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Introduction
Hypoglycaemia is a common biochemical finding 
in the newborn, infancy, childhood and adulthood 
periods. In children hypoglycaemia may be due to 
many different causes.1 Adults can also present 
with hypoglycaemia but the underlying causes 
tend to be different. The most severe form of 
hypoglycaemia, in children and adults, is hyperin-
sulinaemic hypoglycaemia (HH). In HH the 
secretion of insulin from the pancreatic β-cell 
becomes unregulated and uncoupled from glu-
cose metabolism, so that insulin secretion becomes 
inappropriate for the blood glucose level, leading 
to persistent and recurrent hypoglycaemia. In 
children the congenital forms of HH are more 

common than in adults and the clinical presenta-
tion in newborns and infants is typically with 
severe and persistent hypoglycaemia.2 The medi-
cal management of newborns and infants with 
severe forms of HH is complex and some patients 
are treated with somatostatin analogues, both 
short and long acting (such as octreotide and lan-
reotide respectively) to suppress insulin secretion, 
so that blood glucose levels can be maintained 
within the normal range.3 Somatostatin (SST) is a 
peptide hormone that is released by the delta cells 
(δ-cells) of the pancreas and has powerful effects 
on insulin and glucagon secretion from the pan-
creatic β-cell and α-cell respectively. Although 
SST analogues are widely used in the treatment of 
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HH both in children and in adults, to our knowl-
edge, no reviews have been published on this sub-
ject previously. In this review we will first give the 
clinical background of the different types of HH; 
then, we discuss the physiology and pharmacology 
of SS; outline the use of SS analogues for treating 
different types of HH; review the literature on the 
use of SS analogues for treating HH and finally we 
discuss the side effects related to the use of SS 
analogues for HH.

Background to hyperinsulinaemic 
hypoglycaemia
HH is a biochemical finding of low blood glucose 
levels in the presence of dysregulated insulin secre-
tion. It typically presents with severe and persistent 
hypoglycaemia.2 Under normal physiological con-
ditions, glucose metabolism is coupled to β-cell 
insulin secretion so that blood glucose levels are 
maintained between 3.5 mmol/L and 5.5 mmol/L. 
However, in HH this coupling of glucose metabo-
lism to insulin secretion is perturbed so that insulin 
secretion becomes unregulated.4

HH is a major cause of severe and persistent 
hypoglycaemia in children, especially in the new-
born period.5 The congenital forms of HH (shown 
in Table 1) are more common in children than in 
adults. In adults an insulinoma is the commonest 
cause of endogenous HH. HH is also observed in 
patients who have undergone gastric by-pass sur-
gery for obesity and the secondary cause is due to 
the side effects of medications such as sulphony-
lureas. Clinically it is important to make the diag-
nosis of HH as quickly as possible and stabilize 
the blood glucose levels as the episodes of hypo-
glycaemia can lead to brain damage, especially in 
the newborn. Table 1 lists all the causes of HH.

HH in children
In children, HH can be transient (secondary to 
maternal diabetes, intrauterine growth retardation 
or perinatal asphyxia) or permanent. The transient 
forms of HH usually resolve spontaneously but 
occasionally may need treatment.6 The common-
est cause of transient HH in the newborn period is 
secondary to maternal diabetes mellitus (gesta-
tional or pre-gestational) and in the vast majority 
of newborns this will resolve within a few days. 
Some newborns with intrauterine growth retarda-
tion or perinatal asphyxia may have a protracted 
form of HH which will require treatment.6

The permanent forms of HH are due to genetic 
causes that perturb the normal physiological 
mechanisms of regulated insulin secretion from 
the pancreatic β-cell. Currently, genetic muta-
tions in 14 different genes lead to different forms 
of permanent HH, which lead to a spectrum of 
severity ranging from mild, moderate to severe 
HH.7 The most severe forms of HH are due to 
mutations in ABCC8/KCNJ11, which encode the 
SUR/KIR6.2 proteins, respectively, of the pan-
creatic β-cell KATP channels.8,9 These KATP chan-
nels play a pivotal role in linking the metabolism 
of glucose inside the β-cell to changes in the β-cell 
membrane potential, intracellular calcium home-
ostasis and insulin secretion.4 Mutations in the 
ABCC8/KCNJ11 lead to unregulated insulin 
secretion and in most cases to severe hypoglycae-
mia, which is usually medically unresponsive.

In the congenital forms of HH that occur in chil-
dren, there are two main histological subtypes, 
namely diffuse and focal HH,10,11 and in a few 
patients, atypical forms have been described.11 In 
diffuse HH the whole of the pancreas is affected 
whereas in focal only a small region of the pan-
creas is involved in the abnormality. In terms of 
clinical management, children with focal lesions 
can now be identified pre-operatively and the 
focal lesion can be removed surgically, providing 
a cure for hypoglycaemia.12 In contrast, infants 
with the diffuse type of HH usually do not respond 
to medical therapy and will require a near-total 
pancreatectomy, which leads to the development 
of diabetes mellitus and pancreatic exocrine insuf-
ficiency.13 Therefore, given that infants with dif-
fuse HH develop diabetes following near total 
pancreatectomy, if it is possible they should be 
managed aggressively medically.14 The use of 
SST analogues (both short-term and long-term) 
is one form of medical therapy where it might be 
possible to avoid the need for partial or subtotal 
pancreatectomy in these patients. Interestingly, in 
the atypical forms of HH, there is evidence to 
suggest that the δ-cells that secrete SST might be 
increased in numbers and may contribute to the 
pathophysiology.15

HH in adults
Insulinoma. Insulinomas are the most common 
functioning endocrine neoplasm of the pancreas, 
occurring most commonly in the fifth and sixth 
decades16 with an incidence of about 1–4 million.17,18 
Presentation during childhood is extremely rare but 
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Table 1. Causes of hyperinsulinaemic hypoglycaemia.

Transient nature

 Infant born to diabetic mother (gestational or permanent diabetes)

 Intrauterine growth retardation

 Rhesus disease

 Perinatal asphyxia

 Erythroblastosis fetalis

Childhood onset – persistent nature

Congenital causes Genetic mutations in:

 ABCC8, KCNJ11, GDH, HADH, GCK, SLC16A1, GLUD1, UCP2, HNF4A, HNF1A, HK1, PGM1, PPM2

Syndromic causes Beckwith–Wiedemann

 Mosaic Turner

 Timothy

 Soto

 Simpson–Golabi–Behmel

 Kabuki

 Patau – Trisomy 13

 Rubenstein Taybi

 Costello

 Congenital disorders of glycosylation (CDG types 1A, 1B and 1D)

 Congenital hypoventilation

 Poland

Childhood/adult onset – persistent nature

Tumours IGF-2-oma

 Benign and malignant insulinoma

 Non-islet cell tumour hypoglycaemia

Drug-use related Glinides

 Insulin

 Sulphonylureas

Factitious hypoglycaemia Munchausen syndrome by proxy

Postprandial Dumping syndrome

 Post gastric by-pass surgery for morbid obesity
Non-insulinoma pancreatogenous hypoglycaemia

Other causes Auto-antibodies against insulin

 Insulin resistance syndrome
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both benign and malignant cases have been reported 
in children.19 The majority (90%) of insulinomas 
are benign, solitary, intrapancreatic and <2 cm in 
diameter. Classically, symptoms become evident in 
the fasting state or following exercise; however, it is 
now known that insulinoma can also present with 
postprandial symptoms.20 Somatostatin analogues 
have been used for the management of adult patients 
with both benign and malignant insulinomas.

Postprandial hyperinsulinaemic hypoglycaemia 
after gastric by-pass surgery. Roux-en-Y gastric 
by-pass is a surgical procedure used in the man-
agement of morbid obesity mostly in adults but 
now also being used in adolescents. Postprandial 
HH (PPHH) is a well-recognized complication of 
this procedure. It was first described in 2005 in six 
patients who had undergone Roux-en-Y gastric 
by-pass surgery.21 PPHH is relatively common 
after gastric by-pass, with approximately 30–40% 
of patients reporting symptoms of hypoglycaemia 
in one study.22 Biochemically, patients show hypo-
glycaemia with exaggerated insulin and glucagon-
like peptide-1 (GLP-1) responses following meal 
ingestion with early enhancements of hepatic insu-
lin sensitivity and later improvements in peripheral 
insulin sensitivity.23 GLP-1 has a stimulatory and 
trophic effect on pancreatic β-cells, and plasma 
levels increase after a meal and can lead to hyper-
insulinaemia and hypoglycaemia.24,25

Background to SST
Krulich et  al.25 first observed that hypothalamic 
extracts of rats and sheep contain a growth-inhib-
iting factor. Further, Brazeau et al.26 isolated and 
characterized a peptide that inhibited the release 
of growth hormone from rat anterior pituitary 
cells. This peptide was named somatostatin 
(somatotroph release-inhibiting factor). It was 
hypothesized to be a neurohumoral substance 
that regulates growth hormone secretion from the 
pituitary gland through inhibition. A similar sub-
stance was extracted by Hellman and Lernmark 
from pigeon pancreatic islets that inhibited insu-
lin release.27 These and subsequent observations 
identified it as a chemical substance that inhibits 
hormone secretion in the hypothalamus, pancreas 
and other secretory cells in the gastrointestinal 
tract (gut), salivary glands and other excretory 
systems. It has several important roles and func-
tions as paracrine, autocrine or as true hor-
mones.28 SST, variously known as SMS, SOM, 
SST, growth hormone-inhibiting hormone or 

somatotropin release-inhibiting factor (SRIF), is 
a cyclic tetradecapeptide. While there are six dif-
ferent SST genes in vertebrates, humans only 
have a single gene (SST).29,30

Immunoreactive SST is initially synthesized as a 
preprohormone peptide that consists of 116 amino 
acids which is cleaved into prosomatostatin, which 
has 92 amino acids. Prosomatostatin further under-
goes C-terminal post-translational processing to 
generate somatostatin-14 (SST14) and somatosta-
tin-28 (SST28).30 SST is a peptide hormone that 
binds with G protein-coupled SST receptors to 
regulate a variety of functions which include 
 neurotransmission, cell proliferation and inhibition 
of insulin, glucagon and other hormones.31 
Somatostatinergic neurons are also active inhibitors 
in the anterior and neural lobe of the pituitary 
glands, limbic system, brain stem and spinal cord 
that control the output of excitatory neurons.32

Role of SST in pancreatic islet cells
The endocrine pancreas consists of beta (β), alpha 
(α), delta (δ), pancreatic polypeptide and epsilon (ε) 
cells (Figure 1) present in the Islet of Langerhans.33 
The predominant type of cell in the islet is the cen-
trally located β-cell (50–60%), which is responsible 
for secreting insulin in response to rising blood glu-
cose levels, whereas the SST δ-cells comprise about 
5%.34 Glucagon and SST are secreted and released 
by the α-cells and δ-cells respectively. The close 
proximity of these cells within the islet facilitates par-
acrine regulation of hormone production and activ-
ity.35 Metabolites such as glucose, ketone bodies or 
amino acids act as stimuli to regulate the islet cell 
hormone production.36 Although there is no direct 
evidence that suggests an important role for SST in 
glucose homeostasis, it has been proposed that dis-
ruptions to paracrine interactions (between the β-
cells and δ-cells) could lead to alterations in glucose 
metabolism.34,37

Role of SST in regulation of insulin secretion 
and β-cell physiology
SST is involved in the regulation of both insulin 
and glucagon secretion in response to changes in 
glucose levels by negative feedback mechanism.34 
In response to high blood glucose levels, insulin is 
secreted and, once normoglycaemia is attained, the 
loss of physiological stimulus inhibits insulin secre-
tion from β-cells. Also, there is inhibition from 
within the islet which is proposed to be mediated by 
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SST.38 The exact molecular mechanism behind 
this regulation is unknown, but several mediators 
have been proposed.39 SST14 and SST28 are the 
biologically active forms of SST.40 SST14 is the 
more predominant inhibitor of α-cell-mediated 
glucagon secretion, while SST28 inhibits insulin 
secretion from β-cells.41 However, SST treatment 
at very low glucose levels does not attenuate insulin 
secretion. This suggests that the mechanism of 
action could be glucose metabolism dependent.42

SST acts primarily via five transmembrane 
G-protein coupled SST receptor (SSTR) types 
(SSTR1–SSTR5) with SSTR1, SSTR2 and SSTR5 
being highly expressed in β-cells.43 The five recep-
tors share common signalling pathways such as  
the inhibition of adenylyl cyclase, activation of 
 phosphotyrosine phosphatase and modulation of 
 mitogen-activated protein kinase through G-protein-
dependent mechanisms. Also, each receptor may 
have specific signalling mechanisms such as 
SSTR2–5 being coupled to inward rectifying K+ 
channels, SST binds to the SST receptor on the 
β-cell and inhibits the activation of voltage gated 
calcium channels and ATP sensitive K+ channels. 
This reduces cyclic adenosine monophosphate 
(cAMP) levels thereby inhibiting the release of 
 insulin.44,45 Activation of SSTR by G-protein 
 coupling inhibits adenylyl cyclase activity that leads 
to reduced cyclic AMP and diminished insulin 
secretion,46 as seen in Figure 2.

It has been postulated that the inhibitory effect of 
SST on insulin secretion may be through altera-
tions in voltage-gated calcium channels, particu-
larly inhibition of L type channel.47 β-cells at 
stimulatory glucose concentrations, exposed to 
SST, show a significant reduction in intracellular 
calcium levels that results in diminished insulin 
secretion, suggesting a Gβγ complex-mediated sig-
nalling.39 In MIN6 cell lines, SST can inhibit glu-
cose-induced electrical activity by the combined 
activation of ATP sensitive potassium (KATP) 
channel and G-protein coupled inward rectifying 
potassium channel, suggesting that there may be 
some involvement of the KATP channels in 
response to SST.48 Further, gamma-aminobutyric 
acid (GABA), which is an inhibitory neurotrans-
mitter, is released by the β-cells, which mediates 
negative feedback for the δ-cells.49 GABA is 
involved in both activities: in autocrine positive 
feedback, which helps to produce a quick response 
to hypoglycaemia, as well as in paracrine negative 
feedback control of the β-cells, thus maintaining 
an optimal islet cell output after attaining normo-
glycaemia.49 Another peptide hormone, Urocortin3 
(Ucn3) is expressed by β-cells and α-cells in 
humans, which stimulates secretion of both insulin 
and glucagon.50 Ucn3 is stored in insulin granules 
and in the event of hyperglycaemia is released 
along with insulin. This provides a negative feed-
back loop via corticotropin-releasing hormone 
receptor 2a receptors to SST, which in turn 

Figure 1. Pancreatic islet is shown here with alpha, beta, delta cells and secreted hormones. This figure 
illustrates the mechanism of release of somatostatin from delta cells through the activation of glucose 
transporters and voltage gated calcium channels.33,36

ADP: Adenosine Diphosphate; ATP: Adenosine Triphosphate.
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inhibits the release of insulin.51 More recent data 
in mice and in human islets show that insulin- 
stimulated SST secretion plays a key role in 
 regulating serum glucagon secretion.52

Interaction of SST with other pancreatic 
hormones
Endogenous SST secreted from δ-cells has parac-
rine effects on the regulation of insulin and gluca-
gon secretion but the physiological significance of 
this regulation is still unclear. While SSTR5 seems 
to be a negative regulator of insulin secretion, 
SSTR2 inhibits glucagon secretion.53 SST recep-
tor knockout mice have been generated in order to 
understand the physiological roles of SSTR recep-
tors. Global SSTR knockout mice were generated 
in order to investigate the role of δ-cell-secreted 
SST in the regulation of insulin and glucagon 
secretion in vitro and in vivo.38 This study showed 
that δ-cell SST exerts a tonic inhibitory influence 
on insulin and glucagon secretion. Viable, fertile 
SSTR5 knockout mice that are otherwise healthy, 
exhibit no apparent phenotypic abnormalities.54 
Pancreatic islets from these mice show increased 
insulin content as compared with wild-type islets. 
These mice exhibited decreased blood glucose 
and plasma insulin levels and increased leptin and 
glucagon concentrations compared with wild-type 
mice. SST analogue 28 was not able to inhibit 

insulin secretion in knockout islets as effectively as 
from wild-type islets. In contrast, islets from 
SSTR2 knockout mice show no difference in basal 
glucagon and insulin secretion while potassium/
arginine-stimulated glucagon secretion was 
approximately 2-fold higher when compared with 
wild-type islets.42 Neither SST nor any SSTR-
selective agonist inhibited basal glucagon or insu-
lin release. SST14 potently inhibited stimulated 
glucagon secretion in islets from wild mice and 
much less effectively in islets from SSTR2 knock-
out mice. Both of these studies in mice suggest 
that SSTR5 is important for regulating insulin 
secretion and SSTR2 for glucagon secretion.

Ghrelin positive ε-cells are located in the periph-
ery of the pancreatic islet. Although ghrelin 
mainly controls appetite, it can also regulate the 
secretion of insulin and SST. The effects of ghre-
lin on insulin secretion and glucose physiology 
are complex and not completely understood. 
Broglio et  al.55 first showed that an intravenous 
injection of ghrelin leads to a decrease in insulin 
secretion and an increase in the blood glucose 
level. In another study an infusion of ghrelin led 
to an increase in the serum level of SST. This 
increase in the SST level could explain the reduc-
tion in the insulin level.56 Thus, ghrelin has com-
plex effects on insulin and SST secretion and 
blood glucose levels.

Figure 2. Mechanism of action of somatostatin (SST) on insulin secretion by negative feedback. SST binds to 
the SST receptor on the β-cell and inhibits the activation of voltage gated calcium channels and ATP sensitive 
K+ channels. This reduces cyclic adenosine monophosphate (cAMP) levels thereby inhibiting the release of 
insulin.44–46
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Background to SST analogues
SST has anti-proliferative, anti-secretory and 
anti-angiogenic properties, which makes it useful 
in the treatment of certain diseases of the gastro-
intestinal system, pancreas, peripheral neurons 
and the retina, among others.57 However, the 
half-life of SST is only 1–3 min due to quick deg-
radation by peptidases in plasma and tissues. This 
requires a direct continuous intravenous injection 
to produce the therapeutic effect. These limita-
tions prompted the discovery of octapeptide ana-
logues octreotide and lanreotide.58 Their mode of 
delivery is either subcutaneous injections or infu-
sions or by intravenous route.

Octreotide was the first US Food and Drug 
Administration (FDA) approved synthetic SST 
analogue (SMS 201-995), marketed as Sandostatin® 
and available in a conventional and a long acting 
formulation (Sandostatin LAR®). The Sandostatin 
LAR® formulation contains octreotide distributed 
within polymer microspheres and it is available for 
intramuscular injection.

Octreotide is an octapeptide in which the four 
amino acid sequence essential for the biological 
activity of the native hormone is retained. However, 
incorporation of N-phenylalanine, L-terminal 
amino alcohol, D-tryptophan and a cysteine bridge 
makes the molecule very resistant to metabolic 
degradation.59 The half-life of octreotide is 90–
120 min via subcutaneous administration and has 
a pharmacodynamic action lasting 8–12 h. 
Octreotide binds primarily to SSTR2 and SSTR5 
with a low affinity to SSTR3. The selective binding 
to SSTR2 results in increased therapeutic benefits 

and fewer adverse effects. Octreotide has 40 times 
greater potency than SST in inhibiting growth hor-
mone (GH) secretion. It has also demonstrated the 
ability to inhibit insulin and glucagon secretion in 
the pancreas.60 Figure 3 shows the structure of 
SST and SST analogue octreotide.

The development of long-acting formulations of 
SST analogues which require only weekly or 
monthly injections can improve patient compli-
ance. In particular, lanreotide (LAN) Autogel®, 
which is a viscous aqueous formulation supplied in 
ready-to-use prefilled syringes, can be administered 
every 28–56 days. Lanreotide is a cyclic octapeptide 
that is widely used for adults with neuroendocrine 
tumours. Pasireotide is a novel short synthetic SST 
analogue which exhibits high affinity binding to 
four of the five human SRIF receptor subtypes and 
has potent, long lasting inhibitory effects on GH 
and Insulin like Growth Factor (IGF-I) release.61

The oldest and most common use of these SST 
analogues is in the treatment of acromegaly and 
hormone dependent pituitary tumours17 where 
they control the hormonal imbalance as well as 
produce a tumour stabilizing effect.62 These are 
drugs of choice in gastrointestinal tumours such 
as VIP-oma, gastrinoma, glucagonoma, insu-
linoma and both typical and atypical carcinoid 
syndrome for symptomatic relief. Other, newer, 
uses for these drugs include endocrine tumours 
such as well differentiated thyroid tumours, pheo-
chromocytoma and adrenocortical tumours as 
well as non-endocrine tumours such as small cell 
lung cancer and melanoma. They are very effec-
tive in conditions such as portal hypertension and 

Figure 3. Structure of somatostatin (SST) and SST analogue octreotide.30,40
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oesophageal variceal bleeding, peptic ulcer and 
short bowel syndrome. Ophthalmologic indica-
tions include Graves’ ophthalmopathy and dia-
betic retinopathy among others.63

Octreotide has been shown to be beneficial in insulin 
dependent diabetes mellitus by increasing insulin 
sensitivity and in non-insulin dependent diabetes 
mellitus it reduces insulin resistance.64 It is also pro-
posed to be useful in the prevention of diabetic com-
plications such as diabetic retinopathy.65 However, 
the use of octreotide in diabetes mellitus and dia-
betic retinopathy is not registered and is experimen-
tal. Another potential use of octreotide is in imaging, 
namely somatostatin receptor scintigraphy (octre-
oscan), which helps to visualize autoimmunological 
processes in conditions such as lymphoma, medul-
lary thyroid cancer and breast cancer.66

The role of SST analogues in  
treatment of HH

Use of SST analogues in children with HH
The congenital forms of HH typically present 
with severe and persistent hypoglycaemia. The 
management of HH typically involves having a 
stepwise approach to assessing the response to 
different forms of medical therapy.2 In the acute 
situation blood glucose levels are stabilized with 
concentrated intravenous glucose infusions and/
or feeds. A bolus or a subcutaneous infusion of 
glucagon may also be used in the acute scenario. 
Once the biochemical diagnosis of HH is estab-
lished the first line therapy is with diazoxide. 
Genetic testing for the important causes of HH is 
now a key component in the management of 
patients with HH. Currently, diazoxide is the 
only drug approved by the FDA for the treatment 
of children with HH. Patients with mutations in 
ABCC8/KCNJ11 encoding the SUR1/KIR6.2 
components of the pancreatic β-cell typically do 
not respond to treatment with diazoxide (most of 
the other genetic forms of HH will respond to 
therapy with diazoxide). In these cases, when 
diazoxide fails, second-line treatment options for 
children are limited. In 1977 Hirsch et al.67 first 
described the infusion of synthetic cyclic SST in 
an infant with severe HH. This improved the 
blood glucose levels and reduced circulating 
serum insulin levels. The authors then treated the 
patient with single subcutaneous injections of 
50 µg of protamine zinc SST, which also improved 
pre-prandial blood glucose levels. In another early 

study, in 1981, Roti et  al.68 demonstrated an 
improvement in the blood glucose level in a 
patient with HH in response to an intravenous 
infusion of SST but no improvement in the blood 
glucose level in response to protamine zinc-SST, 
a long acting SRIF preparation. In the same year 
Aynsley-Green et al.69 reported the effect of SST 
infusion in two infants presenting at 9 weeks and 
5 days of age with severe HH. In both infants nor-
moglycaemia was restored with suppression of 
insulin secretion. The plasma concentrations of 
glucagon, cortisol, growth hormone, motilin, 
pancreatic polypeptide, gastric inhibitory of poly-
peptide, neurotensin, gastrin and vasoactive 
intestinal peptide decreased markedly during the 
SST infusion. In 1985 Bougnères et  al.70 used 
native cyclic SST in an infusion pump to treat a 
child with HH and achieved normal blood glu-
cose levels. Also, in 1985 Wendal et al.71 treated 
11 infants with SST and showed that it was very 
reliable in the treatment of neonatal hypoglycae-
mia due to hyperinsulinism for a limited period of 
time until subtotal pancreatectomy was per-
formed. These initial studies established the 
physiological basis for using SST in infants with 
HH. Then in 1986 Bruining et al.72 reported the 
use of long-acting SST analogue SMS 201-995 
(octreotide) in a newborn with severe HH. The 
patient presented with severe hypoglycaemia and 
seizures. The intravenous infusion of this  analogue 
(gradually increasing the dose from 2 to 50 µg/24 h) 
dramatically reduced circulating insulin levels 
and stabilized blood glucose levels.

SST analogues (such as octreotide) are now fre-
quently used as second line therapy for children 
who are not responsive to diazoxide and there are 
now a large number of studies supporting the use 
of SST analogues for childhood HH.73 Many 
studies document the use of SST analogues for 
treating childhood HH, dating back to 1977.14,27,67

–175 However some patients with HH do not 
respond to SST analogue treatment.

Interestingly, in some parts of the world where 
diazoxide is not available then octreotide has been 
used even as a first line therapy.176 SST analogues 
have also been used in the long term where in 
some patients with severe HH the need for pan-
createctomy can be avoided.14 The dose range is 
typically between 5 and 25 µg/kg per day (maxi-
mum dose can go to 40 µg/kg per day) adminis-
tered either intravenously, subcutaneously by 
continuous infusion, or as 6–8 hourly 
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subcutaneous injections for short- and long-term 
treatment of hyperinsulinaemia.2

The development of long-acting formulations of 
SST analogues which require only weekly or 
monthly injections can improve patient compli-
ance. In particular, lanreotide (LAN) Autogel®, 
which is a viscous aqueous formulation supplied in 
ready-to-use prefilled syringes, can be adminis-
tered every 28–56 days.177 Since its introduction 
into clinical practice, several studies have evalu-
ated the clinical utility of LAN Autogel® in the 
medical treatment of children with HH. The first 
study described two patients with HH who were 
initially managed with diazoxide and octreotide 
but then at the ages of 4 and 4.5 years were started 
on lanreotide acetate (Somatuline Autogel), 
administered by deep subcutaneous injection of 
30 mg once a month.98 This allowed the patients to 
come off the diazoxide and the daily octreotide 
injections and normoglycaemia was maintained. In 
the study by Le Quan Sang et  al.102 10 patients 
underwent replacement of their three daily subcu-
taneous octreotide (Sandostatin, Novartis) injec-
tions by a single and monthly intramuscular 
injection of long-acting release (LAR) octreotide 
(Sandostatin LP, Novartis). The study concluded 
that LAR octreotide was efficient, well tolerated 
and contributed to a clear simplification of the 
medical care. In another multicentre study,106 
involving six different centres in Europe, data were 
obtained retrospectively from 27 patients with HH 
who received long-acting SST analogues. These 
included information on glycaemic stability, auxol-
ogy and adverse effect profile in clinical follow-up 
assessments. The study concluded that long-acting 
SST analogues are effective in glycaemic control of 
patients with HH. Several other studies have also 
now documented the beneficial effects of long-act-
ing octreotide formulations in children with differ-
ent forms (focal and diffuse) of HH.110

The pharmacodynamics and pharmacokinetics of 
octreotide have largely been studied in adults with 
no studies in children. In blood, octreotide is mainly 
distributed in the plasma with about 65% bound to 
lipoproteins. Octreotide administered by subcuta-
neous injection is rapidly absorbed, with peak con-
centrations of 5.2 ng/mL occurring around 25 min 
after a 100-µg dose in adults. The apparent half-life 
of octreotide is approximately 1.7 h, which is sig-
nificantly greater than the 1–3-min half-life of SST 
(in adults).178 The effects of octreotide are variable, 
but can last for up to 12 h, and approximately 32% 

of a dose is excreted in the urine as unchanged 
drug.179 Dosage adjustments may be required in 
infants with impaired renal function which leads to 
decreased clearance and increased half-life.178 
Table 2 compares the pharmacology of short and 
long acting octreotide formulations.

Use of SST analogues in the management of 
PPHH after Roux-en-Y gastric by-pass
A number of different treatment options have been 
proposed for the management of PPHH after Roux-
en-Y gastric by-pass.180 These include having fre-
quent high-fibre meals and reduction or elimination 
of simple carbohydrates in the diet, and using medi-
cations such as acarbose, diazoxide, calcium channel 
blockers and octreotide.181 Long-acting octreotide 
formulations (such as Sandostatin-LAR) have been 
used in the management of PPHH due to Roux-en-
Y-gastric-bypass with equal efficacy as octreotide in 
suppressing hypoglycaemic symptoms.182 In one 
large study comparing the efficacy of subcutaneous 
octreotide with that of the long-acting LAR formula-
tion on 30 patients, it was found that the administra-
tion of LAR octreotide improved the oral glucose 
tolerance results, symptoms and quality of life in 
patients with postoperative dumping.183 Several 
other studies have described the use of short- and 
long-acting SST formulations for the management of 
PPHH due to Roux-en-Y-gastric-bypass.24,184,185

Use of octreotide in HH due to sulphonylureas
HH due to sulphonylureas (either due to treat-
ment or to intentional overdose) can also be man-
aged with octreotide. Sulphonylurea poisoning can 
lead to severe hypoglycaemia especially in children 
and in the elderly, which may be refractory to 
intravenous glucose infusion. In these cases, octre-
otide can be used to treat hypoglycaemia.186 Even 
in children with accidental poisoning due to sul-
phonylureas, octreotide has been safely used to 
restore normoglycaemia.187 In 1993 Boyle et al.188 
tested the hypothesis that octreotide could reverse 
sulphonylurea induced HH in eight normal sub-
jects administered glipizide on three occasions. 
They found that octreotide reduced and in four of 
eight subjects entirely eliminated the need for 
exogenous glucose after a large overdose of glip-
izide and concluded that octreotide was safe and 
effective and should be considered as a logical 
therapeutic alternative for this metabolic emer-
gency. Patients have also been described with sul-
phonylurea induced HH who are refractory to 
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treatment with boluses of dextrose but respond to 
octreotide.189 Since the first reports, there have 
been numerous studies190–217 describing treatment 
of sulphonylurea overdoses with octreotide. In vir-
tually all the studies that reported the use of octre-
otide, there were no serious adverse effects.

Use of SST analogues in patients with 
insulinoma
In 1975 Curnow et al. and Christensen et al.218,219 
both reported the use of SST in patients with insu-
linoma. In both cases the infusion of SST improved 
the blood glucose profile of the patients. Following 
these two studies, several other studies were then 
also published which documented the efficacy of 
SST as well as a potential aid in diagnosis in patients 
with both benign and malignant insulinoma.220–225

For adults with insulinoma, the first report on the 
use of a SST analogue was in 1979, when a new 
long-acting octapeptide analogue of SST, Des 
AA1, 2, 4, 5, 12, 13 D Try8 SST, was tested in 
eight patients with different pancreatic endocrine 
tumours.226 The analogue was given subcutane-
ously and suppressed the tumour-derived hor-
mones in patients with insulinomas, glucagonomas 
and gastrinomas for up to 24 h. The prolonged 
action appeared to be the result of slow release 
from the injection site and there were no side 
effects reported. Long-acting SST analogue 
(SMS 201-995) was used in the early 1980s in 
patients with, again, both benign and malignant 
insulinomas.227,228 Since these early studies 
numerous studies have documented the benefi-
cial effects of SST analogues in insulinoma.

The use of SST analogues in the scintigraphic 
imaging of insulinomas and in the medical manage-
ment of these tumours seems to be restricted to a 
subgroup of patients. SSTR2 and 5 are the pre-
dominant subtype receptors expressed in about 
70% of malignant insulinomas whereas SSTR1 is 
present in about 50% and SSTR3 and 4 in approxi-
mately 15–20%.229 Interestingly some insulinomas 
do not express any SSTR. In insulinomas where 
there are no SST receptors, octreotide will aggra-
vate hypoglycaemia due to suppression of glucagon 
and growth hormone.230 So, a test dose of octreo-
tide is suggested before commencing treatment. 
Pasireotide, another SST analogue which can tar-
get multiple receptors, was reported to achieve bet-
ter glycaemic control than octreotide and lanreotide 
in a patient with malignant insulinoma.231

Octreotide during pregnancy
The use of octreotide during pregnancy seems 
to be associated with poor outcome, as reported 
in two studies,232,233 but in another study114 
octreotide treatment was found to be effective in 
controlling endogenous hyperinsulinism during 
pregnancy and did not affect physiological changes 
during pregnancy such as insulin- resistance or 
placental GH level with no abnormalities in the 
foetus.

In the report by Skajaa et al.,232 a woman with a 
genetic form of HH was given octreotide during 
the first four pregnancies, resulting in two cases of 
early termination of pregnancy on parental request 
and two cases of inappropriate foetal growth and 
unviable outcome. The following two pregnancies, 
treated with diet only, had a successful outcome. 
In the second report, by Geilswijk et al.,233 treat-
ment of the mother with octreotide (who was also 
affected by a genetic form of HH) led to foetal 
growth restriction. These two observations suggest 
that octreotide should be used with caution during 
pregnancy in mothers who have genetic forms of 
HH.

Octreotide use in small for gestational age 
infants with HH
A case series of neonates born small for gesta-
tional age with HH were successfully treated with 
octreotide infusion and the blood glucose was 
corrected with no complications.176

Octreotide use in Beckwith–Wiedemann 
syndrome and HH
There have been two cases of newborns with 
Beckwith–Wiedemann syndrome and HH who 
were managed with SST analogues, again with no 
complications.118,122

Side effects of SST analogues in patients 
with HH
The local subcutaneous injection of octreotide 
can cause pain, a sensation of stinging and 
 burning as well as redness and swelling. Common 
 gastrointestinal adverse effects of octreotide 
include delayed gastric emptying, reducing gall-
bladder contraction, nausea, abdominal cramps, 
 diarrhoea, malabsorption of fat, and flatulence.234 
STT analogues inhibit the secretion of GH,  prolactin, 
thyrotropin, cholecystokinin, gastric inhibitory 
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peptide, gastrin, motilin, neurotensin, secretin, 
glucagon, insulin and pancreatic polypeptide. 
They also inhibit the exocrine secretion of amyl-
ase of salivary glands; hydrochloric acid, pepsino-
gen, and intrinsic factor of gastrointestinal 
mucosa; and enzymes and bicarbonate of pan-
creas and bile in the liver.235 The suppression of 
GH (and IGF-I) and thyroid hormones, in the-
ory, can lead to stunting of growth; however, in 
clinical practice, the suppressive effects of octreo-
tide seem to be overridden with no major long-
term problems.3 In one study assessing the 
long-term impact of octreotide in children with 
HH, where the mean ± standard deviation dura-
tion of follow-up on octreotide therapy was 52.4 
(±33.8) months (range 6 months to 9.5 years), it 

was found that transient elevation of liver enzymes 
and asymptomatic gallbladder pathology were the 
most prevalent long-term side effects of octreo-
tide therapy.126 There was no correlation between 
the dose or the duration of octreotide therapy and 
the development of liver dysfunction and gall-
bladder pathology and no long-term effects on 
growth. Octreotide can decrease gallbladder con-
tractility and bile secretion, leading to steator-
rhoea, cholestasis, hepatic dysfunction and 
cholelithiasis.236,237 Blood flow to the splanchnic 
circulation is decreased by octreotide; hence, it 
must be used cautiously in babies at risk of 
necrotizing enterocolitis (see below). Table 3 lists 
all the side effects reported due to the use of SST 
analogues in children with HH.

Table 2. Comparison of octreotide, lanreotide and Sandostatin LAR.

Parameter Octreotide Lanreotide Sandostatin LAR

Dose range 5–25 µg/kg per day; 
maximum daily dose: 
35 µg/kg per day

30–90 mg per month Cumulative 31-day subcutanous 
dose, which will equal the monthly 
intramuscular dose

Half-life 90–120 min 23–30 days Steady state achieved after three 
injections

Time to peak action 0.4 h 7–12 h 1 h

Mode of administration Subcutaneous daily Deep subcutaneous or intra-
muscular injection once a month

Intramuscular injection once a 
month

LAR, long-acting release.

Table 3. Reported side effects of somatostatin analogues.

Side effects References

Hepatitis, cholestasis and gallstones Demirbilek et al.,126 Levy-Khademi et al.,236 Avatapalle et al.,162 Ben-Ari et al.,77 
Malik et al.,181 Koren et al.,78 Radetti et al.,124 Glaser et al.139

Necrotizing enterocolitis Laje et al.,238 Hawkes et al.,134 Abdel Khalek and Kandil138 Alsaedi et al.,150 
McMahon et al.,108 Reck-Burneo et al.239

Tachyphylaxis Thornton et al.,3 Hawdon et al.130

Inhibition of other hormones Aynsley-Green et al.69

Gastrointestinal dysmotility Glaser et al.139

Paradoxical hyperglycaemia and bradycardia Batra et al.173

Prolonged QT interval Celik et al.83

Deceleration of growth Yorifuji et al.113

Seizure after stopping octreotide Bas et al.169
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Necrotizing enterocolitis
Necrotizing enterocolitis (NEC) is a disease 
mainly of premature infants and associated with a 
high mortality rate. It typically presents with 
abdominal distension, bilious vomiting and 
bloody stools, which can lead to sepsis and shock 
in severe cases. NEC is characterized by coagula-
tion necrosis of the intestine, bacterial overgrowth 
and inflammation.240 The first report in the litera-
ture of octreotide-related NEC was in 2010 by 
Laje et  al.238 In this study, out of 197 neonates 
who developed NEC, four had no risk factor for 
NEC, except that they were being treated with 
octreotide. The authors reported that NEC 
occurred in 2% of neonates who were treated 
with octreotide for HH. See Table 3, which lists 
the studies reporting NEC in patients with HH 
due to SST analogue therapy. All reported cases 
of NEC associated with octreotide use in infants 
with HH occurred in neonates younger than 
1 month of age and within 15 days of commenc-
ing octreotide therapy, at doses of 15–27 µg/kg 
per day.241 However, a case of late-onset NEC in 
a patient with Beckwith–Wiedemann syndrome 
and HH, who was treated with a relatively low 
dose of octreotide, has also been reported.134

The mechanism of octreotide induced NEC in 
patients with HH is not completely clear. But it is 
known that octreotide reduces superior mesen-
teric artery blood flow as well as portal venous 
blood flow and blunts the normal postprandial 
rise. The reduction in blood flow seems to be 
dose dependent.242

Tachyphylaxis
The major limiting factor for the use of octreotide 
in children with HH is the associated tachyphy-
laxis. Nearly all patients show resistance to the con-
tinued use of octreotide, even to increasing 
doses.3,130 Some patients develop tachyphylaxis 
soon after treatment whereas in others it may take 
weeks or months to develop. The underlying mech-
anisms leading to tachyphylaxis are not known but 
might involve SSTR down-regulation, or G protein 
uncoupling and/or receptor internalization.243

Future directions
Although most children with HH show a good 
initial response to treatment with octreotide the 
response becomes less effective over time due to 
the tolerance effect. Therefore, more potent SST 

analogues are required with less tolerance. 
Pasireotide is a relatively new SST analogue with 
increased affinity for SSTR5 and with a longer 
half-life.244 Its affinity for SSTR5 is thought to be 
40 times that of the other analogues. It has been 
used primarily for the treatment of Cushing’s 
disease due to increased adrenocorticotrophic 
hormone secretion. However, in adults with 
PPHH due to gastric by-pass, it has been shown 
to be effective in comparison with octreotide.184 
Pasireotide has not been trialled in children with 
congenital forms of HH but it might offer poten-
tial treatment options for some forms of HH in 
the childhood period. Thus, one of the future 
directions could be to undertake a clinical trial of 
pasireotide use in children with HH and assess its 
effectiveness.

Peptide receptor radionuclide therapy (PRRT) is a 
relatively new mode of treatment for patients 
(mostly adults) with inoperable, usually metasta-
sized, neuroendocrine tumours. SST analogues 
are radiolabelled and can bind with high affinity to 
the cancer cell expressing the SST receptor. PRRT 
has been reported to be effective in adults with 
malignant insulinomas, with one study reporting 
successful control of blood glucose in five patients 
with malignant insulinomas.245 PRRT treatment 
has not been reported in children with HH, thus 
this could be another potential treatment modality 
which needs further exploration.

Conclusion
SST has a key physiological role in the inhibition 
of insulin and glucagon secretion from the pan-
creatic β-cells and δ-cells respectively, hence the 
use of its analogues in the treatment of different 
forms of HH. The precise molecular mechanisms 
involved in the inhibition of insulin and glucagon 
secretion are not known. Due to SST’s short half-
life SST analogues have been developed which 
are used to treat various conditions, including dif-
ferent forms of HH in children and adults. Both 
octreotide and the long-acting formulations are 
effective in the management of patients with HH. 
In the neonatal period, octreotide must be used 
with caution as there is a risk of developing NEC.
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