programme tests the

observed data against 10,000 simulations using the same sample

size, the possibility of a type II error is very low, although cannot

be totally excluded.

The pairwise FST values [35] between the inferred subpopula-

tions (Table 3) all indicate moderate genetic differentiation (values

ranging from 0.078 to 0.146), aside from the comparison between

Y and Z subpopulations, which shows a greater genetic

differentiation (FST = 0.178). This is in contrast to the FST values

if the population is partitioned into sub-populations by sampling

criteria, such as host species or date of sampling (Table 3), where

the values are all very low (,0.024) and indicate little genetic

differentiation. To further test this genetic differentiation, Nei’s

genetic distance was measured between the subpopulations and

the values are dramatically greater (0.368–0.844) compared to

those partitioned by sampling criteria (0.05–0.085; Table 3). With

the available data the basis behind the cryptic subpopulations

identified by STRUCTURE is as yet unknown.

The data show that the T. congolense population in The Gambia is

genotypically diverse with few identical genotypes. The data is

inconsistent with clonality, but there are barriers to complete

random mating. There is very little genetic differentiation between

the populations in different hosts or those separated temporally, as

measured by FST, clustering analysis or Nei’s genetic distance.

Analysis of the genotype and allele frequency data shows that the

population deviates from Hardy-Weinberg expectations and is in

linkage disequilibrium as measured by the index of association.

These departures from the null hypothesis of panmixia cannot be

explained by either temporal or host substructuring but analysis by

the programme STRUCTURE supports the existence of four

‘cryptic’subpopulations, which by measurement of pairwise FST are

moderately differentiated. One of these subpopulations is in linkage

equilibrium thus supporting the occurrence of frequent mating.

Discussion

The sample set presented in this study provided the opportunity

to examine the issue of whether genetic exchange is occurring in T.

congolense using a geographically discrete population, in contrast to

previous studies [11,19] where samples from a wide geographic area

were analysed. The use of blood samples on FTA filters, combined

with Whole Genome Amplification (WGA) and PCR technology

[30], allowed the direct analysis of a trypanosome population that is

not separated by time (at least, all samples were collected within one

calendar year) or geography, and also avoided the potential for

selection of genotypes by growth of the parasites prior to analysis.

The population does not have any of the key features of clonality,

such as fixed heterozygosity and overrepresentation of identical

genotypes [11,36], which have been observed in previous studies

Figure 2. Estimated population substructure (n = 84). Each
individual is represented by a vertical bar, divided into four coloured
segments that represent the proportion of the genotype for that
individual that derives from each of the four clusters (Q), four being the
estimated number of subpopulations as detected by STRUCTURE. A is
ordered by Q (red = W, green = X, blue = Y, yellow = Z). In B and C,
individuals are ordered along the x axis according to sampling date (B)
or host species (C).
doi:10.1371/journal.pone.0005564.g002

Table 3. Pairwise values of Wright’s fixation index (FST; above
diagonal) and Nei’s genetic distance (D; below diagonal)
between subpopulations of T. congolense as defined by
STRUCTURE (W, X, Y, Z), or by host species (Horse, Donkey,
Cow) and by sample date (Mar 2006, Aug 2006, Jan 2007).

W X Y Z

W – 0.078 0.100 0.146

X 0.409 – 0.094 0.109

Y 0.582 0.500 – 0.178

Z 0.615 0.368 0.844 –

Horse Donkey Cow

Horse – 0.009 0.015

Donkey 0.050 – 0.013

Cow 0.075 0.058 –

Mar 2006 Aug 2006 Jan 2007

Mar 2006 – 0.018 0.009

Aug 2006 0.085 – 0.024

Jan 2007 0.050 0.118 –

doi:10.1371/journal.pone.0005564.t003

Mating in T.congolense
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using isoenzyme markers [11]. Only four MLG duplicates were

identified, three of which are suggested to have arisen independently

via recombination according to Psex values, which, at the very least,

indicates that the population structure is not epidemic as has been

shown for T. brucei populations [13]. However, barriers to

unrestricted genetic exchange were detected as there is a significant

heterozygote deficit at all loci, and therefore the population is not in

Hardy-Weinberg equilibrium. There is also linkage disequilibrium

as measured between all pairwise loci or at a global level for the

population using IS
A. Collectively, this evidence suggests that the

population is not panmictic. In contrast, the lack of distinct

subgroups from the similarity analysis coupled with the high

proportion of unique MLGs suggests that genetic exchange may be

occurring frequently.

A number of explanations for the heterozygote deficit and low

level of linkage disequlibrium can be considered. The first, and

most likely, is the Wahlund effect, whereby we are actually

analysing several distinct populations as one, and we provide

evidence for this. STRUCTURE software detected ‘cryptic’

substructuring within the T. congolense population (cryptic in this

sense referring to the subpopulations not correlating to any

measured parameter set, such as host or time). The results

indicated that the most likely number of cryptic subpopulations

was four, and these differed significantly by FST and Nei’s genetic

distance, previously masked due to the subpopulations being

mixed when arbitrarily partitioned into populations by sampling

date or host species. One of these subpopulations (X) shows

linkage equilibrium and therefore evidence for frequent mating. It

should be stressed that while linkage disequilibrium is detected in

the population as a whole and in some subpopulations, the values

of the index of association are all close to zero (IS
A = 0.074–0.095),

indicating a limited level of disequilibrium.

An alternative, but improbable, explanation for the linkage

disequilibrium is that this population is clonal. However, aside from

linkage disequilibrium, none of the features of the population are

consistent with clonality. Firstly, as described above, common

features of clonal trypanosomatid populations are the observation of

a large proportion of identical or very similar genotypes and

secondly a high value for the Index of Association. For example, in

the related human infective T. b. gambiense, which is considered

clonal [37], microsatellite genotyping of a population from the

Democratic Republic of Congo identified only 17 distinct MLG’s

from a sample of 37 isolates and the index of association was nearly

five times higher (IS
A = 0.35–0.44 based on a re-analysis of data in

[21]) than that observed here for the T. congolense population. An

extreme possibility that could potentially explain the genetic

diversity combined with linkage disequilibrium is a clonal

population with a high rate of mutation leading to many diverse

clones due to the high mutation rate. This scenario has not been

observed in clonal populations of trypanosome species previously

(for example [21,38]), and furthermore, one would predict an excess

of heterozygotes based on this hypothesis in contrast to the deficit

observed in T. congolense. Clonality and high diversity in a temporally

and spatially contiguous data set has not been demonstrated in

trypanosomes; one study that did provide evidence for considerable

diversity in clonal populations of T. cruzi [39] is not comparable due

to the use of a sample set (n = 25) covering five calendar years and

10 geographic localities. Therefore, the data on T. congolense

presented here are not consistent with a high mutation rate alone

leading to the level of genetic diversity observed in our data set.

The observed heterozygote deficit at all loci could be explained

by allele dropout, null alleles, selfing, or a level of non-obligatory

mating. It is possible that the WGA and low level of parasitaemia

lead to a failure of one allele to amplify by PCR, and therefore an

excess detection rate of pseudo-homozygotes. However, we have

shown that this does not occur if three pooled WGA reactions are

used, and so this explanation is unlikely [30]. In a range of

organisms, null alleles have been identified and with our data these

could arise as a result of polymorphism in the primer sites leading

to a lack of marker amplification. We estimated the frequency of

null alleles that would result in the restoration of Hardy Weinberg

equilibrium and, based on this frequency, we calculated the

number of samples that would be homozygous for the null allele at

each locus (Table 1) and so not yield an amplicon. For markers

TCM3, 6 and 7, the numbers of predicted homozygous nulls is low

and with our sample size might not be detected. However, the

number predicted for markers TCM 1, 2, 4 and 5 are all .3.88

and so should be detected. The number of observed homozygous

nulls detected for each of these loci (1 or 0) is well below that

predicted. Therefore, null alleles are an improbable explanation

for the heterozygote deficit in our data. Selfing or mating between

closely related individuals would result in a heterozygote deficit

and while, for example, selfing occurs at a significant level in

Plasmodium falciparum [23], the sexual stage of the life cycle in that

parasite is obligatory. Both outcrossing and selfing has been

described in T. brucei in laboratory crosses [40,41], but the

products of selfing have only been identified when cross

fertilisation occurs, and not observed when a single strain is used

to infect tsetse. This has not been investigated in field populations,

but predicted selfing rates were calculated for our data set (Table 1)

and shown to need to be high to account for the observed

heterozygote deficit, and furthermore, selfing would have to occur

in the absence of inter-genotype mating. This is not consistent with

laboratory data for T. brucei, but the possibility of selfing having an

influence upon the population genetics of T. congolense cannot be

ruled out. An alternative possibility is that non-obligatory mating,

as described for T. brucei laboratory crosses [6], occurs and so some

strains will undergo recombination but others will be transmitted

without any change in genotype. While this could provide an

explanation for the heterozygote deficit, a significant frequency of

identical genotypes would be predicted but this is not observed.

Based on these considerations selfing seems the most likely

explanation but deserves further investigation.

Aside from the conclusion that the diversity observed can only

be accounted for by mating taking place, a striking finding is the

evidence for substructuring, although the basis for this is not

evident from our data set. One explanation is that there has been

recent migration leading to subpopulations that have not fully

admixed. The subpopulations could also reflect biological

differences of the parasite, for example vector species preference.

It is known that there are at least two species of Glossina present in

the study region of The Gambia [42], although further work

would be necessary to investigate these possibilities. Alternatively,

there could be small scale geographical substructuring with very

local cycles of transmission. We cannot address this with the

current sample set as fine details of geographical origin were not

recorded for the infected animals that were presented at the clinic.

Our analysis of the genotype data cannot be reconciled with an

asexual and clonal population structure but strongly supports the

occurrence of mating as the mechanism for generating the high

levels of observed diversity. The departures from the predicted

genotype frequencies and the heterozygote deficit in the whole

population suggest that mating is not occurring totally at random,

but the population is genetically sub divided and mating is

occurring at high frequency in one of these sub-populations. The

basis for this sub-division requires further investigation but could

arise from recent immigration or from micro-geographic sub-

structuring based on highly focal vector-host cycles. The discovery
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of mating for this highly prevalent and pathogenic parasite of

livestock has complex but considerable consequences for the

spread of traits such as drug resistance. Our finding also has

implications for the evolution of sexual recombination in

eukaryotes; some African trypanosome species are evidently clonal

and either never underwent, or have dispensed with, a sexual cycle

(T. b. gambiense and T. vivax), whereas others clearly undergo

frequent mating (T. congolense and T. b. brucei). Therefore,

trypanosomes provide unique potential for examining the origin

and evolution of meiosis in ancient eukaryotes.

Materials and Methods

Samples in this study were a byproduct of veterinary screening

of animals (horses and donkeys) voluntarily presented at the

Gambian Horse and Donkey Trust (GHDT) clinic or mobile

survey unit, or as part of routine sampling of the cattle herd at the

International Trypanotolerance Centre (ITC) field station. All

samples were collected by trained veterinarians or paraveterinar-

ians, and animals diagnosed or suspected to be infected with

trypanosomes were treated with trypanocides. For the purposes of

this study, a spare 200 ml fraction of the blood collected by

venupuncture into a heparin vacutainer was spotted onto an

FTAH filter (Whatman) and allowed to air-dry. This sampling

approach avoided any potential selection of the parasites by

growth in rodents prior to analysis. The samples were collected in

March and August 2006, and January 2007 from locations within

a 50 km radius in the Central River District of The Gambia.

Equine samples (n = 351; 276 horses and 75 donkeys) were taken

at the GHDT clinic at Sambelkunda in Niamina East District

(n = 254) or at local villages (n = 73) and ITC field station at

Bansang (n = 24). Cattle samples were taken from the N’dama

herds of the ITC at its field sites near Touba and Sambelkunda in

Niamina East District (n = 169) and from a nearby village (n = 15).

All field samples were initially tested by PCR with primers

directed against minichromosomal satellite repeats which are

specific to each species or subgroup (T. congolense Savannah, T.

congolense Forest, T. vivax and T. brucei [43]). Whole Genome

Amplification (WGA) reactions were carried out on all T. congolense

positive samples as described previously [30], with two punches

from each FTA disc used as substrate in each reaction, and

pooling of three independent reactions to minimise allele dropout

(a failure of one allele to amplify by PCR).

Microsatellite markers were identified by screening the available

genome sequence (http://www.genedb.org/genedb/tcongolense/)

using Tandem Repeat Finder software [27]. Over 4500 loci were

identified that contained repeats and these were ranked based on

their repeat fidelity within each locus, in order to identify a subset

of loci with conserved repeat motifs. Nested oligonucleotide

primers were designed to the unique flanking sequence of 25 loci

with high fidelity repeat motifs, and these were tested against a T.

congolense reference panel for species (or potential subgroup)

specificity and allelic polymorphism. The reference panel consisted

of DNA from 18 T. congolense isolates, as well as DNA from T. brucei

TREU 927 and T. vivax ILRAD V-34. Several of these reference

samples were kindly provided by Professor Wendy Gibson, Bristol

University (GAM 2, WG 81, TSW 13, TSW 103, ANR 3, CAM

22 and WG 5). The panel consisted of 14 T. congolense Savannah,

three T. congolense Forest, and one T. congolense Kilifi (Table S1).

The screening of this panel by PCR amplification resulted in the

identification of seven polymorphic microsatellite markers (TCM

1–7; for primer sequences see Table S2), which were used in the

analysis of the field population. The scaffolds encoding the

microsatellite markers were ordered and orientated against the

individual chromosomes of the T. brucei reference genome, using

postulated conserved gene order in the absence of further

karyotype information. Six of the seven markers mapped to a

different T. brucei chromosome whilst the seventh marker is located

in a subtelomeric region. We are therefore confident that the loci

are not physically linked. Conditions for all primer sets for both

rounds of PCR were 28 cycles of 50 seconds at 95uC, 50 seconds

at 52uC and 1 minute at 65uC. As the parasitaemias of the infected

samples were low, and despite whole genome amplification, it was

necessary to undertake nested PCR for microsatellite amplifica-

tion. For the second round PCR, a 1/100 dilution of the first

round product was used as template.

For the second round nested PCRs, one primer included a 59

FAM or HEX modification, allowing separation of labelled PCR

products by size (Dundee Sequencing Service; http://www.

dnaseq.co.uk), and determination of allele size to an accuracy of

one bp using Peak Scanner v1.0 software (Applied Biosystems).

Each allele was designated a unique number for each locus, and a

multilocus genotype (MLG) defined by the specific combination of

alleles at all seven loci. If a sample contained more than two alleles,

it was defined as a mixed infection and the predominant allele or

alleles for each marker were chosen for identifying the MLG, with

predominance being based on peak area from the Peak Scanner

output as described previously in other systems [44,45].

The probability of null alleles playing a part in the observed

heterozygote deficit was analysed by calculating the expected

number of homozygous nulls based on the heterozygosity data for

the seven markers. The samples included in this analysis were those

that amplified for 4 or more loci (n = 89; see Table S2). The majority

of samples that were positive for T. congolense by minichromosomal

satellite repeat PCR (n = 133) amplified either for all 7 microsatellite

markers (n = 84), or for none (n = 25)(Fig. S2). It was not possible to

differentiate the non-amplification in those samples that amplified at

no or fewer than 3 loci (n = 44) between non-amplification due to

null alleles or that due to sensitivity threshold because of low

number of parasites. Furthermore, if one assumes there is an even

distribution of null alleles among the seven markers, which is

reasonable given that the consistently high FIS values observed

across the seven unlinked markers, then one would not expect the

binomial distribution of samples graphed against number of

markers giving amplification (Fig. S2). Therefore, for the analysis

of null alleles (Table 1), 89 samples were used that amplified for 4 or

more loci; for all other analysis only the 84 samples that amplified

for all seven markers were used. The analysis of null alleles and

predicted selfing rate was determined using the following calcula-

tions: s = (2FIS)/(1+FIS)[46], frequency of predicted null alleles

p = (He2Ho)/(1+He)[47], and number of predicted homozygous

nulls Ne = p2n, where n = number of samples.

Analysis of MLGs used Clustering Calculator (http://www2.

biology.ualberta.ca/jbrzusto/cluster.php), which generated a Phy-

lip Drawtree string (unweighted arithmetic average clustering

method, and Jaccard’s similarity coefficient), which was converted

into a dendrogram by Treeview (http://taxonomy.zoology.gla.ac.

uk/rod/treeview.html)[48]. Clustering Calculator generated the

bootstrap values for dendrograms, using 100 iterations. Jaccards

coefficient was used to allow comparison with other published

parasite population studies where it has been used extensively

[44,45,49]. Data on marker polymorphism and heterozygosity

(observed and expected), inbreeding coefficient (FIS), selfing rate

and Wright’s fixation index (FST) were calculated using GenAlex

[50]. Hardy-Weinberg equilibrium and linkage disequilibrium

between paired loci were examined using Genepop 3.2 [51]. The

Standardised Index of Association (IS
A) was used to measure

associations between alleles at all pairwise combinations of loci and
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was calculated using LIAN 3.5 [52]. The genotypes were treated

as described by Stevens and Tibayrenc [53]. This statistical test

determines the variance (V) of the distribution of the number of

shared alleles between all pairwise comparisons of the MLGs and

compares this to the variance in the distribution of the number of

shared alleles from 10,000 simulations where the alleles at each

locus are randomly shuffled (the null hypothesis of random

mating). The index is expressed as one minus the ratio of the two

values of the variance and so is zero or negative when the

population is undergoing random mating but is positive if there is

allele association or linkage disequilibrium. The conclusion can be

statistical tested by measuring the 95% confidence limit (L)

between the observed and expected values such that if V.L the

null hypothesis can be rejected and from simulations a probability

(p) of this measured. The advantage of using this measure for

assessing linkage equilibrium is that it combines measures over all

loci as a single estimate and it allows a robust statistical test for the

agreement with the null hypothesis of panmixia. The likelihood of

duplicated genotypes occurring due to sexual recombination was

examined using the MLGsim programme [31], which is a further

development of that described by Tibayrenc et al [11], whereby

Psex values are calculated for each replicated MLG and compared

with values generated by 10,000,000 simulations for a population

of the same size. Population substructuring was investigated using

STRUCTURE [32], which utilises a Bayesian approach to infer

the number of subpopulations or clusters (K) within a data set. The

model used assumed that allele frequencies were correlated within

populations, and admixture allowed for mixed ancestry within

individuals. Ten independent simulations were carried out at each

value of K (K = 1–10), with a burn in period of 10000 iterations

and 10000 replications. The most likely number of estimated

subpopulations was determined on the basis of the maximum

value of the ad hoc parameter DK [33] for values of K from one to

ten, using the second order rate of change of the likelihood

function between successive values of K (Ln P(D)) (SI Figure 1).

STRUCTURE outputs were also generated by pre-allocating

samples to subpopulations as defined by host species and time

collected, in order to look for correlation between these

parameters and the subpopulation allocation by STRUCTURE.

Supporting Information

Figure S1 The most parsimonious estimate of the number of

subpopulations (K) was determined to be four on the basis of the

maximum value of the ad hoc parameter delta K, which was

calculated for values of K from one to ten, using the second order

rate of change of the likelihood function between successive values

of K (K = (Ln P(D)) in the STRUCTURE output - for details on

the calculation of delta K see [30]).

Found at: doi:10.1371/journal.pone.0005564.s001 (0.03 MB

DOC)

Figure S2 Number of Gambian isolates positive by diagnostic

PCR that amplified for microsatellite markers, graphed by number

of loci amplifying per sample.

Found at: doi:10.1371/journal.pone.0005564.s002 (0.07 MB

DOC)

Table S1 Date and place of origin for reference panel of T.

congolense isolates.

Found at: doi:10.1371/journal.pone.0005564.s003 (0.04 MB

DOC)

Table S2 Oligonucleotide primer sequences (59-39) for micro-

satellite markers.

Found at: doi:10.1371/journal.pone.0005564.s004 (0.04 MB

DOC)

Table S3 Allele sizes detected at 7 microsatellite markers for the

Gambian T. congolense population.

Found at: doi:10.1371/journal.pone.0005564.s005 (0.47 MB

DOC)

Table S4 Allele frequencies at 7 microsatellite markers for the

Gambian T. congolense population. The upper, non-italicised data

are the frequencies for the 84 samples that amplified for all 7 loci.

Samples in italics are frequencies for all samples (n = 133),

including those that did not amplify for all loci.

Found at: doi:10.1371/journal.pone.0005564.s006 (0.07 MB

DOC)

Table S5 Hardy-Weinberg analysis for T. congolense populations

including all samples that amplified for 7 microsatellite markers,

and samples from subpopulations as defined by STRUCTURE. *

P-value; those not significant at the 0.05 level are shown in bold.

Found at: doi:10.1371/journal.pone.0005564.s007 (0.04 MB

DOC)

Table S6 Linkage disequilibrium (bold type) between pairwise

loci in T. congolense samples from The Gambia, analysed for all

samples that amplified for 7 microsatellite markers and samples

from subpopulations as defined by the STRUCTURE pro-

gramme.

Found at: doi:10.1371/journal.pone.0005564.s008 (0.07 MB

DOC)
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