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Integrins are transmembrane receptors that function as noncovalent heterodimers that 
mediate cellular adhesion and migration, cell to cell communication, and intracellular 
signaling activation. In kidney, latency associated peptide-transforming growth factor β 
(TGF-β) and soluble urokinase plasminogen activator receptor (suPAR) were found as the 
novel ligands of integrins that contribute to renal interstitial fibrosis and focal segmental 
glomerular sclerosis glomerulosclerosis (FSGS). Interestingly, recent studies revealed that 
integrins are the compositional cargo of exosomes. Increasing evidence suggested that 
exosomal integrin played critical roles in diverse pathophysiologic conditions such as 
tumor metastasis, neurological disorders, immunology regulation, and other processes. 
This review will focus on the biology and function of exosomal integrin, emphasizing its 
potential role in kidney disease as well as its implications in developing novel therapeutic 
and diagnosis approaches for kidney disease.
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INTRODUCTION

Integrins are transmembrane receptors that function as noncovalent heterodimers. There are 
24 distinct integrin receptors that can recognize and bind to multiple ligands such as extracellular 
matrix (ECM) proteins, thereby mediating cell adhesion and intracellular signaling (Moreno-
Layseca et al., 2019). Other novel ligands include latency associated peptide-transforming growth 
factor β (L-TGF-β) and soluble urokinase plasminogen activator receptor (suPAR) were found 
to bind to integrin and participated in the pathogenesis of kidney disease. Moreover, activated 
integrins on diverse kidney cells in pathological conditions participated in macrophage and 
fibroblast activation which played important roles in diverse kidney diseases.

Exosomes are small extracellular vesicles (EVs) secreted by nearly all types of cells which 
are originally considered to be the garbage bins of cells to excrete unwanted materials (Johnstone 
et  al., 1987). Recently, accumulating studies have demonstrated that exosomes participated in 
crosstalk between cells and also mediated communications between organs. Moreover, exosomes 
can serve as vectors of therapeutics and facilitate disease diagnosis in a noninvasive way 
(Kalluri and LeBleu, 2020). Interestingly, integrins are revealed as the important compositional 
components of exosomes which take responsibility for those novel functions of exosomes.

The diverse pathophysiological roles of exosomal integrins varied from guiding the homing 
of exosomes (Hoshino et  al., 2015), signal transmission (Kalappurakkal et  al., 2019), causing 
phenotype transition of recipient cells (Lu et  al., 2018) to cell adhesion (Genschmer et  al., 
2019) and migration (Sung et  al., 2015). Although studies have revealed essential roles of 
exosomal integrin in oncology, neurology, and immunology, its role in kidney pathophysiology 
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remains unclear. Thus, exploring the role of exosomal integrin 
in kidney disease would be  helpful in understanding the 
mechanism of kidney disease and identifying novel diagnosis 
and treatment strategies. Here, we  review the biology and 
functions of integrin as well as integrin carried by exosomes. 
Pathophysiologic roles of exosomal integrin in diverse diseases 
are also discussed, especially the role and potential applications 
in therapy and diagnosis of kidney diseases.

BIOLOGY AND FUNCTION OF INTEGRIN

Structure and Endocytic Trafficking of 
Integrin
Integrins are transmembrane heterodimers which express 
conservatively in almost all cell types. Integrin family was initially 
discovered on immune cells and mediates leukocyte extravasation 
by binding to intercellular cell adhesion molecule-1 (ICAM-1) 
on vascular endothelial cells (capturing intravenous immune 
cells) (Dustin, 2019). Integrins display three distinct conformations 
(bent, extended close, and extended open), while the activity 
is usually observed in the extended conformation (Campbell 
et al., 2020). Integrins can be categorized into 24 subtypes formed 
by 18 types of α subunits and eight types of β subunits. Among 
them, integrin αv, α6, and β1 are known for pairing with diverse 
subunits (Moreno-Layseca et  al., 2019). Each integrin subunit 
contains a large extracellular domain, single-time transmembrane 
domain, and often rather short cytoplasmic domain (Humphries 
et  al., 2006). Studies have shown that certain integrin subtypes 
are expressed on specific tissue or cell or bind to certain types 
of cells. For example, integrin β6 is expressed in a few subset 
of epithelial cells (Breuss et al., 1993). Integrin α6β1 and integrin 
α6β4 targeted to lung fibroblast while integrin αvβ5 targeted 
liver Kupffer cell (Hoshino et  al., 2015). However, the dominant 
subtype and the abundance of integrin in a specific cell type 
could change under certain injury conditions. For example, the 
dominant integrin subtype in podocyte is α3β1 (Kreidberg et al., 
1996), while it changes into αvβ3 under focal segmental 
glomerulosclerosis (FSGS) situation (Hayek et  al., 2017).

Although the expression levels of integrin are quite stable 
in certain cells and tissues, they are continuously trafficking 
from cytoplasm to surface membrane by diverse complex pathways 
including the Rab family of small GTPase (Moreno-Layseca 
et  al., 2019). This process includes integrin endocytosis into 
early endosome which then traffic to late endosome and recycle 
to the cell surface, or alternatively transport to multivesicular 
bodys (MVBs) and subsequent lysosome for degradation (Rainero 
and Norman, 2013). Generally, majority of endocytic integrins 
travel back to the cell surface while small fractions target to 
degradation (De Franceschi et  al., 2015). Interestingly, integrin 
endocytic trafficking process shares a common intracellular 
structure, MVBs, with exosome (Rainero and Norman, 2013), 
thus integrins could also be  transported via exosome which 
has been demonstrated in recent studies. A study using gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses also revealed a correlation between 
integrin signaling and exosome secretion (Zhang et  al., 2020).

Ligands of Integrin
Tremendous efforts have been invested in integrin ligand discovery, 
the well-known integrin ligands belong to ECM proteins, newly 
identified ligands include L-TGF-β compound and suPAR 
(Humphries et  al., 2006; Campbell et  al., 2020; Hayek et  al., 
2020). According to the binding motif on the ligand, integrins 
can be classified into five types, among which, the most common 
type is RGD-binding integrins which belong to αv integrins. 
Thus, studies have been using RGD peptide to inhibit integrin 
αv subtype binding (Hoshino et  al., 2015). Although multiple 
ligands have been discovered, most of which are non-specific 
ligands that can bind to more than one types of integrins and 
mediate cell-cell adhesion in integrin A-ECM-integrin B format 
(Sung et  al., 2015). This suggests that in studying of integrin 
function under certain conditions, not only specific ligands but 
also the existence of other integrin subtypes should be considered.

Biological Functions of Integrins
Integrins bare different biological functions according to their 
diverse localizations throughout the body including cellular adhesion 
and migration, regulation of cellular phenotypes, cell to cell 
communication, and intracellular signaling activation (Table  1).

Integrins were first reported as adhesion molecule in the 
immune system (Springer, 1990), which represented the basic 
function of integrins. Many studies have revealed that integrins 
mediated adhesion between cells or cell to ECM. In kidney, 
tubular epithelial cells bind to each other on the lateral surface 
through integrins and bind to ECM on the basal surface by 
integrins as well (Glynne et  al., 2001). Integrins and ECM 
interaction is also important for cells that underwent polarization 
during differentiation. Studies have showed that integrin β1 
connects ECM and cytoskeletal protein on one side of the 
cell, which then forms the basal membrane of cells during 
polarization, such as epithelial cells and endothelial cells (Lee 
and Streuli, 2014; Moreno-Layseca et  al., 2019). Besides, 
dysregulation of integrin or redistribution have a great impact 
on cellular apical and basal polarization under injury or 
cancerization (Glynne et  al., 2001; Liu et  al., 2018a).

Moreover, integrins are associated with certain cellular 
phenotype and function under pathological conditions. In 
contrast to associated nephropathy, integrin αvβ6 increased in 
injured tubular cells, while remains at low baseline level in 
normal tubules. Interestingly, injured tubular cells with high 
integrin were able to bind with suPAR which caused further 
damage (Hayek et  al., 2020). Integrins also participate in 
regulation of cell cycle in numerous pathways as determined 
by various in vitro and in vivo studies. Integrin β1, β3, and 
other subtypes have been well demonstrated to be  involved 
in cellular proliferation (Panchatcharam et  al., 2010; Moreno-
Layseca and Streuli, 2014; Raven et al., 2017). Integrins mediate 
the local niche signal which forms spatial checkpoints that 
enable cells progress into S phase to proliferate. Reversely, 
some integrin subtypes or isoforms could prevent cells from 
progressing into cell cycle, thus inhibiting proliferation, such 
as integrin α6Bβ6 in colon cancer cells (Dydensborg et al., 2009).

Ligand-integrin binding leads to signaling activation 
intracellularly, including focal adhesion kinase (FAK), RhoA 
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signaling, and Glycosylphosphatidylinositol-anchored proteins 
(GPI-APs) nanoclustering (Kalappurakkal et  al., 2019). These 
signals can then activate downstream processes. For example, 
integrin αvβ3 can regulate angiogenesis (Danhier et  al., 2012) 
by promoting HIF-1α expression and subsequent endothelial-
mesenchymal transition (EndoMT; Fan et al., 2018). Importantly, 
recent studies suggested that the immobilization of integrin-
binding ligand and integrin conformation was essential to integrin 
activation (Kalappurakkal et  al., 2019; Campbell et  al., 2020).

INTEGRINS AS COMPOSITIONAL 
CARGO OF EXOSOMES

Exosomes belong to small EVs with the size of less than 200 nm. 
It is excreted into extracellular space and can transfer mRNA, 
miRNA, lipid, and protein to receptor cells, therefore, mediating 
crosstalk with neighbor and remote cells (Valadi et  al., 2007; 
Paolicelli et  al., 2019; Lv et  al., 2020). Exosomes share most of 
the compositions from the parent cells with certain cargoes selectively 
sorting into the vesicles. Multiple proteomic studies on exosomes 
have revealed that proteins that usually present include both 
membranous protein and luminal protein (van Niel et  al., 2018). 
Notably, integrins are the commonly identified exosome related 
proteins sorted from the parent cell. Integrin can be  transported 
by exosomes in tumor (Quaglia et  al., 2020), the central nervous 
system (Zhang et  al., 2020) or the immune system (Genschmer 
et  al., 2019). As the common compositional cargo of exosomes, 
integrins were identified as one of the critical functional cargoes 
of exosomes in different pathophysiological conditions.

PATHOPHYSIOLOGIC ROLES OF 
INTEGRINS TRANSPORTED BY 
EXOSOMES

Exosomal integrin is a versatile form that functions actively 
in different pathophysiological conditions (Table  2) which 

attributed to guiding the homing of exosomes, signal transmission, 
phenotype transition of the recipient cells, and cell adhesion 
and migration (Figure 1). Here, the roles of exosomal integrins 
in tumor, neurological disorders, immunology, and other diseases 
were discussed.

Tumor Formation, Progression and 
Metastasis
In recent years, the role of exosomes in mediating tumor formation 
and progression has been well studied (Li et  al., 2019), integrins 
are among the important cargoes contributing to the process. It 
is reported that integrin αvβ3 containing small EVs from prostate 
cancer cells was transferred to recipient cancer cells which induced 
aggressive phenotype changes (Quaglia et  al., 2020). Cancer cell 
migration was proved to be  mediated by autocrine secretion of 
exosomes. Fibrosarcoma cells-derived exosomal integrins and 
fibronectin forms adhesion assembly that mediated adhesion 
between cell and ECM, therefore, promoted cell motility with 
specific directions (Sung et  al., 2015). Fibronectin was coated 
on exosome through binding with exosomal integrin, which then 
anchor to cell membrane on one side and ECM on the other 
and contributed to cellular adhesion (Sung et al., 2015). Moreover, 
it is demonstrated that exosomes transfer integrin αvβ6 from 
cancer cells to monocytes, which promoted M2 monocyte 
polarization and prostate cancer progression (Lu et  al., 2018).

Besides, integrins on tumor-derived exosomes can determine 
organotropic metastasis by forming tumor microenvironment 
(TME) in specific organ tissues as they uptake the exosomes 
(Hoshino et  al., 2015). They demonstrated the specific integrin 
subtype directed organotropic metastasis for the first time, such 
as integrins α6β4 and α6β1 mediated lung metastasis, while 
integrin αvβ5 mediated liver metastasis (Hoshino et  al., 2015). 
The targeting properties of exosomal integrin were attributed 
to the activation of the Src-S100A4 axis (cancer associated 
genes) by exosomal ITGα6β4  in lung fibroblasts during 
pre-metastatic niche formation (Hoshino et  al., 2015). These 
findings indicated the great therapeutic potential by targeting 
certain integrin subtype that was involved in tumor metastasis.

TABLE 1 | Expression and function of major integrin subtypes.

Integrin subtype Expression Function Reference

αvβ3
podocytes, endothelial, and cancer stem 
cells

Bind to suPAR, promote FSGS, cancer 
progression

Hayek et al., 2017; Nieberler et al., 2017

αvβ6 epithelial cells and tumor cells
Activate TGF-β1, tumor progression, and 
metastasis

Breuss et al., 1993; Nieberler et al., 2017

αvβ8
kidney glomerular mesangial cells, brain, and 
placenta

Activate TGF-β1, inhibit cell growth, 
spreading, and focal contact formation

Cambier et al., 2000; Campbell et al., 2020

β1 multiple cell types
Cell adhesion, maintain cell polarity, regulate 
cell proliferation, and cell cycle

Liu et al., 2018a; Kormann et al., 2020

α3β1
kidney tubular epithelial cells, glomerular 
endothelial cells, and podocytes

Kidney development and cell anchorage Kreidberg et al., 1996; Glynne et al., 2001

α4β1 reticulocytes Blood vascular related disease progression Rieu et al., 2000

α5β1 endothelial cells and cancer stem cells
Vascular morphogenesis, cancer, and 
metastasis

Zovein et al., 2010; Nieberler et al., 2017

α6β1 ureteric bud
Maintains the structural integrity of the 
kidney collecting system

Viquez et al., 2017

α6β4 cancer cells and epithelial cells Lung organotropic metastasis Hoshino et al., 2015
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Neurological Disorders
Exosomal integrins participate in the development of neurological 
disorders and are active in multiple trans-cellular communication 
processes. Proteomic analysis proved that integrin αvβ3 was 
upregulated in interleukin-1β (IL-1β) stimulated astrocyte-derived 
EVs (ADEV) and significantly increased uptake of ADEV in 
neurons, while integrin αvβ3 blocking partially suppressed this 
process (You et  al., 2020). Exosomal integrins also contributed 
to the recovery of central nervous system (CNS) degenerative 
diseases, which was associated with the proliferation of 
oligodendrocyte precursor cells (OPCs; Zhang et  al., 2020). 
Moreover, in therapeutic studies, macrophage derived exosome 
contained the integrin subtype lymphocyte function-associated 
antigen 1 (LFA-1). This facilitated macrophage derived exosome 
to overcome the blood-brain barrier and deliver therapeutic 
protein cargos specifically to treat CNS diseases (Yuan et al., 2017).

Immunology Regulation and Others
Integrin was first discovered as adhesion molecules in immune 
cells that mediated extravasation (Springer, 1994). Similar to 
forming TMV for tumor metastasis, exosomal integrins were 
also involved in immune cell homing (Myint et  al., 2020). 
Study showed that integrin α4β7 on T cell-derived exosomes 
guided the exosomes homing to the intestine through binding 
to mucosal addressin cell adhesion molecule-1 (MAdCAM-1; 
Mora et al., 2003). On the other hand, integrin α4β7-expressing 
T cell exosomes could suppress MAdCAM-1 expression which, 
therefore, inhibited subsequent lymphocyte homing to the 
gut (Park et  al., 2019).

Besides, activated polymorphonuclear leukocyte (PMN) 
derived exosomes were capable of targeting ECM through 
MAC-1 (αMβ2 integrin). This caused activation of neutrophil 
elastase (NE) that was coated on exosomes and lead to ECM 
degradation (Genschmer et  al., 2019). Moreover, during 
reticulocyte maturation, integrin α4β1, that expressed commonly 
on the surface of reticulocyte, was cleared from the reticulocyte 
through exosome secretion. This reduced the risk of blood 
circulation complications, such as sickle-cell anemia, caused 
by integrin α4β1 on reticulocytes (Rieu et  al., 2000).

INTEGRINS IN KIDNEY DISEASES

Integrins Expression in Renal Cells
Studies have revealed that integrins are expressed on various 
types of cells in the kidney including tubular epithelial cell 
(TECs) (Zhu et  al., 2020), fibroblast (Bon et  al., 2019), and 
podocyte (Hayek et  al., 2017).

Tubular epithelial cells are the primary cellular component 
of kidney which is susceptible to diverse injuries (Liu et  al., 
2018b). TECs express αv and β1 integrins under normal 
conditions (Bon et  al., 2019), while integrin αv, β1, and β6 
are the dominant subtypes with injury (Hayek et  al., 2020). 
ITGβ6 (gene of integrin β6) was rarely identified in normal 
TECs but rapidly increased in the format of αvβ6 subtype 
under injury. Moreover, a study of clinic kidney biopsy concluded 
that integrin β6 was elevated in the distal tubules in diverse 
diseased and transplanted kidney (Trevillian et al., 2004). Highly 
expressed β1 integrins are known to be  involved in epithelial 
cell polarization which traffic from basal membrane to apical 
membrane under injury (Glynne et al., 2001). This could result 
in detachment of TECs from basal ECM and impairment of 
polarization, which caused further injury of tubules and 
dysregulation of cell secretion, since integrins played a key 
role in delivering molecules to the right subcellular compartments 
(Moreno-Layseca et  al., 2019).

Fibroblasts are one of the main cellular components in 
renal interstitial fibrosis, they can migrate to damaged site, 
transform into myofibroblasts, and produce ECM. Fibroblasts 
normally express integrin α1, α4, α5, and β1 and turn into 
integrin α5, β1, and αv under fibrosis situations (Norman 
and Fine, 1999), among which integrin αv was the dominant 
type (Bon et  al., 2019). Integrin α5 facilitates fibroblasts 
migration through binding to ECM (Lobert et  al., 2010). 
Interestingly, integrin αv expressed by fibroblasts binds to 
latent-TGF-β and stimulates subsequent tissue fibrosis 
(Henderson et  al., 2013). This relation between integrin and 
fibroblasts also presents in other organs such as colon (Peng 
et  al., 2018), skin (van Caam et  al., 2020), lung, liver (Reed 
et  al., 2015), and pancreatic duct (Cavaco et  al., 2019).

TABLE 2 | Diverse functions of exosomal integrin.

Diseases/process Pathophysiologic role of exosomal integrin Reference

Oncology
Tumor metastasis Organotropic metastasis and tumor microenvironment formation Hoshino et al., 2015
Prostate cancer Cell migration and induce integrin expression through uptake of exosomes Fedele et al., 2015
Prostate cancer Macrophage polarization and transferring αvβ6 integrin from cancer cells to monocytes 

through exosomes
Lu et al., 2018

Prostate cancer Determined cargo loading of exosomes which promoted cancer cell formation Quaglia et al., 2020
Fibrosarcoma Promoted cell migration Sung et al., 2015
Neurology

Demyelination Oligodendrocyte precursor cells proliferation Zhang et al., 2020
CNS diseases Therapeutic protein delivery, exosome uptake, and spread of viral proteins to the brain Yuan et al., 2017
Pulmonary

COPD Mediated exosome adhesion to extracellular matrix Genschmer et al., 2019
Gut

lymphocyte homing Exosomal integrin α4β7 target high endothelial venule (HEV) endothelial cells causing 
diminish in lymphocyte homing niche

Myint et al., 2020
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Podocytes are special for their foot processes and integrin 
α3 plays a critical role in its maturation. In vivo study showed 
that the mutation of murine integrin α3 gene caused abnormal 
kidney and lung development (Kreidberg et  al., 1996). Studies 
reported that activated β3 integrin on podocytes could initiate 
FSGS pathology in a suPAR-APOL1-integrin αvβ3 tripartite 
complex dependent manner. The underlie mechanisms included 
autophagosomes formation, actin cytoskeleton dysregulation, 
and cell detachment (Wei et  al., 2011).

Novel Roles of Integrins in Kidney Disease
Recent studies have showed that integrins bind with novel 
molecules and drive subsequent signaling pathways, including 
TGF-β and suPAR. Distinct integrins bind with latent-TGF-β 
which activates TGF-β and downstream signals, such as Smad2/3. 
These signals can promote interstitial fibrosis in chronic kidney 
disease (CKD; Meng et al., 2016) and suppress TEC proliferation 
after injury in acute kidney injury (AKI; Yang et  al., 2019). It 
was demonstrated that the increased TGF-β signaling was initiated 
in the early stage of AKI which continuously expressed during 
recovery stage. TGF-β expression in the tubules was companied 
by integrin β6 and lead to subsequent interstitial fibrosis (Geng 
et  al., 2012). In this regard, integrins may play a prominent 
role in AKI to CKD transition by activation of TGF-β.

Unlike ECM or TGF-β, suPAR is not stabilized, it is the 
released version of the podocyte urokinase receptor (uPAR), 

which function as the cellular receptor for urokinase. suPAR 
exists in the circulatory system and its increased concentration 
is associated with acute (Hayek et al., 2020) and chronic kidney 
injuries (Hayek et  al., 2017). Several studies have reported 
that suPAR primarily binds with β3 integrin on the surface 
of podocytes (Wei et  al., 2011) by way of a tripartite complex 
of suPAR-APOL1 risk variants-integrin β3 (Hayek et al., 2017). 
Meanwhile, suPAR bind to TECs through integrin β6 under 
injured conditions and activated Rac1, which bound to SRp40 
at the 5′ end of exon 7  in versican pre-mRNA. Versican then 
resulted in subsequent fibroblast activation and promoted 
interstitial fibrosis by activating the CD44/Smad3 pathway (Han 
et  al., 2019). Moreover, suPAR could bind to integrin β1 and 
β2 which promoted inflammation and tumor progression (Simon 
et  al., 2000).

Potential Function of Exosomal Integrins 
in Kidney Disease
Studies from our group and others have demonstrated that 
TEC released exosomes mediated cross-talk with fibroblasts 
(Guan et  al., 2020) and macrophages (Lv et  al., 2020) which 
contributed to renal inflammation and fibrosis. However, the 
traveling direction of TEC exosomes to specific cells remains 
largely unknown. Since integrins are the common compositional 
cargoes of exosomes, it is reasonable to speculate that integrin 
may be  critical for directing the fate of the exosomes. Indeed, 

A B

C

D

E

FIGURE 1 | Novel functions of exosomal integrin. Exosomal integrin played diverse roles in different disease conditions including guiding the homing of exosomes, 
signal transmission, cellular phenotype transition, and cellular adhesion and migration. (a) Exosome cargoes such as miRNA and protein can be delivered to neigbor 
and distant cells, while specific type of exosomal integrin can guide the vesicles to specific cells through integrin-ligand recognition. (b) Integrin-ligand interatction 
could activate intracellular signals, for example FAK and ERK-1/2, which initiate relevant gene translation. (c) Apart from intracellular signaling, endocytosis of specific 
exosomal integrin could also cause cellular phenotype transition of the receipient cells. (d) Exosomal integrin mediated exosome adhesion to extracellular matrix 
(ECM) through integrin-ECM binding. (e) Moreover, ECM, for example, fibronectin, could be coated on exosome through a process involving endocytosis of integrin 
αvβ1-fibronectin complex which then sorted into MVEs. FN-coated exosomes secreted and bind to collagen fibrils, which can then coupled to cellular integrin 
receptors. This adhesion ensures the stable adhesion to ECM during migration. CNS, central nervous system; COPD, chronic obstructive pulmonary diseases; 
MVEs, multivesicular endosomes.
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our study showed that integrin αLβ2 (LFA-1) and α4β1 (VAL-4) 
on exosomes enabled them to adhere to the inflamed kidney 
(Tang et  al., 2019). Thus, integrin on exosomes may be  critical 
for guiding the traveling of TECs exosomes and mediated the 
cross-talk with specific recipient cells. Besides, due to the critical 
role of integrins such as integrin αvβ6 and β1 on TECs, integrin 
carried by exosomes may play an important role in interstitial 
inflammation and fibrosis. Moreover, podocytes express integrin 
β3 that binds with soluble particle suPAR (Wei et  al., 2011), 
thus, podocyte may secrete exosomes with β3 integrins and 
meditate cellular communication in kidney disease.

Since integrin intracellular trafficking shares multiple pathways 
with exosome packing and releasing, integrin may also be involve 
in exosome generation (Rainero and Norman, 2013). Knockdown 
of integrin β4 decreased the concentration of exosomes in the 
cultured OPCs supernatant and the capacity to proliferate, 
while supplement of exosomes reversed this capacity (Zhang 
et al., 2020). This strongly indicated the critical role of integrin 
in exosome generation and function. Therefore, the role of 
integrins in exosomes release and cargo loading for kidney 
cells under pathologic conditions deserve further investigation.

Hence, as the compositional cargo, integrins carried by 
exosome may mediate specific cell-crosstalk which participate 
in the pathophysiological process of the kidney.

INTEGRINS CARRIED BY EXOSOMES IN 
THE TARGET THERAPY AND 
DIAGNOSIS OF DISEASE

Currently, exosome has been demonstrated as the promising 
engineered nanocarriers in therapy of disease due to its low 
immunogenicity, biological barrier permeability, and intrinsic 
targeting properties (Tang et  al., 2020). Studies have showed 
that exosomal integrins may contribute to the properties of 
targeting delivery of exosomes. Integrins naturally expressed on 
exosomes could be used to realize target exosome therapy. Recently, 
it was found that macrophage-derived EV migrated toward 
inflamed endothelial cells which was mediated by integrin αLβ2 
and integrin α4β1 on EVs in kidney (Tang et  al., 2019) and 
brain (Yuan et  al., 2017), respectively. Proteomic analysis of 
macrophage-derived micro vesicle (MV) carried with 
dexamethasone revealed that integrin αLβ2 (LFA-1) and α4β1 
(VAL-4) express distinctly on the surface, which could efficiently 
direct MV to the inflamed kidney through recognizing ICAM-1 
and vascular cell adhesion molecule-1 (VCAM-1) (Tang et al., 2019).

Since exosomal integrins are important for tumor metastasis, 
it might hold promise in targeted drug delivery for tumor 
(Qiao et  al., 2020). It is demonstrated that non-small cell lung 
cancer cells could specifically uptake breast cancer (MDA-MB-
231) cell-derived exosomes (231-Exo), which was loaded with 
mRNA-126 that successfully inhibited lung metastasis in vivo 
(Nie et  al., 2020). This organotropic process was depended on 
integrin β4-exosome that specifically targeted surfactant protein 
C (SPC) on cancer cells. Moreover, EVs can be  engineered 
to express integrin for target therapy. For example, a study 
used click chemistry method to conjugate integrin αvβ3-specific 

cRGD peptides to the surface of exosomes. The results showed 
the engineered exosome efficiently targeted to injured areas 
in the brain (Tian et  al., 2018).

Based on the discovery of disease-specific integrin by various 
exosome proteomic studies, detection of different types of integrin 
carried by exosomes could be  novel biomarkers of diseases. It 
was found that integrin is among the top 100 protein in urinary 
EVs proteomic studies including AKI, FSGS, autosomal dominant 
polycystic kidney disease (ADPKD), etc. (Merchant et al., 2017). 
According to proteomic analysis, integrin on urinary exosomes 
showed strong correlation with kidney diseases. For example, 
integrin signaling was identified as the most canonical represented 
signaling pathways correlated with inherited glomerular diseases 
by way of ingenuity pathway analysis (Hogan et  al., 2014).

CONCLUSIONS AND PERSPECTIVES

Exosomal integrin played diverse roles in different disease 
conditions via mediating intercellular crosstalk. Integrins are 
essential for normal cellular adhesion and polarization, while 
specific pathogenic subtypes of integrins have the potential to 
trigger renal inflammation and fibrosis via activating TGF-β, 
epithelial-mesenchymal transition (EMT) signaling, FAK and 
mitogen-activated protein kinases (MAPKs). However, the role 
of exosomal integrin in kidney disease remains largely unknown. 
Exosomal integrin may contribute to the injury and repair 
processes of kidney disease as the novel format of integrin via 
mediating cellular communication and downstream signaling 
activation. In addition, integrins may also hold the potential 
to participate in intracellular exosome secretion and cargo loading 
which may provide a promising approach for engineering of 
exosome for diagnosis and therapeutic purpose.

The guiding effect of specific exosomal integrin was 
demonstrated in tumor or immune cells. Despite that integrin 
can direct the destination of exosomes, the underlie mechanism 
require further investigation. Nevertheless, the guiding effect 
of exosomal integrin provided an important pathway for 
developing target therapy for kidney diseases. Further 
investigation in the role of diverse exosomal integrin subtypes 
in cellular communication may allow the construction of specific 
targeting exosome for precise treatment of kidney disease.
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