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A pan-tissue DNA-methylation epigenetic clock based on deep
learning
Lucas Paulo de Lima Camillo 1✉, Louis R. Lapierre 2 and Ritambhara Singh 1,3✉

Several age predictors based on DNA methylation, dubbed epigenetic clocks, have been created in recent years, with the vast
majority based on regularized linear regression. This study explores the improvement in the performance and interpretation of
epigenetic clocks using deep learning. First, we gathered 142 publicly available data sets from several human tissues to develop
AltumAge, a neural network framework that is a highly accurate and precise age predictor. Compared to ElasticNet, AltumAge
performs better for within-data set and cross-data set age prediction, being particularly more generalizable in older ages and new
tissue types. We then used deep learning interpretation methods to learn which methylation sites contributed to the final model
predictions. We observe that while most important CpG sites are linearly related to age, some highly-interacting CpG sites can
influence the relevance of such relationships. Using chromatin annotations, we show that the CpG sites with the highest
contribution to the model predictions were related to gene regulatory regions in the genome, including proximity to CTCF binding
sites. We also found age-related KEGG pathways for genes containing these CpG sites. Lastly, we performed downstream analyses
of AltumAge to explore its applicability and compare its age acceleration with Horvath’s 2013 model. We show that our neural
network approach predicts higher age acceleration for tumors, for cells that exhibit age-related changes in vitro, such as immune
and mitochondrial dysfunction, and for samples from patients with multiple sclerosis, type 2 diabetes, and HIV, among other
conditions. Altogether, our neural network approach provides significant improvement and flexibility compared to current
epigenetic clocks for both performance and model interpretability.
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INTRODUCTION
One of the leading challenges in the field of aging research is
measuring age accurately. Monitoring healthy individuals for
decades to assess whether an intervention affects the aging
process is prohibitive in terms of time and funding. The creation of
epigenetic clocks, age predictors that use DNA methylation data,
has given researchers tools to measure the aging process
quantitatively. Moreover, recent works have demonstrated the
effectiveness of precise epigenetic editing based on CRISPR with
targeted DNA methylation or demethylation1. Consequently,
epigenetic clocks have the potential of not only measuring aging
but also guiding epigenetic interventions.
Notably, two of the most well-known predictors are the ones

developed by Hannum et al.2 and Horvath3 in 2013. Hannum et al.
developed a blood-based epigenetic clock with 71 CpG sites2. Then
Horvath showed epigenetic clocks could also accurately predict age
across tissues, developing a predictor with 353 CpG sites3. Horvath’s
model has been widely used as it is seen as the state-of-the-art pan-
tissue epigenetic clock for humans4–7. Both of these works used
simple regularized linear regression (ElasticNet) for feature selection
and prediction8. More recent epigenetic clocks that predict mortality
also use a linear combination of features9,10. ElasticNet has been
widely used to develop epigenetic clocks2,3,9–13. Nevertheless,
simple linear regression can display high bias and cannot capture
non-linear feature-feature interactions in the data.
Interactions among variables can be taken into account by

expanding the feature space with feature multiplication. However,
incorporating pairwise CpG site interactions is unfeasible given

the high dimensionality of the DNA methylation data. Horvath’s
model3 selected 353 CpG sites out of total 21,368 sites. If the linear
regression had taken into account all pairwise interactions, the
feature space would grow to over 228 million. A large number of
features is especially challenging due to the relatively low number
of publicly available DNA methylation samples. Given the
complexity of the epigenetic regulatory network, it is likely that
important interactions among CpG sites are not captured in the
current epigenetic clocks developed thus far.
Deep learning models have been successfully applied to

transcriptomic and clinical blood biomarker data for age predic-
tion14,15. For DNA methylation data, Galkin et al. recently showed
that a deep neural network model, DeepMAge16, gave slightly
better prediction performance than Horvath’s model in blood
samples. However, the authors compared Horvath’s pan-tissue
predictor to a model trained only in blood DNA methylation data.
Moreover, there was no in-depth exploration of why their deep
learning model outperformed the ElasticNet model. Similarly, Levy
et al.17 developed a deep learning framework to work with DNA
methylation data that encodes the CpG sites into latent features
for downstream analysis. They showed encouraging results for age
prediction using a multi-layer perceptron; however, they investi-
gated only one data set obtained from white blood cells.
Therefore, currently, our understanding of the advantages of
neural networks for this task in a pan-tissue setting is limited.
We introduce AltumAge, a deep neural network that uses beta

values from 20,318 CpG sites common to the Illumina 27k, 450k
and EPIC arrays for pan-tissue age prediction (summarized in
Fig. 1a). We hypothesized that a neural network using all available
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CpG sites would be better suited to predict pan-tissue age using
DNA methylation data due to their ability to (1) capture higher-
order feature interactions and (2) leverage important information
contained in the thousands of CpG sites not selected by ElasticNet
models. AltumAge uses multi-layer perceptron layers (similar
to16,17) that account for non-linear interactions by combining
multiple features into each node of the network. We trained
AltumAge on samples from 142 different experiments, which, to
our knowledge, is the largest compilation of DNA methylation
data sets for human age prediction. The publicly available data
were obtained from multiple studies that used Illumina 27k and
Illumina 450k arrays. The code for the model can be found in our
GitHub repository (https://github.com/rsinghlab/AltumAge).
We show that AltumAge has a significantly lower error for

within-data set age prediction, is better able to generalize to new
tissue types and older ages for cross-data set settings, and is more
resistant to noise than ElasticNet. For inference, we apply the
Shapley-value-based interpretation method, called SHAP18, on
AltumAge to determine the contributions of different CpG sites
towards age prediction (summarized in Fig. 1a). We confirm that
the most important CpG sites have complex interactions resulting
in non-linear relationships when predicting age. Such interactions
may lead to mechanistic hypotheses on how the epigenetic
network interacts to drive the aging phenotype. Additionally, we

find that the most important CpG sites are proximal to CTCF
binding sites. However, CpG sites in known age-related pathways
(SIRT, mTOR, and AMPK) do not seem relevant for age prediction.
Finally, our downstream analysis reveals that AltumAge predicts
higher age for tumors, cells with cellular immune dysfunction,
cells with mitochondrial dysfunction, cells with high passage
numbers, and samples with multiple sclerosis, type 2 diabetes,
HIV, among others, than controls demonstrating its usefulness for
age-related studies. Overall, we show that deep learning can
improve both the performance and interpretation over the widely
used ElasticNet-based models and present AltumAge as a useful
tool for age prediction.

RESULTS
Performance Evaluation
Model selection. Neural networks can capture complex variable
interactions when provided with a large number of high-
dimensional data sets. We hypothesized that the same would be
true for age prediction with DNA methylation data.
For each of 142 data sets, we split the total samples—60% for

training and validation (n= 8050) and 40% for testing (n= 5455)
—to avoid introducing any bias in the age, gender, and tissue type
distributions. In the training and validation set, the data was

Fig. 1 AltumAge model and interpretation. a DNA methylation data from Illumina 27k, 450k, or EPIC arrays are normalized with BMIQ and
scaled. Then 20,318 CpG sites are selected as the input of the model. The information is processed through five hidden layers with 32 nodes
each, and the values of the last hidden layer nodes are combined into a single node as the age output in years. b For interpretation, a Shapley-
values-based method, called SHAP18, is used to determine how the methylation status of a specific CpG site affects the age output of
AltumAge. Relevant CpG sites generally present a primarily linear relationship (left) with the predicted age. However, interacting CpG sites can
change such relationships. In some instances, we find that when a secondary CpG site is hypermethylated (middle), the methylation status of
the first CpG is irrelevant for age prediction; when it is hypomethylated (right), then the methylation status becomes essential. Images created
with Biorender.com.
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further subdivided by data set, with 85 (n= 4394) for model
selection and 57 (n= 3656) for validation. Supplementary Figure
1a shows a schematic of the division of the data, with the full list
of data sets used in Supplementary Note 1. Several machine
learning models were trained and validated (Supplementary Table
1, Supplementary Figure 2a) to pick the best performing models
according to the mean squared error (MSE). We also included
other evaluation metrics such as the median absolute error (MAE)
and Pearson’s correlation coefficient (R). Our primary baseline
method is the ElasticNet model, a linear model with implementa-
tion following Horvath3. We also included two traditional machine
learning methods that capture non-linear relationships in the data,
random forest and support vector regression; however, they
performed poorly on the validation set (MAE= 6.206 and 10.903,
respectively). In addition, we tried the neural network TabNet, an
attentive interpretable tabular learning method19. Although the
MSE was marginally better than the ElasticNet baseline (MSE=
62.113 vs. 67.981), the MAE was slightly worse (MAE= 4.027 vs.
3.708). Lastly, we tuned the hyperparameters of the neural
networks based on recent findings that highly regularized deep
learning methods excel in tabular data prediction20. The best
neural network model based on both the MAE and MSE was
dubbed AltumAge (from the Latin altum, meaning “deep”). For
clarity, a regularized linear regression model with Horvath’s log-
linear age transformation, trained on our 142 data sets, and using
the built-in hyperparameter tuning from the Python glmnet will
be referred to as ElasticNet. On the other hand, the application of
Horvath’s original 2013 epigenetic clock, originally trained on 39
data sets in that paper3, will be referred to as Horvath’s model.

AltumAge outperforms linear models for within-data set age
prediction. Differences in performance among epigenetic clocks
can generally be explained by three factors: the DNA methylation
data, the model, and the input CpG sites (or the features). For
within-data set age prediction, all of the training and validation set
(n= 8050) was used to train all of the models while the model and
input CpG sites were varied. Supplementary Figure 1b displays a
simple schematic of the within-data set age prediction. Main results
are presented in Table 1 (detailed in Supplementary Table 3), with a
qualitative comparison in Supplementary Figure 2b.
We hypothesized that our large and diverse DNA methylation

data might improve performance compared to other epigenetic
clocks irrespective of model type, adding a confounding variable to
any performance improvement seen with AltumAge. To understand
the magnitude of such effect, we compared a replication of
Horvath’s model as seen in3 with a linear regression trained on our

143 data sets using the same set of 353 CpG sites. Indeed, the
regression trained with our data has a lower error (MAE= 3.011 vs.
3.530; MSE= 46.867 vs. 71.031). ElasticNet, with its selected 903
CpG sites trained with our data, further improves the performance
(MAE= 2.621, MSE= 39.198). This result shows that a larger training
data set helps the age prediction performance.
Next, we aimed to determine whether the model type, i.e., a

linear regression vs. a neural network, would significantly
impact the performance. We, therefore, compared the afore-
mentioned linear models with the neural network AltumAge
using the same set of features. AltumAge outperformed the
respective linear model with Horvath’s 353 CpG sites (MAE=
2.425 vs. 3.011, MSE= 32.732 vs. 46.867) and ElasticNet-selected
903 CpG sites (MAE= 2.302 vs. 2.621, MSE= 30.455 vs. 39.198).
This result shows that AltumAge outperforms linear models
given the same training data and set of features.
Lastly, to compare the effect of the different sets of CpG sites,

we trained AltumAge with all 20,318 CpG sites available and
compared the results from the smaller sets of CpG sites
obtained above. There is a gradual improvement in perfor-
mance for AltumAge by expanding the feature set from
Horvath’s 353 sites (MAE= 2.425, MSE= 32.732) to 903
ElasticNet-selected CpG sites (MAE= 2.302, MSE= 30.455) to
all 20,318 CpG sites (MAE= 2.153, MSE= 29.486). This result
suggests that the expanded feature set helps improve the
performance, likely because relevant information in the
epigenome is not entirely captured by the CpG sites selected
by an ElasticNet model.
Overall, these results indicate that even though more data

samples lower the prediction error, AltumAge’s performance
improvement is greater than the increased data effect. Indeed,
the lower error of AltumAge when compared to the ElaticNet is
robust to other data splits (Alpaydin’s Combined 5x2cv F test p-
value= 9.71e−5).
A direct comparison of AltumAge and Horvath’s model

reveals that AltumAge has fewer tissue types with a high MAE.
In his 2013 paper, Horvath noticed poor calibration of his model
in breast, uterine endometrium, dermal fibroblasts, skeletal
muscle, and heart3. In our test data, a similarly poor predictive
power was found for these tissue types for Horvath’s model
(breast MAE= 9.462; uterus MAE= 5.798; fibroblast MAE=
10.863; muscle MAE= 9.047; heart not included). AltumAge,
on the other hand, had much lower errors for them (MAE=
3.681, 3.660, 4.089, 2.540 respectively). Furthermore, Horvath’s
model had an MAE > 10 years in 22 tissue types in the test data.
AltumAge, on the other hand, had an MAE > 10 in only three
tissue types.
Supplementary Figure 3 in particular shows how AltumAge, in

contrast to Horvath’s model, does not underestimate older ages
(>60 years) to such an extent (median error=−2.808 vs.
−4.677). Better performance in older age is fundamental in
defining biomarkers of age-related diseases of which age is the
biggest risk factor. Horvath’s model tends to underestimate
such population partly due to CpG saturation (beta value
approaching 0 or 1 in certain genomic loci)21. Another reason
might be the assumption that age-related CpG changes are
linearly correlated with age after 20 years of age. AltumAge
resolves these two problems by incorporating an expanded
feature set and not using any pre-defined age transformation
function that might inject bias in the data processing.
Of note, we were unable to compare AltumAge with

DeepMAge16, another deep learning framework. Unfortunately,
neither the code for DeepMAge nor a complete description of
its architecture is available.

AltumAge is more generalizable than ElasticNet in older ages and in
non-blood tissue types. Leave-one-data-set-out cross-validation
(LOOCV) provides a way to understand the generalization

Table 1. Evaluation metrics of AltumAge and different linear models
in the test set for within-data set age prediction.

Model CpGs MAE MSE R Median Error

AltumAge 20318 2.153 29.486 0.980 −0.275

AltumAge with
ElasticNet CpGs

903 2.302 30.455 0.979 −0.043

AltumAge with
Horvath’s CpGs

353 2.425 32.732 0.978 −0.271

ElasticNet 903 2.621 39.198 0.973 −0.006

Linear Regression with
Horvath’s CpGs

353 3.011 46.867 0.968 −0.003

Horvath’s model 353 3.530 71.031 0.952 0.128

The median absolute error (MAE) and the median error are in units of year,
while the mean squared error (MSE) is in units of year-squared. Also shown
is the number of CpGs whose model importance is greater than zero. R
stands for Pearson’s correlation coefficient. Bold numbers indicate better
performance.
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potential of a model to new unseen data sets. We performed this
LOOCV analysis by leaving out the training samples of each data
set (out of the 143) during model fitting. Therefore, the model
training was performed using the training set of 142 data sets.
Next, we evaluated the performance of this model on the test set
of the left-out data set. Consequently, we trained 142 different
models in total to evaluate the LOOCV performance for all 142
data sets (Table 2, Supplementary Figure 2c). Supplementary
Figure 1c displays a simple schematic of data flow for the LOOCV
age prediction.
Since AltumAge uses 20,318 CpG sites, we expected it to be

more prone to noise and overfitting than a model with low
variance such as ElasticNet, which effectively uses only a subset of
CpG sites. Nevertheless, we see that AltumAge performs better
than ElasticNet in MSE (63.022 vs. 67.317, Wilcoxon signed-rank
test p= 0.0018) and has a slightly lower MAE (MAE= 3.194 vs.
3.204, Wilcoxon signed-rank test p= 0.04).
Next, we analyzed the results stratified by absolute error, age,

data set, and tissue type. Fig. 2a shows a scatter plot of the LOOCV
absolute error for each sample according to AltumAge and
ElasticNet. Points above the black line favor ElasticNet while the
opposite favors AltumAge. As shown by the 100-window rolling
mean line, for samples with an absolute prediction error > 3.457
years, on average, AltumAge performs better. This observation is
particularly apparent for large deviations. This result indicates,
alongside the lower MSE, that AltumAge is more resistant to
outliers than ElasticNet when generalizing to new samples.
Stratifying the results by age can give insights into particular

strengths and weaknesses of each model. For example, while both
models capture the age-related epigenetic drift given the
correlation between absolute error and age (AltumAge Pearson’s
R= 0.443; ElasticNet Pearson’s R= 0.459), AltumAge performs
better on average for samples with age > 59 years (Fig. 2b). This
result suggests that AltumAge better captures epigenetic changes
during aging while ElasticNet better understands the develop-
mental epigenome, since epigenetic changes during childhood
and puberty are related to development but after they are mostly
due to aging22.
Finally, we analyzed the performance of each model by data set

and tissue type. As shown in Fig. 2c, AltumAge performs better
than ElasticNet in the LOOCV MAE for data sets with a higher error
in performance, i.e., that are more challenging to predict. In
comparison, ElasticNet is superior for the ones with a lower error.
We observe that most data sets with a low MAE are from
newborns or blood samples, and the training set is skewed
towards blood-based samples (see Supplementary Figure 4).
Therefore, we hypothesized that ElasticNet may be simply
performing better for overrepresented tissue types in the training
set. To check this, we looked at the tissue types from data sets for
which ElasticNet had a 50% worse LOOCV MAE than AltumAge
(capturing a large deviation) and vice versa. As expected,
ElasticNet does not generalize as well to a large variety of tissue
types (Fig. 2d). At the same time, it performs better in blood-based
samples (Fig. 2e). These observations imply that AltumAge can
better generalize to more tissue types, likely capturing global age-

related epigenetic patterns, while ElasticNet could be focusing
primarily on blood changes.
As each model has its benefits and drawbacks, we checked the

performance of an ensemble of both methods. Interestingly, we
observe a substantial decrease in both MAE (2.934) and MSE
(58.986) by averaging the predictions of both models. These
results indicate that combining deep learning and linear model
predictions may further improve the age prediction performance.

AltumAge is more robust to noise than ElasticNet. Another desired
property of epigenetic clocks is reliability. Noise derived from the
experimental procedure, biological or technical replicates may
negatively influence the model’s reliability. AltumAge was trained
with Gaussian noise and adversarial regularization to be more
robust against random variation23. Gaussian noise introduces
normally distributed fluctuations in between hidden layers.
Adversarial regularization includes artificial observations with
subtle modifications in the loss function that attempt to fool the
model into increasing the error. To assess the robustness of
AltumAge and ElasticNet to noise, we gradually added artificial
Gaussian noise in the beta value of each CpG site up to one
standard deviation in the within-data test set and tracked MAE
(Fig. 3a) and MSE (Fig. 3b). As expected, the error grows much
faster in the ElasticNet model, particularly with the MSE, which is
more swayed by outliers.
Furthermore, we examined an independent whole blood data

set GSE55763 (not used in training or testing), which contains 2
technical replicates for each of its 36 samples. Ideally, the
difference in prediction between the replicates would be zero.
As shown in the histogram in Fig. 3c, the median absolute
difference for AltumAge is 1.537 years, whereas for ElasticNet,
1.719 years, while the maximum absolute difference is 4.756 and
5.862 years, respectively. Despite no significant difference in
distributions–likely due to the small sample size–the models
differ in whether they capture an artifact effect between
replicates. As anticipated, we do not observe a statistically
significant effect from replicate one to two for AltumAge (linear
mixed-effects p= 0.720). However, we see that ElasticNet
predicted a higher age of 1.130 years for replicate two (linear
mixed-effects p= 0.002). Overall, the results highlight that
resistance to random noise may help in real-world scenarios,
increasing model robustness and reliability.

Inference
Neural networks, particularly in the context of deep learning, used
to be seen as “black-box” methods, as their interpretability was
difficult. Regardless of the predictive power of ElasticNet models,
they are easily understandable. Recently, various methods have
been proposed to extract the contribution of features towards
prediction in neural networks. They include interpretation based
on model gradients24–26, attention27, among others. One such
inference method is SHAP18, which uses a game-theoretic
approach to aid in the explanation of machine learning methods.
It can measure how one feature contributes to the output of deep
neural networks. For our case, the SHAP value can be conceived
as how much the value of one CpG site affects the age output of
the model in years. Through the architecture of neural networks,
it can also determine which CpG sites most highly interact with
each other.
We present results for model inference using SHAP that assist

with understanding AltumAge. To support the results obtained by
SHAP, we also applied another method of determining feature
importance called DeepPINK28 (see Supplementary Information).

AltumAge captures relevant age-related CpG-CpG interactions. Epi-
genetic modifications can significantly influence gene expression.
They can also impact genes that affect other epigenetic changes.

Table 2. Leave-one-data-set-out cross validation evaluation metrics
for AltumAge and ElasticNet.

Model MAE MSE R Median Error

AltumAge 3.194 63.022 0.958 −0.179

ElasticNet 3.204 67.317 0.955 −0.090

The median absolute error (MAE) and the median error are in units of year,
while the mean squared error (MSE) is in units of year-squared. R stands for
Pearson’s correlation coefficient. Bold numbers indicate better
performance.
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Therefore, some CpG sites interact with others through the gene
expression network and can work in tandem. Through SHAP, we
show that AltumAge can measure how hyper- or hypomethylation
of secondary CpG sites affects the relationship of a CpG of interest
and age. Supplementary Figure 5 shows scatter plots of the nine
most important CpG sites based on SHAP-based importance
values assigned to the CpG sites of the samples in the test set.
These nine CpG sites account for 1.83% of the total model
importance (Supplementary Figure 6). The dependence plots
show both the relationship of a CpG site with the predicted age
and how that relationship can be affected by the value of a

secondary CpG site for a DNA methylation sample. This secondary
CpG site has the highest interaction with the CpG of interest, as
determined by SHAP values. One way to understand the effect of
the secondary CpG site is to focus on the samples in the top and
bottom deciles of its methylation value, looking for any
differences that may arise due to hyper- or hypomethylation
respectively. We categorized three different types of relationships
between CpG site methylation value and age: (1) completely
linear, which are independent of CpG-CpG interactions; (2)
bivalently linear, whose slope is dependent on a secondary CpG
site; and (3) non-linear, affected by a secondary CpG site.

Fig. 2 Comparison of leave-one-data-set-out cross-validation (LOOCV) performance between AltumAge and ElasticNet. a Scatter plot
contrasting the LOOCV absolute error of each model by sample. The black line separates the region in the graph in which AltumAge performs
better (bottom right) versus where ElasticNet is superior (top left), and the red line is a 100-sample rolling mean. AltumAge outperforms
ElasticNet, particularly in difficult-to-predict tissue types. b The 1000-sample rolling mean of the LOOCV absolute error of each model by age.
AltumAge has a lower absolute error for age > 59 years on average. c Bar plot showing the LOOCV median absolute error (MAE) by data set for
each model, with 95% confidence interval error bars calculated from 1000 bootstrap iterations. A circle below a bar represents data sets for
which AltumAge had a lower LOOCV MAE than ElasticNet. d Pie plot showing which tissue types from data sets for which ElasticNet had at
least a 50% worse MAE than AltumAge. (e) Pie plot with the converse. Overall, AltumAge can better generalize to more tissue types, whereas
most of the improved ElasticNet performance comes from blood-based tissues.
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Out of the top nine CpG sites, only cg04084157 (Fig. 4a), the
fourth most important, shows an almost completely linear
relationship. We subdivided the samples in the test set into the
top and bottom deciles for cg22736354, the most highly
interacting CpG site. Both subsets display linear relationships
despite its heteroscedasticity or unequal scatter (Fig. 4b), though
with slightly different regression coefficients (Z-test1 p= 1.75e
−14). The main interaction effect appears to be that when
cg22736354 is hypermethylated, so is cg04084157, and when
cg22736354 is hypomethylated, so is cg04084157. Of note, we
repeated the aforementioned analysis for all top 1000 CpG sites
but did not find a single CpG site without a statistically significant
interaction, i.e., a difference in the linear regression coefficients for
the top and bottom deciles with p > 0.05.
The effect of cg10523019 (Fig. 4c), the fifth most important CpG

site, displays a bivalently linear relationship. The regression
coefficient when cg19722847, the most highly interacting CpG
site, is hypomethylated (coef= 0.653) is more than twice when it
is hypermethylated (coef= 0.290, Z-test p < 1.0e−300, Fig. 4d).
This dual response may also shine a light on relevant age-related
biological processes. cg19722847 is located in the gene IPO8, a
gene that participates in nuclear transport, and cg10523019 lies in
RHBDD1, a gene involved in proteolysis and apoptosis. IPO8 is
known to interact with transcription factors NF-κB and FOXO3 by
allowing their nuclear transport and hence activation29,30. Indeed,
RHBDD1 is a known target of FOXO331. The methylation status of
cg10523019 becomes less relevant as transcription of RHBDD1
may become deficient due to lack of IPO8–and nuclear

FOXO3–regardless of RHBDD1 methylation. Laboratory experi-
ments would have to be performed to more thoroughly
characterize these relationships; however, it is possible to obtain
data-driven hypotheses from these dependence plots.
An example of a non-linear CpG-age relationship comes from

the seventh most important CpG cg12373771 (Fig. 4e). When
cg07099407, the most highly interacting CpG site is hypermethy-
lated, the relationship between cg12373771 and age output is still
linear. However, when it is hypomethylated, it becomes slightly
non-linear (Fig. 4f). While Pearson’s correlation coefficient for a
straight line is high (0.961), the residual plot (Supplementary
Figure 7) shows underestimation at the boundaries with over-
estimation in the center. This pattern demonstrates non-linearity;
a cubic regression corrects the bias of under and overestimation
and increases the correlation coefficient to 0.980. Overall, our
results using SHAP values demonstrate that AltumAge captures
the non-linear interaction between CpG sites.
Note that despite their important effects on the predicted age,

some of the CpG sites that interact with the most important CpG
sites may themselves not be particularly relevant for the output.
For example, the aforementioned cg07099407, the CpG with the
highest interaction with the seventh most important CpG site,
ranks 6315 and 3975 according to SHAP and DeepPINK,
respectively, out of 20,318. These results suggest that ElasticNet
may miss DNA loci that regulate other loci in aging, and this may
partly explain AltumAge’s performance improvement compared
to ElasticNet.

Characterization of CpG sites by model interpretation. CCCTC-
Binding factor (CTCF) is a transcription factor involved in the
negative regulation of several cellular processes. It also contributes
to long-range DNA interactions by affecting chromatin architecture.

Fig. 3 Comparison of resistance to noise between AltumAge and ElasticNet. a, b Point plots show the increase in median absolute error
(MAE) and mean squared error (MSE) per model when adding artificial Gaussian noise of up to one standard deviation for each feature.
AltumAge is more resistant to noise in both metrics. Shown are the 99% confidence interval error bars calculated from 1000 bootstrap
iterations. c Histogram of the difference in predicted age between two technical replicates in an independent whole blood data set
(GSE55763). AltumAge has a lower median and maximum deviations than ElasticNet.

1
z ¼ ðcoef 1 � coef 2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sd21 þ sd22

q

, here coef is the coefficient, sd is the
standard deviation.
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We examined whether CpG sites with a higher SHAP importance
were closer to CTCF binding sites. The 353 important CpG sites
selected by Horvath’s model were not closer to the CTCF binding
sites when compared to the 21,368 control CpG sites from which
the paper’s ElasticNet model was trained (Mann-Whitney U-test p-
value= 0.991). As for AltumAge, since it uses all of the 20,318 CpG
sites as features, we compared the top 903 CpG sites to the control,
as the ElasticNet model applied on the full data set selects 903 sites
as important. These sites comprise 45.3% of SHAP importance. In
line with previous studies32–34, we find that the selected important
CpG sites are overwhelmingly closer to CTCF binding sites (Mann-
Whitney U-test p-value= 0.041, Supplementary Figure 8). This
observation suggests that epigenetic alterations proximal to such
loci that are involved in chromatin packing by affecting CTCF
binding may be captured by AltumAge. This result is relevant
because chromatin structure modifications have been associated
with aging (see review35).

Due to the close relationship between chromatin and aging, we
hypothesized that different chromatin states would influence the
importance of each CpG site. ChromHMM is a Hidden Markov
Model used for the characterization of chromatin states36.
Annotations for several cell lines and tissue types are widely
available online. Since AltumAge is a pan-tissue epigenetic clock, we
used the mode of the 18-state annotation from 41 different tissues
obtained from ENCODE for each CpG location37 (Supplementary
Figure 9, Supplementary Table 2). CpG SHAP importance values are
indeed impacted by ChromHMM state (Kruskal−Wallis H-test
p-value = 2.03e−78). The chromatin states with the highest and
second highest SHAP normalized median importance were ZNF
genes and repeats (SHAP importance= 1.68e−03%, top 73th
percentile of all CpG sites) and heterochromatin (SHAP impor
tance= 1.68e−03%, top 58th percentile). Of note, the chromatin
states with the highest DeepPINK normalized median importances
were also heterochromatin (most important) and ZNF genes and

Fig. 4 Three main types of relationship between the scaled beta value of a CpG site and age according to SHAP value. It measures how
one feature contributes to the output of deep neural networks. For our case, the SHAP value can be conceived as how much the value of one
CpG site affects the age output of the model in years. The x-axis shows the scaled beta values for each specific CpG site; the y-axis, its SHAP
value, and the coloring scheme, the scaled beta values for the CpG site with the highest interaction. The effect of a specific CpG site on the
predicted age can vary based on a secondary CpG site. Dependence plots of the fourth (a), fifth (c), and seventh (e) most important CpG sites
exemplify the three types of relationship. Samples into the top (red) and bottom (blue) deciles of the most highly interacting CpG site were
divided, representing hyper- and hypomethylation respectively. The relationshps are completely linear (b), bivalently linear (d), and non-linear
(f). Regression lines are shown in (b), (d), and (f) with a 95% confidence interval calculated from 1000 bootstrap iterations. A cubic regression
(dotted gray line) is also shown in (f) to demonstrate the better fit of the non-linear model.
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repeats (second most important). Heterochromatin is particularly
interesting as several interventions that increase chromatin packing
also extend lifespan35. The full ChromHMM results can be found in
Supplementary Note 2.

Aging-related pathways. One of the main interpretation advan-
tages of AltumAge compared to ElasticNet is that the former
effectively uses a much larger feature space. CpG sites in aging-
related genes are often not selected within the couple hundred
features of an ElasticNet model, thus making analyses of these CpG
sites of interest impossible. AltumAge allows a closer look at the
relationship of CpG sites in aging-related pathways even when these
CpG sites are not particularly important for the final age prediction. It
is worth analyzing the relative importance of CpG sites in well-known
age-related pathways such as SIRT, mTOR, and AMPK38–40.
Unexpectedly, most of the CpG sites in SIRT genes do not appear

relevant, at least directly, for age prediction using AltumAge. Located
in SIRT2, cg27442349, accounting for 0.026% of the total SHAP
importance and ranked 1119, has the highest SIRT SHAP importance
value (Supplementary Figure 10a).
Out of the 67 proteins participating in the mTOR signaling

pathway according to the PID Pathways data set41, cg11299964,
located in MAPKAP1, has the highest SHAP importance of 0.066%,
ranking 148. Surprisingly, mTOR was not particularly relevant, with its
most important CpG site being cg04508649 (SHAP importance=
0.0062, rank 7705) (Supplementary Figure 10b).
In terms of the AMPK pathway, out of CpG sites in genes for the

proteins that directly activate or inhibit AMPK from the KEGG
database42, cg22461835, located in ADRA1A, has the highest SHAP
importance of 0.061%, ranking 169 (Supplementary Figure 10c).
Most, however, ranked below 1000.
We also performed KEGG pathway analysis on the genes related to

Fig. 5 Age acceleration of AltumAge and Horvath’s model for various data sets with normal and diseased samples. Box plots show
statistically significant (Mann-Whitney U-test p-value < 0.05) age acceleration (AA) with a title in bold according to AltumAge (a) and Horvath’s
model (b). Data sets include samples with autism (E-GEOD-50759, E-GEOD-63347, E-GEOD-27044), with HIV (E-GEOD-67705, E-GEOD-59457),
from several pregnancy disorders (E-GEOD-74738), with multiple sclerosis (GSE40360), with non-alcoholic fatty liver disease (E-GEOD-48325),
with type 2 diabetes (E-GEOD-21232), with Down syndrome (E-GEOD-52588), and with atherosclerosis (E-GEOD-62867). The box and whiskers
show the quartiles of the data.
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the top-ranking nine CpG sites using KEGGMapper43. We found the
following genes associated with four of them–NHLRC1, involved in
proteolysis; KLF14, associated with type 2 diabetes; BCO1, involved in
metabolic pathways, including biosynthesis of cofactors; and FZD9,
involved in a range of age-related diseases, including cancer and
neurodegeneration. Note that DNA methylation affects gene
expression depending on its position. A methylated CpG site in an
enhancer, promoter, or gene body may impact gene regulation
differently. These findings show how methylation in specific loci in
aging-related pathways can contribute to age prediction. This insight
may not be possible to obtain using ElasticNet due to its focus on
selecting only the most important CpG sites related to aging. For
example, only cg11299964 (from MAPKAP1 mentioned above) was
present among the 353 sites selected by Horvath’s model.

Potential biological applications
The age acceleration, defined as the predicted age minus the real
age, of epigenetic clocks have been shown to be related to several
biologically relevant events and characteristics, such as obesity44,
menopause45, diet46, heart disease47, anxiety48, and even socio-
economic status49, among others. Given the observed perfor-
mance of AltumAge, we explore its applicability to such studies,
for which Horvath’s model has been a popular choice. Therefore,
we assess AltumAge’s age acceleration performance with respect
to the Horvath’s model in the following sections to understand the
usefulness of its age prediction for downstream analyses.

AltumAge predicts higher age acceleration for certain pathologies.
To determine whether some diseases accelerate aging, we

Fig. 6 Age acceleration of AltumAge and Horvath’s model for various tissue types with normal and cancerous samples. Horvath’s model
a does not significantly predict higher AA for cancer, with some tissue-specific behavior. On the other hand, AltumAge b predicts higher
median AA for tumors in all but one cancer tissue type. The box and whiskers show the quartiles of the data.
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investigated the separated, diseased samples (not used in
training, validation, or testing) from 41 data sets described in
Supplementary Note 1. We then compared the age acceleration
of these separated samples to the age acceleration of the test
samples from the same data set in a pairwise fashion.
There were 12 statistically significant (Mann-Whitney U-test

p-value < 0.05) comparisons according to AltumAge, 11 of which
predicted higher age acceleration for the diseased group (Fig. 5a).
These include ectodermal samples from patients with autism
(E-GEOD-50759, p-value = 3.41e-10), blood samples from patients
with HIV (E-GEOD-67705, p-value= 2.93e−7), fetal samples from
several pregnancy disorders (E-GEOD-74738, p-value= 3.29e−6),

brain samples from patients with autism (E-GEOD-63347,
p-value= 7.12e−5), brain samples from patients with multiple
sclerosis (GSE40360, p-value= 0.00251), liver samples from
patients with non-alcoholic fatty liver disease (E-GEOD-48325,
p-value= 0.00431), brain samples from patients with HIV (E-GEOD-
59457, p-value = 0.0131), pancreatic cells from patients with type 2
diabetes (E-GEOD-21232, p-value= 0.0158), blood samples from
patients with Down syndrome (E-GEOD-52588, p-value= 0.0197),
peripheral blood mononuclear cells from patients with autism
(E-GEOD-27044, p-value= 0.0232), and blood vessel samples from
patients with atherosclerosis (E-GEOD-62867, p-value= 0.0426). In
Horvath’s case, there were 10 statistically significant comparisons,

Fig. 7 Analysis of the effect of cell passage number, mitochondrial depletion, NLRP7 knockdown, continuous cellular reprogramming,
and transient cellular reprogramming on predicted age comparing AltumAge and Horvath’s model. a Scatter plot of predicted age of
iPSCs and ESCs by passage number with best fit line with 95% confidence interval calculated from 1000 bootstrap iterations. b Box plots
showing predicted age in 143B cells with mitochondrial depletion (rho0-) or control (rho+−). c Box plots showing predicted age of H9 ESCs
with NLRP7 knockdown (NLRP7-) or control (Normal). d Time course analysis of OSKM reprogramming with standard deviation error bars.
e Point plot showing age prediction in human fibroblasts and endothelial cells before and after transient reprogramming. The box and
whiskers (b, c) show the quartiles of the data.

L.P. de Lima Camillo et al.

10

npj Aging (2022)     4 Published in partnership with the Japanese Society of Anti-Aging Medicine



eight of which predicted higher age acceleration for the diseased
group (Fig. 5b).
Given the high number of pairwise comparisons, it is likely that

a few will be statistically significant by chance, as the expected
number of false null hypothesis rejections for 41 pairwise
comparisons with a p-value threshold of 0.05 is 2.05. Indeed,
AltumAge predicted a lower age acceleration for blood samples
of patients with schizophrenia (E-GEOD-41169, p-value = 0.0161)
and Horvath’s model predicted a lower age acceleration for
blood samples of patients with osteoporosis (GSE99624, p-value
= 0.00531) and in sun-exposed skin (E-GEOD-51954,
p-value= 0.0181); these may be artifacts.
Of note, there was no statistically significant age acceleration

for both AltumAge and Horvath’s model in several data sets that
include patients with obesity, Crohn’s disease, schizophrenia,
asthma, chronic obstructive pulmonary disease, among others.
Overall, however, these observations indicate that AltumAge
predicts higher age acceleration for certain pathologies and may
indicate which ones are epigenetically age-related.

AltumAge predicts higher age acceleration for cancer. Cancer cells
display several genetic and epigenetic aberrations which have
been related to aging and mortality by epigenetic clocks50–52. Liu
et al.53 have reported that some age predictors consistently
estimate higher age acceleration for tumors, whereas others show
tissue-specific behavior. Therefore, we examined the age accel-
eration of cancer samples from 14 data sets comprising 10 tissue
types in total for AltumAge, using Horvath’s model as a bench-
mark (Fig. 6). Overall, Horvath’s model was not able to differentiate
between normal and tumor samples (Mann–Whitney U-test
p-value= 0.156, Fig. 6a). Its median age acceleration for cancer
was marginally higher in seven tissue types and lower in another
three (breast, prostate, colon). AltumAge, in contrast, predicts
overall higher age acceleration for cancer when compared to
normal tissue by 4.542 years (Mann–Whitney U-test p-value=
8.28e−12, Fig. 6b). The median age acceleration was higher for
tumors in every single tissue type examined except colon, and the
mean age acceleration was higher for all tumors. These results
indicate that AltumAge can generally differentiate between
normal and cancerous tissue by predicting a higher age
acceleration and could be useful to studies focusing on the
relationship between cancer and aging. Note that the age
accelerations of both models had a much higher overall variance
in cancer versus normal tissue (AltumAge Levene’s test p-value=
7.32e−10; Horvath’s model Levene’s test p-value= 3.63e−12).
This observation might be the consequence of a more chaotic
epigenome in tumors.

AltumAge differentiates cells with age-related hallmarks. To assess
whether AltumAge can capture biologically relevant changes
in vitro, we examined independent data sets (not used for
training, validation, or testing) to understand the effect of cell
passage number, cellular senescence, mitochondrial depletion,
NLRP7 knockdown, transient cellular reprogramming, and con-
tinuous cellular reprogramming. We compared AltumAge with
Horvath’s model as a benchmark.
We looked into a study (with accession ID GSE3065354) which

contains information of induced pluripotent stem cells (iPSCs) and
embryonic stem cells (ESCs) by passage number. We observe that
AltumAge detects a correlation (Pearson’s R= 0.351, p-value=
2.85e−06) between the predicted age and the passage number.
As shown by Fig. 7a, cells begin with a slightly negative age that
increases as they are passaged. Horvath’s model also detects a
significant correlation (Pearson’s R= 0.273, p-value= 3.245e−04),
albeit it is weaker when compared to AltumAge. The increase in
age with passage number is also more subtle. The effect of
passage number on predicted age indicates that AltumAge might
be sensitive to cellular exhaustion due to passaging cell.

Given that cellular senescence is a well-known hallmark of
aging and can be caused by excessive replication in vitro,
we analyzed a study (with accession ID GSE9106955) which
provides methylation data from fibroblasts at different stages of
senescence (Supplementary Figure 11). Early passage cells did not
have a statistically different predicted age with AltumAge
(regression coefficient t-test p-value= 0.078), and only slightly
with Horvath’s model (regression coefficient t-test p-value=
0.046). None of the other comparisons were statistically significant.
Mitochondrial dysfunction is another important hallmark of

aging. A study (with accession ID GSE10024956) contains data on
143B cells chronically depleted of mitochondrial DNA (rho0-).
AltumAge predicts a higher age for cells with mitochondrial
dysfunction (regression coefficient t-test p-value= 0.036, Fig. 7b).
Horvath’s model also predicts a suggestive increase (regression
coefficient t-test p-value= 0.057).
The NLRP gene family of receptors, primarily expressed in

immune cells, is involved in the normal response to inflammation.
Mutations in some of these genes are involved in immune system
malfunction, excessive inflammation, and disease57–59, suggesting
it may also have ramifications in aging. Moreover, cells with NLRP7
knockdown display aberrant CpG methylation patterns60. We,
therefore, analyzed DNA methylation data from H9 ESCs
(accession ID GSE4572760) with or without NLRP7 knockdown.
AltumAge and Horvath’s model predict a higher age for knock-
down cells (regression coefficient t-test p-value= 0.009 and 0.019,
respectively, Fig. 7c). When H9 cells are exposed to BMP4
differentiating medium, both models are still able to capture the
increase in age (regression coefficient t-test p-value= 0.024 and
0.013 respectively, Supplementary Figure 12).
Cellular reprogramming is currently the most effective way to

reduce the biological age of a cell. Thus, we analyzed the
methylation from a study (with accession ID GSE5484861) to check
whether reprogramming with the four Yamanaka factors (Oct-3/4,
Sox2, Klf4 and c-Myc) would lead to rejuvenation. Indeed, there is
a steady decrease in predicted age for AltumAge until day 20
(Fig. 7d). Horvath’s model, intriguingly, displays an initial increase
in predicted age at day 3. This likely artifact is not present in
AltumAge’s reprogramming time course.
Lastly, we investigated whether AltumAge could capture a

rejuvenation event caused by transient expression of several
reprogramming factors in aged human fibroblasts and endothe-
lial cells (GSE142439)62. Sarkar et al.62 demonstrated that several
biomarkers such as H3K9me3, SIRT1, HP1γ, and β-galactosidase
were restored to a youthful state after treatment. Horvath’s
model was able to capture a decrease in epigenetic age (linear
mixed-effects model p-value= 0.004, Fig. 7e). Interestingly,
there was no difference before and after the intervention
according to AltumAge (linear mixed-effects model p-value=
0.966, Fig. 7b). While the researchers tracked the cells until six
days after treatment, it is possible that the apparent restoration
of youthful biomarkers would not endure. Indeed, studies have
shown that transient reprogramming causes only temporary
rejuvenation63–65. Altogether, AltumAge performs as well as
Horvath’s model for most cases and, more importantly, it
captures an expanded global methylation landscape. It can also
robustly recognize age-related epigenetic patterns while poten-
tially avoiding overestimating the impact of temporary inter-
ventions and detecting interventional artifacts.

DISCUSSION
The creation of new quantitative aging measurements has been
rapidly expanding with the burgeoning field of the biology of
aging. Epigenetic clocks are a tool that can aid researchers to
understand better and to measure the aging process. In 2013,
Horvath showed it was possible to use just a couple of CpG sites to
predict a person’s age based on DNA methylation accurately. It
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was a giant leap in the field. However, his 2013 ElasticNet model
or other versions of linear models are still widespread despite
recent advances in machine learning. The accuracy of such linear
models was so good that it was difficult to imagine a model
significantly outperforming it66. Other deep learning methods,
which slightly outperform ElasticNet, have focused thus far only in
a single tissue type1617.
We show that our neural network-based model, AltumAge, is an

overall better age predictor than ElasticNet. While our more
comprehensive and larger data does improve the performance,
the capability of neural networks to detect complex CpG-CpG
interactions and the expanded feature set with 20,318 CpG sites
also contribute to its lower error. For within-data set prediction -
which is the case for several studies which create a new epigenetic
clock - AltumAge performs drastically better than state-of-the-art
methods. Even for LOOCV analysis, while the improved perfor-
mance of AltumAge over ElasticNet was not as substantial, it
performed better in older ages and new tissue types. Arguably, a
more generalizable model like AltumAge can better capture pan-
tissue age-related changes.
Deep learning models have shown promise in several

biological tasks, given their good performance on unstructured
data. They have been for many years seen as “black-box” models,
but new interpretation methods have made it possible to get
interesting insights for them. Our interpretation of AltumAge
provides a detailed relationship between each of the 20,318 CpG
sites and age, showing that while most CpG sites are mostly
linearly related with age, some important ones are not. Given
recent advances in epigenetic editing1, finding these DNA
methylation sites to delay or reverse aging may be necessary
for future interventions to tackle the disease. AltumAge allied
with other deep learning inference methods can provide
information on highly interacting CpG sites. Sometimes the
primary locus of an epigenetic editing intervention, given its
place in the genome, may be difficult to target because of the
chromatin structure. Consequently, knowing secondary CpG sites
that affect how the CpG of interest interacts with age could
guide such interventions. We show that one can obtain
biological hypotheses for the same from the data using
AltumAge. For example, we observe that cg19722847 located
inside the gene IPO8 could regulate cg10523019, which lies in
RHBDD1. Analysis of ChromHMM annotations shows that the
top-ranking CpG sites are associated with gene regulatory
regions and CTCF binding sites. Finally, we highlight the age-
related KEGG pathways obtained for genes with these CpG sites,
indicating that the model is learning valuable biological
information from the data.
We also explore how age acceleration as determined by

AltumAge has potentially meaningful biological applications.
AltumAge predicts higher age acceleration for cells with immune
and mitochondrial, similarly to Horvath’s model. Moreover,
AltumAge displays a higher correlation between cell passage
number and predicted age. More importantly, AltumAge, in
contrast to Horvath’s model, predicts higher age acceleration for
cancer. It seems that epigenetic clocks highly predictive of
mortality show this behavior consistently53. Age acceleration in
tumors can be thought of as a further deviation from the original
state in Waddington’s landscape. Intriguingly as well, AltumAge
does not uncover a rejuvenation event from transient reprogram-
ming62. This observation is possibly due to the temporary nature
of the rejuvenation event, which may not globally change age-
related DNA methylation patterns. Since AltumAge considers a
much larger portion of the epigenome, it may be more resistant to
detecting transient events. Another contrast with Horvath’s model
is that during a reprogramming time course study, it does not
show an initial increase in predicted age, likely an artifact.
In future work, it would be interesting to create a deep learning

model with Illumina’s EPIC array with the roughly 850 thousand

CpG sites to understand more deeply how genomic location can
affect influence in aging. In addition, by having several CpG sites
in a single gene, it is also possible to better understand how
methylation in different positions may affect the contribution of a
particular gene to the aging process. Currently, however, there are
only a few EPIC array data sets publicly available. Another
interesting application for deep learning in the aging field is the
creation of epigenetic clocks that directly predict mortality.
Currently, the state-of-the-art mortality predictor is GrimAge67,
which was create based on a linear Cox proportional hazards
model. We anticipate that using neural networks to include non-
linear relationships and CpG-CpG interactions would result in a
better lifespan predictor.
Overall, we have shown that deep learning represents an

improvement in performance over current approaches for
epigenetic clocks while at the same time providing new, relevant
biological insights about the aging process.

METHODS
DNA methylation data sets
For model training and testing, we gathered normal tissue samples from
142 publicly available DNA methylation data sets from the Gene
Expression Omnibus, Array Express, and The Cancer Genome Atlas,
comprising of the platforms Illumina Infinium HumanMethylation27 and
the Illumina Infinium HumanMethylation450. All selected data sets had
both processed beta values and age available for all samples. Missing
values per data set were imputed with a KNN imputer from scikit-
learn. Next, the data was normalized using the beta mixture quantile
normalization (BMIQ) with the optimized code from Horvath, called
BMIQCalibration3,68. 13 data sets contained tumor samples which were
separated for later analysis. Samples that failed BMIQ normalization were
removed. Then, each data set was split 60% for training (n= 8050) and
40% for testing (n= 5455). The within-data set split ensures the
distribution of age, gender, and tissue type between training and testing
sets are unbiased (Supplementary Figure 4). In the training set, the data
was further randomly subdivided by data set, with 85 (n= 4394) for model
selection and 57 (n= 3656) for validation. After the best model was
selected, it was trained in the full training set (n= 8050) and analyzed in
the test set. Supplementary Figure 1a shows a schematic of the division of
the data. The full list of data sets used is available in Supplementary Note 1.
For twelve data sets in which gestational week was available, the

encoding for age is the following:

y ¼ 7 � w � 40
365

(1)

where w is the gestational week, and y is the age in years. A gestational
week below 40 would have negative age; for instance, 30 weeks would be
encoded as 7*(30− 40)/365=− 0.192. In the US in 2013, the average birth
occurred at an estimated 38.5 weeks69. This number has changed slightly
over time, and since preterm deliveries skew the average more than late-
term births, we considered gestational week 40 as age 0 in such data sets.
For the cancer age acceleration analysis, we compared the test set of 13

data sets with the aforementioned separated cancer samples. These data
sets were GSE32393, GSE37988, GSE26126, GSE63384, GSE59157,
GSE32867, GSE30759, GSE31979, GSE77955, GSE52068, GSE49149,
GSE39004. We further added GSE53051, which contains normal and tumor
samples from five tissue types, for the analysis. It is worth noting that
analyzing GSE53051 separately did not change the outcome of higher
tumor age acceleration predicted with AltumAge vs. no difference with
Horvath’s model. In total, we compared 434 normal and 1856 cancer
observations across 10 different tissue types (Figure 6).
Lastly, a brief description of all data sets used, either for training, validation,

testing, or any other analysis, is in Supplementary Note 1. Any sample that
was excluded is explicitly mentioned there alongside brief notes.

CpG site annotation
For the annotation of CpG sites, GENCODE and Zhou et al’s annotations
were used70,71. 41 data sets from ENCODE with the 18-state ChromHMM
information were gathered37: ENCFF717HFZ, ENCFF718AGZ, ENCFF371WNR,
ENCFF318XQO, ENCFF340OUL, ENCFF893CAJ, ENCFF151PZS, ENCFF098CED,
ENCFF273PJW, ENCFF377YFI, ENCFF773VYR, ENCFF928QES, ENCFF786HDE,
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ENCFF827FZN, ENCFF364PIY, ENCFF802QCI, ENCFF021NNN, ENCFF510ZEI,
ENCFF175NGE, ENCFF670DBL, ENCFF825ZCZ, ENCFF912ILE, ENCFF725WBV,
ENCFF829SZB, ENCFF483NRC, ENCFF717RYX, ENCFF249ZBG, ENCFF20
5OTD, ENCFF765OKG, ENCFF820YPQ, ENCFF685BMF, ENCFF545ZMG,
ENCFF294UQS, ENCFF104ZSA, ENCFF370EGY, ENCFF860FWW, ENCFF177TTP,
ENCFF151ZGD, ENCFF743GHZ, ENCFF990YHL, and ENCFF036WIO. Since
AltumAge is a pan-tissue clock, the mode of each state was chosen for each
CpG site.

Model selection
Multiple machine learning models were tested in the validation set. The
evaluation metrics were median absolute error (MAE), mean squared error
(MSE), Pearson’s correlation coefficient (R), and median error.
To validate and train the models, the beta value of each CpG site was

scaled with a robust scaler which removes the median and scales
according to the interquantile range. A robust scaler was chosen as
opposed to a standard scaler (mean= 0, var= 1) to better resist distortions
caused by outliers. The robust scaler was fitted with the training data of
each model simply as a step before model training. In addition, only 20,318
CpG sites common to all three platforms Illumina Infinium HumanMethyla-
tion27, Illumina Infinium HumanMethylation450, Infinium Methylation EPIC
were chosen as features.
The non-neural network models trained with scikit-learn were

support vector regression (with an RBF kernel) and random forest with the
standard hyperparameters. ElasticNet, trained with glmnet, used the
built-in λ optimization with parameters alpha= 0.5 and n_splits= 10.
Moreover, for ElasticNet, Horvath’s age transformation was used3.
To select the best performing neural network with tensorflow, we

conducted a grid search with the following hyperparameters: number of
hidden layers (2, 5, or 8), number of neurons per dense layer (32 or 64),
activity and kernel L2 regularization coefficients (0, 0.0034, or 0.0132),
dropout (0 or 0.1), Gaussian dropout (0 or 0.1), batch normalization (yes
or no), activation function (ReLU or SeLU), and learning rate (0.0002,
0.0005, or 0.001). The following parameters were held constant: optimizer
(Adam), batch size (256), number of epochs (300), loss function (MSE),
and learning rate decay by a factor of 0.2 after a 30-epoch plateau in the
training loss. The weights with the lowest training loss were chosen. After
selecting the best hyperparameters, we trained the neural network with
adversarial regularization with neural_structured_learning with
multiplier= 0.05, adv_step_size= 0.005. The main idea of adversarial
regularization is to train a model with adversarially-perturbed data (called
adversarial examples) in addition to the original training data. These
adversarial examples are constructed by intentionally adding noise and
cause the model to mispredict. By training with such examples, the
model learns to be robust against adversarial perturbations (or noise)
when making predictions.
We dubbed the best performing deep neural network as AltumAge. It

consists of 5 hidden layers, 32 neurons per layer, activity and kernel
regularization coefficients of 0.0034, no dropout, gaussian dropout of 0.1,
with batch normalization, SeLU activation, and learning rate of 0.001.
AltumAge was also tested in the validation set with a smaller set of
features using the CpG sites selected from the ElasticNet.
To compare our deep learning approach with other state-of-the-art

neural networks, we tried TabNet, an attentive interpretable tabular
learning method19. Similarly, TabNet was trained for 300 epochs.
The results for the validation set with the full list of models, including the

replication of Horvath’s model3, is in Supplementary Table 1. Support
vector regression was by far the worst performer (MAE= 14.229, MSE=
458.956), followed by random forest (MAE= 6.833, MSE= 165.354). All
other models displayed R > 0.9, with AltumAge having the lowest MAE
(3.563) and MSE (57.071).

SHAP and DeepPINK
To obtain the SHAP values for AltumAge, the function GradientEx-
plainer from shap was used on the test set. For the DeepPINK
importance values and feature selection, the standard architecture and
number of epochs was used28. To create the knockoff features for
DeepPINK, the function knockoff.filter from the R 4.0.2 package
knockoff version 0.3.3 was used with the importance statistic based on
the square-root lasso.
Both SHAP and DeepPINK importance values were normalized so that

their sum would equal to 100. Each importance value thus represents a
percent contribution of a certain feature.

Statistical analysis
All statistical tests were conducted with packages scikit-learn,
statsmodel, or scipy. Tests that were one-sided were explicitly
mentioned in the main text; all others were two-sided.
To assess the performance of the models, we used median absolute

error (MAE), mean squared error (MSE), Pearson’s correlation coefficient (R),
and median error. To compare the performance of ElasticNet and
AltumAge in the within-data set setup, we also used Alpaydin’s Combined
5x2cv F test72, which combines several metrics to compare the statistical
significance in error between two models across different cross-validation
splits. This ensures that any improved performance is not simply due to a
favourable random split.

DATA AVAILABILITY
The list of all the data sets used, a summary of the results per data set, and detailed
instructions to run AltumAge can be found in the paper’s GitHub repository (https://
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CODE AVAILABILITY
Detailed instructions on how to run AltumAge can be found in the paper’s GitHub
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