
      

      
                                                                                                 http://dx.doi.org/10.14336/AD.2017.1014      

 

*Correspondence should be addressed to: Dr. Walter E. Muller, Department of Pharmacology, University of Frankfurt am Main, 

Biocenter, D-60438 Frankfurt am Main, Germany. Email:w.e.mueller@em.uni-frankfurt.de  
 

Copyright: © 2017 Eckert SH et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
 

ISSN: 2152-5250                                                                                                                                                                                       729 
                  

 

  

Review 

 

Mitochondrial Pharmacology of Dimebon (Latrepirdine) 

Calls for a New Look at its Possible Therapeutic Potential 

in Alzheimer’s Disease 
 

Schamim H. Eckert1, Janett Gaca1, Nathalie Kolesova1, Kristina Friedland1, 2, Gunter P. 

Eckert1,3, Walter E. Muller1, * 

 

1Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany 
2Deparment of Molecular and Clinical Pharmacy, University of Erlangen, D-91058 Erlangen, Germany 
3Department of Nutricional Sciences, University of Giessen, D-35392 Giessen, Germany 

 
  [Received July 25, 2017; Revised October 10, 2017; Accepted October 14, 2017] 

 
ABSTRACT: Dimebon (latrepirdine), an old antihistaminic drug, showed divergent results in two large clinical 

trials in Alzheimer disease (AD), which according to our review might be related to the specific pharmacological 

properties of the drug and the different patient populations included in both studies. Out of the many 

pharmacological effects of Dimebon, improvement of impaired mitochondrial function seeems to be most 

relevant for the substantial effects on cognition and behaviour reported in one of the studies, as these effects are 

already present at the low concentrations of dimebon measured in plasma and tissues of patients and 

experimental animals. Since impaired mitochondrial function seems to be the major driving force for the 

progression of the clinical symptoms and since most of the clinical benefits of dimebon originate from an effect 

on the symptomatic deterioration, mitochondrial improvement can also explain the lack of efficacy of this drug 

in another clinical trial where symptoms of the patiets remained stable for the time of the study. Accordingly, it 

seems worthwhile to reevaluate the clinical data to proof that clinical response is correlated with high levels of 

Neuropsychiatric Symptoms as these show a good relationship to the individual speed of symptomatic decline in 

AD patients related to mitochondrial dysfunction.  
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Dimebon (latrepirdine) represents an old antihistaminic 

drug (first generation H1-antagonist), originally 

developed and clinically used in Russia as an antiallergic 

drug [1,2]  Based on some preclinical studies and findings 

about robust cognition enhancing properties in a small 

group of Alzheimer disease (AD) patients, [1] a large 

placebo controlled phase II trial was carried out in nearly 

200 AD patients indicating substantial therapeutic benefit 

over placebo after 24 weeks not only for cognitive 

symptoms and for activities of daily living, but also for 

neuropsychiatric (mainly affective) symptoms [3]. 

Dimebons large effect was driven by an improvement 

over baseline and even more by the reduction of the 

typical deterioration of AD symptoms in the placebo 

group. The substantial therapeutic effects of dimebon 

remained stable in a continuation phase over additional 6 
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months. Dimebon’s potential use in geriatric memory 

disorders was also supported by reports about small 

cognition improving effects in Huntington disease 

patients [4], but contrary to the AD trial, the effect was 

only driven by an improvement over baseline while no 

change (improvement or deterioration) was seen in the 

placebo group. This positive effect was not reproduced in 

a second larger trial where both groups (dimebon and 

placebo) improved to about the same extent (1.5 MMSE 

points) with no placebo-verum difference [5]. Similarly, a 

larger consecutive trial in AD patients failed to show 

positive effects of dimebon over a similar study time (6 

month) and for a similar dimebon dose (20 mg, tid) [6]. 

Contrary to the initial trial [3] where the placebo group 

got worst over time (a reduction on the ADAS-cog scale 

by about 2.0 points) the placebo group in the second trial 

improved over time by 1.2 ADAS-cog points. 

These negative data immediately led to a 

discontinuation of the clinical development program of 

dimebon because of lack of activity [6], but also because 

of lack of clear data about a possible mechanism of action 

for this drug. Meanwhile much more information about 

the pharmacological and pharmacokinetic properties of 

dimebon became available which call for a 

reconsideration of the clinical data in AD by emphasizing 

much more carefully possible differences between the 

patient groups in the two above mentioned trials [7-10]. 

 

Pharmakokinetics and pharmacology of dimebon 

 

Pharmakokinetics 

 

When the clinical studies mentioned above were carried 

out, very little was known about the pharmacokinetics of 

dimebon [11]. Subsequent studies in mice and rats 

reported dimebon plasma levels at pharmacologically 

active oral doses between 10 to 50 pmol/ml with about 2 

to 3 times higher concentrations for the very short plasma 

peak around 30 min after administration [12,13]. 

Elimination was very rapid with most of dimebon 

excreted after 6 h. Concentrations in mouse and rat brain 

were about ten times higher compared to the respective 

plasma levels. Plasma levels reported for AD patients 

taking dimebon at an oral dose of 20 mg tid were around 

10-15 pmol/ml [3,14]. These data agree with a recent 

study in human volunteers showing peak plasma levels of 

around 1.3 ng/ml (about 5 pmol/ml) after a single oral 

dose of 10 mg dimebon [15]. Using the brain/plasma 

ratios reported for mice or rats therapeutical brain levels 

of dimebon therefore can be estimated to be around 100 

pmol/ml [14]. 

Bioavailability of oral dimebon seems to be poor as 

seen in a study comparing oral dosing with transdermal 

administration due to a large first pass metabolism and 

shows a large individual variability with up to 20 times 

differences of AUC values in poor or extensive CYP2D6 

metabolizers [15]. 

 

Receptor Pharmacology 

 

As a classical H1-antihistaminic drug dimebon displays 

high affinity for the H1-receptor with an Ki value around 

1 nmol/l [1,12,16]. Contrary to most other old 

antihistaminics, dimebon does not have anticholinergic 

(muscarinic receptor antagonistic) properties [12]. 

Nanomolar target affinity (H1 receptor) agrees with 

its daily dose as an antiallergic drug (10-20 mg tid) [17] 

and its plasma concentration in AD patiens when used at 

the same dose (10-15 nmol/l) [3]. It is also a potent 5-HT7 

ligand with an Ki value of 7.0 nmol/l, and also interacts 

with several 5-HT2, 5-HT6, and alpha2 adrenergic 

receptor within the relevant concentration range (see 

above) up to 50 or even 100 nmol/l [12]. Dimebon has 

also been reported to engage with several other neuronal 

mechanisms like NMDA and AMPA receptors, Ca-

channels, acetylcholinesterase, and glutamate release, but 

the concentrations required (over 10.000 nmol/l) 

areclearly outside possible therapeutic brain 

concentrations [1,13,16,18,19]. 

Its 5-HT6 receptor antagonistic properties (Ki 

around 30 nmol/l) [12,20] have been of special interest 

because of cognition enhancing properties of this group of 

ligands and their possible use in AD [20,21]. Small 

cognition improving effects of single doses of dimebon 

(10-30 mg/kg, ip) have been reported in a rat social 

recognition test where half maximal occupation of 5-HT6 

receptors was observed at a brain concentration of 400 

nml/l [20]. This is much higher than the brain 

concentrations which have been estimated for AD patients 

(see above). Moreover, in a small study in AD patients, 

cognitive improvement by a 5-HT6 antagonist was seen 

relative to baseline and also in respect to the little decline 

over study time (24 weeks) [21]. Thus, although a 

contribution of 5-HT6 antagonistic properties of 

dimebonto, its beneficial effects in AD [3] cannot 

completely be ruled out, it does not seem to be very likely. 

 

Cognition improving properties 

 

Because of the complete failure to show any procognitive 

effect in the second AD trial it is important to review 

several animal studies reporting improved cognition after 

dimebon administration. Giorgetti et al. [12] reported 

improved object recognition behaviour at single oral 

doses leading to brain concentrations between 1.7 and 170 

nmol/L, were maximal effect was already seen at 5 nmol/l. 

Cognition improving effects were also seen after 31 days 

of treatment with a ip dose of 3.5 mg/kg in a transgenic 
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mouse model expressing high ß-amyloid levels but not in 

the non-transgenic littermates [22]. Dimebon also 

enhanced cognition in rats after lesions of the cholinergic 

forebrain system [18]. Improved cognition in a 

hippocampus-dependent learning task was also found in 

mice after acute (0.5 mg/kg) or repeated (0.1 mg/kg) 

dosing with dimebon [23]. Dimebon failed to improve 

learning of young rats in a water maze task following ip 

doses of 1 mg/kg for 8 days, and also of aged animals with 

reduced learning abilities [24]. By contrast, dimebon 

improved working memory in adult and aged monkeys at 

rather low doses (0.1 mg/kg im), and also in adult animals 

after impairment with scopolamine [25]. 

In a mouse model for depression, aged but not young 

animals showed anhedonic like behaviour (reduction of 

sucrose preference) [26]. In possible analogy to the 

beneficial effects of dimebon on Neuropsychiatric 

symptoms in both AD trials [3,6], treatment of aged (18 

months) but not of young (3 months) mice with dimebon 

for 4 weeks reduced the anhedonic profile [26]. 

In summary, there is good evidence that dimebon 

can improve several cognitive functions specifically 

following impairment as it is the case with many other 

cognition enhancing compounds, but the data vary 

substantially with experimental conditions and the 

cognitive tests used. 

 

Mitochonodrial pharmacology 

 

When the old antihistaminic drug dimebon was 

investigated as a cognition enhancer and a novel treatment 

for AD, the possible mechanism of action became of 

major interest. Initial reports about neuroprotective and 

mitochondrial function improving properties specifically 

following mitochondrial impairment [1,18,27] were 

confirmed by many subsequent findings in the years 

following [11]. However, the “novel mitochondrial 

mechanism of action of dimebon” was also criticized 

because most of the data published showed mitochondrial 

protection or improvement only at concentration much 

over the estimated maximum brain levels for the clinical 

studies mentioned above [17]. Indeed, positive effects 

have been observed for neuroprotection against oxidative 

stress and ß-amyloid toxicity [28-30,] as well as against 

glutamate neurotoxicity [16], for improvement of 

autophagy [31-33], and for the inhibition of mPTP 

(mitochondrial permeability pore) function [34,35] at 

concentrations higher than 5-10 µmol/l sometimes even 

more than 100 µmol/l. Interestingly, most of these studies 

failed to show that these very high concentrations were 

really needed and that lower concentrations were 

ineffectice. However, even if very high concentrations 

were used, the possibility that some of the mitochondrial 

effect could also take place at lower concentrations still 

exsists. Indeed. Bharadwaj et al. [7] and Zhang et al. [14] 

could show improved mitochondrial function at very low 

concentrations of dimebon which remained stable, even 

when much higher concentrations were applied. 

Accordingly, we will review the mitochondrial 

pharmacology of dimebon mainly for studies which used 

concentrations or animal doses in accordance with the 

known brain or plasma levels discussed above. We 

include our own mostly published findings where we used 

a dimebon concentration of 100 nmol/l throughout a large 

number of different experiments assessing many aspect of 

impaired mitochondrial function and the beneficial effects 

of dimebon treatment [36-38]. For further methodological 

details see our previous publications [39-45]. For these 

experiments we used HEK cells (HEKut) and a HEK cell 

line stably transfected with the Swedish APP double 

mutation (HEKsw) [44,45]. While the HEKsw cells served 

as a model for the detrimental effects of intracellularly 

generated Aβ on mitochondrial function mirroring the 

situation in AD brain [46], HEKut cells were used as a 

model for the healthy condition. Because of the major role 

of the brain aging process, treatment of the HEKut cells 

with the complex I inhibitor rotenone was used in some 

experiments as a model for normal brain aging or to 

mirror the interaction between brain aging and AD 

pathology [36-39]. 

 

Mitochondrial function 

 

Glucose utilisation and OXPHOS activity  

 

Impaired cerebral glucose metabolism arising from 

memory related brain regions like hippocampus and 

entorhinal cortex represents an early pathomechanism of 

Alzheimer’s disease (AD), detectable long before its 

clinical manifestation [47]. While other mechanisms also 

play a role (e. g. insulin receptor insensitivity), impaired 

mitochondrial function seems to be a major cause [49]. 

According to “the mitochondrial cascade hypothesis of 

AD”, mitochondrial dysfunction is one of the major 

mechanism underlying brain aging, mild cognitive 

impairment (MCI) and late onset Alzheimer’s disease 

(LOAD)[46,47,48]. The velocity of the decline of 

mitochondrial function depends on individual genetic 

predisposition like APOE4 and environmental factors 

until mitochondrial energy generation falls below a 

critical threshold. Exceeding this threshold may lead to 

conditions where mitochondrial dysfunction gets further 

exaggerated by the combined effects of aging, mildly 

elevated amyloid- (A) levels and increased free radical 

(ROS) make mitochondrial dysfunction a major player 

within the interface between aging and AD. Furthermore, 

mitochondrial dysfunction seems to be associated with 

reduced energy supply and enhanced free radical (ROS) 
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formation finally leading to impaired neuroplasticity 

including reduced neuritogenesis and neuronal cell loss 

[50-53]. Thus, improving mitochondrial dysfunction has 

become an important strategy for the development of 

drugs to treat the early stages of cognitive decline 

[45,47,54-59]. 

Impaired glucose utilisation associated with aging 

has not only been demonstrated in human brains but also 

in mouse cortex, hippocampus and somewhat less the 

cerebellum [60]. Treatment of aged (20 months) but not 

of young (3 months) mice with dimebon (20 mg/kg ip) 75 

min before measuring of glucose uptake with the PET 

tracer 18-fluoro-deoxyglucose showed significantly 

enhanced glucose uptake as indicator for a restoration of 

impaired glucose metabolism [60]. 

 

 

 
 
Figure 1. Effects on respiratory activity (adapted and mofified from Eckert et al. [36]). HEKsw cells were incubated for 6 h 

with dimebon (0.1 µM) and oxygen consumption (respiration [pmolx s-1 x mill-1 cells]) was measured in different mitochondrial 

stages by injecting several substrates and inhibitors in an Oxygraph 2k (Innsbruck, Austria). CIOXPHOS, CI dependent oxidative 

phosphorylationdetermined with complex I related substrates glutamate, malate and ADP; CI+IIOXPHOS, oxidative 

phosphorylation providing CI and CII substrates by addition of succinate; CI+IIETS, non-coupled respiration with CI and CII 

substrates, is considered as maximum capacity of the ETS by uncoupling with carbonyl cyanide p-(trifluoromethoxy) 

phenylhydrazone (FCCP, injected stepwise up to 1-1.5 µM); CIIETS, non-coupled CII dependent respirationby subsequent 

inhibition of complex I with rotenone; CIVETS, non-coupled respiration with CIV substrates, applying 

tetramethylphenylenediamine (TMPD) as an artificial substrate and ascorbate to keep TMPD in the reduced state. Values 

represent the means ± SEM from n = 6-9 experiments per protocol, Two-way ANOVA with Bonferroni post-tests, *p<0.05, 

**p<0.01, ***p<0.001. 

 

These findings fit nicely into our findings about 

effects of dimebon on oxidative phosphorylation activity 

in HEK cells [36]. Treating HEK control cells with 100 

nmol/l dimebon had no effects on OXPHOS activity as 

measured by high resolution respirometry. The same 

treatment significantly enhanced OXPHOS actvity in 

HEK cells with the swedish APP mutation, where 

OXPHOS was reduced by the overexpression of ß-

amyloid to about the same extent (Fig. 1). In both cases, 

improvement by dimebon was only seen when 

mitochondrial function was impaired by aging or ß-

amyloid overexpression.  

To drive complex V as the endpoint of the OXPHOS 

system to produce ATP, mitochondria utilize glucose 

derived pyruvate to maintain a proton gradient between 

the outer and the inner mitochondrial membranes. The 
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resulting mitochondrial membrane potential (MMP) is a 

sensitive indicator for mitochondrial dysfunction where it 

is usually reduced. Treating mouse primary neurons or 

SY5Y neuroblastoma cells with dimebon at low 

concentrations (1-10 nmol/l) enhanced mitochondrial 

membrane potential and ATP production [14]. Under 

stress situations (elevated intracellular calcium, serum 

depreviation) similar dimebon concentrations protected 

the cells against the decrease of mitochonsrial membrane 

potential and led to better survival (reduced apaptosis) 

[14]. 

 

 
Figure 2. Effects on mitochondrial morphology (adapted and modified from Eckert et al. [36] Müller et al. (37), Eckert (38)). 

HEK-cells harboring the Swedish mutation in the APP gene (HEKsw) and control cells (HEKut) cells were incubated with 

dimebon (0.1 µM) for 6 h. (A) For the determination of mitochondrial length, organells were labeled with Mito Tracker CMXRos, 

fixed with PFA. Mitochondrial lengths were quantified using Image J and classified in punctuated, truncated, tubular, and 

elongated mitochondria. Data represent the means ± SEM with at least 100 measured mitochondria per experiment, n = 8-9, 

Two-way ANOVA with Bonferroni post-tests, **p<0.01, ***p<0.001. (B, C) Effects of dimebon on expression levels of fission 

and fusion marker. Marker proteins for fission dynamin related protein1 (Drp) and fission 1 related protein (Fis), as well as 

markers for mitochondrial fusion protein 1 (Mfn) and optic atrophie-1 (Opa) were measured using Western Blot analysis, after 

electrophoretic separation and using specific antibodies. Cellular location of the proteins in the cytosolic fraction as well as in 

inner (IMM) and outer (OMM) mitochondrial membranes is indicated. Data were normalized to HEKut (100%) and represent 

the means ± SEM, n = 8-9, Two-way ANOVA with Bonferroni post-tests, *p<0,05, **p<0,01, ***p<0,001 vs. ctl; #p<0,05, 

##p<0,01 vs. HEKsw. (D) Representative Western Blots. 

 

 

Mitochondria are abundant in synaptic terminals and 

ATP production by mitochondria is crucial for synaptic 

function. Impaired mitochondrial function associated with 

reduced ATP supply lead to synaptic dysfunction, reduced 

neuronal and synaptic outgrowth and finally apoptosis 

[47,48,50,61]. Many drugs which improve mitochondrial 

function enhance neuronal survival, improve neurite 

outgrowth and neuronal proliferation [39-41,53,62]. 

Similarly, mitochondrial improvement by dimebon (up to 

100 nmol/) has been associated with enhanced neurite 

outgrowth in cortical and hippocampal primary cells and 

cortical neurons [11,63]. It also enhanced neurite 

outgrowth in primary cortical cells [64]. 

The inner mitochondrial membrane harbors the 

proteins of the electron transport system (ETS), and its 

integrity is crucial for the respiratory complex (OXPHOS) 

activity driving ATP production [65]. Since the majority 

of mitochondrial proteins are nuclear encoded and 
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synthesized in cytosolic ribosomes, import into 

mitochondria is mediated by various translocases of the 

outer mitochondrial membrane (TOMM) and translocases 

of the inner mitochondrial membranes (TIMM). Contrary 

to the OMM, the IMM requires two translocases for 

import of precursors into the matrix, TIMM 23 and TIMM 

22 [66,67]. TOMM 22 are part of the membrane-

embedded core components that are forming the general 

insertion pore (68,69,70) anchored to the outer membrane 

and mediating the initial steps for the import of 

preproteins. TIMM 50 functions as a receptor and 

component of TIMM 23. It guides the precursors from 

intermembrane space to the translocation pore TIMM 23.  

 

 
Figure 3. Effects on mitochondrial membrane composition (adapted and modified from Müller et al. [37], 

Eckert [38]). Cells were incubated with 0,1 μM dimebon (Dim) for 6 h. (A) In HEK control cells (HEKut) and 

(B) HEK-cells harboring the Swedish mutation in the APP gene (HEKsw), marker proteins for the inner (IMM) 

and the outer mitochondrial membrane (OMM), were measured in total homogenates, using Western Blot analysis 

after electrophoretic separation and using specific antibodies against translocator proteins of the inner (TIMM50) 

and outer (TOMM22) mitochondrial membrane, respectively. Data were normalized to HEKut (100% in A) and 

HEKsw (100% in B), respectively. Data represent the means ± SEM, n = 6, Two-way ANOVA with Bonferroni 

post-tests, *p<0,05, ***p<0,001. (C) Representative Western Blots.  

 

To get information whether the integrity of the 

inner membrane is involved, we investigated expression 

levels of TIMM50 in our cell system. HEKsw cells show 

a large reduction of TIMM expression levels (Fig. 3B). 

Dimebon treatment increases TIMM expression back to 

control levels (Fig. 3B) which parallels the restored 

OXPHOS capacity (Fig 1). Incubation of control cells 

with dimebon only slightly decreases expression levels of 

TIMM (Fig. 3A) which seems to parallel that OXPHOS 

activity is not affected under similar conditions [36]. The 

outer membrane component OMM is not altered by the 

transgen (HEKsw cells) or by dimebon treatment of the 

HEKut cells but is slightly decreased in the HEKsw cells 

by the addition of dimebon (Fig 3A & B). This minor 

effect of dimebon on mitochondrial membrane 

compositon in HEWsw cells seems to go in parallel with 
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as small increase of mitochondrial mass only [36]. It is 

further supported by our findings that PGC-1α 

(peroxisome-proliferator-activated receptor γ co-

activator-1α) is not altered (Fig. 4A & C). PGC-1α is a 

transcriptional co-activator that serves a master regulator 

of mitochondrial biogenesis and of antoxidant defense 

mechanisms [42,43,71,72]. 

 

 

 
 
Figure 4. Effects on mitophagy (adapted and modified from Müller et al.[37], Eckert [38]). (A) Control cells 

(HEKut) and (C) HEK-cells harboring the Swedish mutation in the APP gene (HEKsw) an were incubated 

with 0,1 µM dimebon (Dim) for 6 h. Autophagy marker proteins for the cytosol (LC3-I) and autophagosomal 

membranes (LC3-II) as well as the transcription marker peroxisome proliferation-activated receptor gamma 

coactivator 1-alpha (PGC), were measured using western blot analysis after electrophoretic separation and 

using specific antibodies in total cellular homogenates. (B & D) A low LC3-I/LC3-II ratio indicates high 

degree of mitophagy. Data were normalized to HEKut (100%) and represent the means ± SEM, n = 8-9, Two-

way ANOVA with Bonferroni post-tests, *p<0,05, **p<0,01 vs. HEKut ctr; #p<0,05 vs. HEKsw ctl. (E) 

Representative Western Blots. 

 

 

 

 

 
E 

 

LC3-I LC3-II PGC1
0

50

150

200

250

300

ctl

HEKut + Dim 0.1µM

HEKut

cytosolic autophagolysosomal 
membrane

transcription factor

in
 %

 o
f 

H
E

K
u
t 
c

tl

LC3-I LC3-II PGC
0

50

150

200

250

300

ctl

HEKsw 

HEKsw + Dim 0.1µM

HEKut

cytosolic autophagolysosomal 
membrane

transcription factor

*

*

*

**

#

#

H
E

K
s
w

 i
n

 %
 o

f 
H

E
K

u
t 
c

tl

HEKut Dim 0.1µM
0.0

0.5

1.0

1.5

2.0

mito
phagy

L
C

3
-I
/L

C
3

-I
I

HEKsw Dim 0.1µM
0.0

0.5

1.0

1.5

2.0

**

**

HEKut ctl

mito

phagy

L
C

3
-I

/L
C

3
-I

I

A

C

B

D



Eckert SH., et al                                                                                             Mitochondrial pharmacology of dimebon 

Aging and Disease • Volume 9, Number 4, August 2018                                                                               736 

 

Mitochondrial quality control 

 

Mitochondrial dysfunction as it occurs in aging and many 

neurodegenerative diseases like AD usually takes years or 

even decades before symptoms arise, since it only gets 

functional relevant, when the rate of damage exceeds the 

rate of continual repair by the mitochondrial quality 

control system (QC). Mitochondrial dynamics and 

autophagy are integral part of this QC system [73,74] 

which seems to be substantially disturbed in AD [75]. 

Many data suggest that the beneficial effects of dimebon 

on mitochondrial function are at least in part related to 

beneficial effects on reduced qualitity control. 

 

Mitochondrial dynamics 

 

Mitochondrial dynamics, meaning the ability of 

mitochondria to undergo changes in size and form [76]are 

gaining more and more attention as an important factor 

regulating mitochondrial function and as mechanism of 

mitochondrial quality control. Even if reports are 

sometimes controversial, in most cases mitochondrial 

fragmentation is accompanied by reduced mitochondrial 

function and vice versa [77-81]. Accordingly, shorter 

mitochondria are energetically unfavorable. We have 

previously used confocal microscopy of fixed 

mitochondria as a very reliable method to analyze 

mitochondrial dynamics in many situations of impaired 

mitochondrial function and to demonstrate beneficial 

effects of several drugs on the fission and fusion balance 

[36,39-41,55]. 

As reported previously, the pronounced Aß 

production in HEKsw cells [36,55] goes parallel with 

substantial changes of mitochondrial dynamics, shifting 

mitochondrial size to smaller (fission) mitochondria 

(punctuated form) (Fig. 2 A). Treating these cells with 

dimebon restores changes of mitochondrial morphology 

(Fig. 2 A) nearly back to control values. 

Mitochondrial fission and fusion balance is 

regulated by the interaction of mainly two proteins: the 

cytosolic GTPase dynamin-related protein 1 (Drp1) and 

an outer mitochondrial membrane anchored protein, 

mitochondrial fission protein 1 (Fis1). Fusion processes 

are chiefly regulated by the two GTP-ase isoforms: 

mitofusin 1 and 2 (Mfn1 and Mfn2), as well as optic 

atrophy type 1 (OPA1). Fission and fusion events are very 

frequent, take place within a few minutes [73,81,82] and 

exchange matrix and inner and outer membrane proteins 

under are carefully balanced conditions [82,83]. While 

fused mitochondria seem to be the energetically more 

relevant form, at least one function of fission is the sorting 

out of deficient mitochondrial fragments and to activate 

autophagy of the respective mitochondrion (mitophagy) 

[73,81]. 

After our initial findings indicating that dimebon 

restores changes of mitochondrial morphology in Aβ 

overexpressing HEK cells [36] independent of ROS, we 

examined whether changes in morphology were related to 

altered expression of key proteins involved in 

mitochondrial dynamics. We detected substantial 

differences between controls and HEKsw cells, 

supporting previous findings about pronounced effects of 

Aß on mitochondrial dynamics (Fig. 2 B). While Fis1 and 

Mfn1, both located in the outer mitochondrial membrane, 

are unaltered in our HEKsw model, levels of Drp are 

upregulated, whereas levels of OPA are distinctively 

downregulated (Fig. 2B). To test the effect of Dimebon on 

mitochondrial dynamics, cells were incubated with 

Dimebon (100 nM) for 6 h. While dimebon has no effect 

on levels of fission and fusion marker in HEK control 

cells (Fig. 2C), it shows broad efficacy in the AD cell 

model (Fig. 2B). Dimebon treatment is further enhancing 

expression levels of Drp and in case of OPA1, Dimebon 

ameliorates the disease-specific deficit. Our data suggest 

that changes in mitochondrial morphology observed in Aβ 

overexpressing HEK cells and the normalization by 

dimebon [36] were related to the altered expression 

pattern of mitochondrial fission and fusion proteins (Fig. 

2B). 

 

Autophagy 

 

Autophagy (or mitophagy in case of mitochondria) 

represents an important quality control system to degrade 

damaged proteins and organelles and to reintroduce their 

constituents back to the cytosol as nutrients for renewal 

[84,85]. Moreover, dysfunctional mitochondria can be 

selectively removed by mitophagy. Dysregulation of 

mitophagy is implicated in the development of 

neurodegenerative disease. If damaged mitochondria are 

not degraded, their increased reactive oxygen species 

(ROS) production can damage the cell [84,86,87]. 

Dysregulation of mitophagy with the risk of elevated ROS 

production has been implicated in the development of 

neurodegenerative diseases in general and with the 

neuropathology of AD in specific [84]. 

Alterations in mitochondrial morphology, dynamics, 

as well as deficits in the electron transport capacity of the 

respiratory chain seem to be mutually connected to 

changes in the quality control and turnover of 

mitochondria [36,41,87]. Accordingly, our HEKsw cells 

show decreased levels of proteins involved in autophagic 

processes. LC3-I and LC3-II, are prominent indicators for 

autophagy (Fig. 4C). The conversion of LC3-I to LC3-II 

is a specific marker for autophagic activity. Reduced 

conversion to LC3-II indicates decreased formation of 

autophagosomes [88]. Treatment of HEK control cells 

with dimebon does not influence expression levels of 
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autophagic marker (LC3-I and LC3-II). By contrast, Aß-

related decreases in HEKsw cellsof LC3-I and LC3-II, are 

compensated by dimebon treatment at nanomolar 

concentrations (Fig. 3C) suggesting restoration of 

impaired mitophagy [88,89]. 

Several other data suggest autophagy stimulating 

properties of dimebon in different cell and animal models 

[7,10,32,33]. Steele et al. [33,33] measured the formation 

of autophagosomes by counting LC3 punctae in HeLa 

cells and LC3-II levels of mouse N2a neuroblastoma cells 

after 3 or 6 h acute treatment with dimebon. However, 

very high dimebon concentrations (50-100 µmol/l) were 

used in this study. Nevertheless, the findings parallel our 

experiments (6 h treatment with 100 nmol/l dimebon in 

HEKsw cells with increased LC3-I and LC3-II levels. In 

cells and mouse brain, dimebon was able to decrease 

levels of α-synuclein by stimulating autophagy [32,33]. 

Enhanced autophagy was also seen in a yeast model with 

first effects of dimebon at a concentration of 250 nmol/l 

[7]. α-Synuclein is a protein which is related to 

neurodegenerative diseases especially Parkinsonism 

while Ɣ-synuclein seems to be associated with the 

neurodegenerative disease ALS (amyotrophic lateral 

sclerosis). 

 

 

 

 
 

Figure 5. Effects on structure and function of the mitochondrial permeability transition pore (mPTP) (adapted and 

modified from Müller et al. [36]). (A) HEKswcells were incubated with 0,1 µM dimebon (Dim) for 6 h, mPTP marker proteins 

of the outer mitochondrial membranes (OMM), voltage-depended anion channel (VDAC) and peripheral benzodiazepine 

receptor (PBR), were examined using western blot analysis after electrophoretic separation and using specific antibodies in 

total homogenates. Data were normalized to HEKut (100%) and represent the means ± SEM, n = 8-9, Two-way ANOVA with 

Bonferroni post-tests, **p<0,01, *p<0,05, ***p<0,001 vs. HEKut ctl; #p<0,05 vs. HEKsw ctl. (B) Representative Western 

Blots. In HEKsw cells, dimebon dramatically restored the increased expression levels of these mPTP markers (Fig 5 A). (C) 

Exemplary graph of a measurement of light scattering which is equivalent to mitochondrial swelling; Ca2+: inductor of 

physiological extent of mitochondrial swelling; Ala: Alamethicin [3.2 mg/mL], inductor of maximal mitochondrial swelling. 

(D) Swelling of isolated mitochondria from female NMRI mice challenged with calcium (Ca2+, 2 mmol/mg protein) and 

simultaneously incubated with cyclosporin A, a known inhibitor of mitochondrial swelling (CsA, 1 µM) and dimebon (0.1 µM; 

statistics were calculated against calcium insult; (; n=5-8; mean ± SEM; p*<0.05; p**<0.01; p***<0.001 
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In a transgenic mouse model of ALS overexpressing 

this protein, dimebon treatment (3 or 6 mg/kg) for several 

months not ony reduced Ɣ-synuclein load but also motor 

performance [90]. Since an age-dependent decrease of 

autophagy has been identified as a feature for the 

progression of AD pathology [84-86,91], the findings that 

dimebon improves autophagy (mitophagy) in several 

disease models certainly could be relevant and should be 

further focused on. 

 

The Mitochondrial Permeability Transition Pore as 

possible target 

 

The mPTP represents a dynamic multiprotein complex 

which spans the inner and outer mitochondrial 

membranes at special contact sites [92]. Although, the 

structure of the mPTP is not yet fully elucidated, there are 

several identified components or modulators of the mPTP. 

The most common proposed structure of mPTP includes 

the voltage-dependent anion channel (VDAC) and the 

18kDa translocator protein (TSPO; formerly known as the 

peripheral benzodiazepine receptor), in the outer 

membrane, the adenine nucleotide translocator (ANT) in 

the inner membrane, cyclophilin D (Cyc D) from the 

matrix and possibly other proteins such as creatine kinase 

(CK) from the intermembrane space, hexokinase (HK) at 

the outer surface of the outer membrane, and pro-

apoptotic proteins of the Bcl-2 family such as Bax. 

Opening of the mPTP is followed by a sudden increase of 

permeability of mitochondrial membranes, which allows 

solutes up to 1500 Dalton to equilibrate between 

mitochondrial matrix and cytosol. This leads to 

uncoupling of oxidative phosphorylation system, 

mitochondrial matrix swelling, dissipation of MMP, 

increased ROS production, and releases of apoptotic 

proteins (see above) [92-94]. Opening of mPTP may play 

a causative role in mitochondrial fragmentation, 

depolarization of the mitochondrial membrane potential, 

ATP depletion and finally apoptosis. Supporting our data, 

inhibition of mPTP in other disease models already 

showed both, reduction in expression of fission proteins 

and increase in expression of fusion proteins and impaired 

fission and fusion balance [41,95,97]. 

Numerous effectors can open the mPTP in particular 

calcium ions, reactive oxygen species, and amyloid-ß and 

on the other hand many endogenous and exogenous 

inhibitors of mPTP have been described including high 

negative potential, low matrix pH, ADP, magnesium and 

strontium, and the immunosuppresive drug cyclosporine 

A [41, 96-98]. 

 

 

 

Dimebon restores expression levels of mPTP associated 

proteins back to control levels 

 

As mitochondria are the main source of ROS production, 

they are especially prone to ROS damage. Such damage 

can induce opening of the mitochondrial permeability 

transition pore (mPTP), which leads to mitochondrial 

swelling and cytochrome c release and can therefore 

initiate apoptosis upon its opening [65]. To investigate 

possible alterations of core components of the mPTP, we 

determined expression levels of voltage dependent anion 

channel (VDAC) and peripheral benzodiazepine receptor 

(PBR; also called translocator protein; TSPO). Both 

proteins are located in the outher mitochondrial 

membrane. In HEKsw cells expression levels of both, 

VDAC and PBR were strongly increased (Fig. 5A). These 

findings fit recent data from our lab, that apoptosis occurs 

more often in HEKsw cells compared to controls [55]. 

Dimebon elevates both core components of mPTP in HEK 

control cells only to some extent (data not shown), while 

in our disease cell model, levels of both mPTP 

components are dramatically elevated compared to the 

untreated control (Fig. 5A), which in consequence can 

cause stronger vulnerability to stressors (Fig. 5B). 

Dimebon is completely restoring the VDAC and PBR 

expression levels back to untreated control levels (Fig. 

5A). 

 

Dimebon inhibits mPTP function 

 

Induction of mPTP opening leads to a nonspecific high 

permeability for different agents, to a collapse of MMP 

and loss of ATP. This finally ends in the rupture of the 

OMM and release of proapoptotic intermembrane 

proteins into the cytosol as, cytochrome c [94]. 

Cyclosporin A inhibits mPTP trough interaction with 

cylophilin D [98]. This was confirmed in our experiments 

[40,41] where cyclosporine largely inhibited mPTP 

opening by calcium. Dimebon showed a similar also 

slightly smaller effect at 100 nmol/l (Fig. 5). Similar 

effects have previously been reported for dimebon 

although much higher concentrations of the drug (200 or 

50 µmol/l) were used [34,35]. 

Even though there are still multiple models and 

viewpoints regarding mPTP and its components, the 

prevention of mPTP opening has been shown to provide 

neuroprotection in different paradigms [92]. As mPTP 

opening regulates many mitochondrial functions 

(OXPHOS activity, dynamics, quality control) the effects 

of dimebon on mPTP function could be relevant for most 

of dimebon ś effects at the mitochondrial level. 
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Mitochondrial improvement by dimebon, Alzheimer 

treatment beyond ß-amyloid? 

 

When dimebon was investigated as a cognition enhancer 

and possible AD treatment based on initial positive results 

in AD patients [1,2,3,27] its novel mitochondrial 

mechanism of action was seen with major interest as more 

and more negative clinical findings became published in 

respect to Aß directed possible AD treatment strategies 

including inhibitors of Aß aggregation and production 

from the precursor protein as well as antibodies or 

vaccination to remove it out of the brain. [48, 53, 99, 100]. 

Even if all seemed to remove Aβ to some extent, all 

strategies failed to improve the symptoms of dementia, 

some of the treatments made dementia even worse 

[47,99,100]. Moreover, recent advances in imaging 

techniques confirm that many patients die quite old with 

a large Aβ plaque load without showing symptoms of 

dementia and that accumulation of Aβ containing plaques 

already reaches its maximum decades before first 

symptom of cognitive impairment or even dementia 

develop [101-103]. Thus, it became quite clear that the 

simple Aβ cascade hypothesis has failed, especially as 

basis for the development of new AD specific drugs. 

Accordingly, other aspects of AD pathology, more closely 

related to the clinical symptoms of the disease 

(Alzheimer’s dementia) are currently investigated as 

targets for therapeutic improvement likesynaptic deficits, 

which do correlate with the presence of the disease. 

One alternative concept to explain AD relates to the 

mitochondrial cascade hypothesis of AD which assumes 

mitochondrial dysfunction and elevated stress as one 

major pathomechanism underlaying the whole spectrum 

of age-associated cognitive disorders from rather 

subjective cognitive complaints at older age over mild 

cognitive impairment (MCI) to AD and VD (vascular 

dementia) [47,5]) and the suggestion that drugs improving 

mitochondrial dysfunction could serve as possible 

treatment for AD [48,50,52,54,55,58,104]. Accordingly, 

when the first data about positive effects of dimebon in 

AD got published [1,3] the “novel mitochondrial 

mechanism of action” was enthusiasticaly seen, but on the 

other site rapidly dropped once negative data were 

reported [17]. However, since major differences came up 

regarding design and patient’s characteristic of the clincal 

studies and regarding the extensive data about effects of 

dimebon at the mitochondrial level as reviewed above, a 

critical discussion of the clinical studies seems justified. 

The first open study with 12 AD patients who were treated 

with dimebon for 4 weeks only provided a first signal [1]. 

The follwing phase II study gave substantial evidence for 

beneficial effect of dimebon in AD. Even planned as a 

phase II study it comes close in design and size to a phase 

III study [3]. In this randomized double-blind placebo 

controlled study, 183 patients were treated for 26 weeks 

with dimebon (20 mg t.i.d.) or placebo. Outcome 

measures included assessment of cogniton (ADA-cog, 

MMSE), daily life function (ADCS-ADL) and behaviour 

or neuropsychiatric symptoms (NPI). After 26 weeks, 

dimebon was significantly superior over placebo with 

substantial placebo-verum differences (4.0 points ADAS-

cog; 2.2 points MMSE; 3.4 points ADCS-ADL; 3,6 points 

NPI). On all measures, a substantial decline of function 

was seen at endpoint in the placebo group as a sign of the 

typical deterioration of the disease. On all measures, the 

improvement by dimebon seen already after 3 months 

further increased until week 26 or at least remaind stable. 

For the first 12 weeks, placebo remained rather stable or 

even increased slightly (MMSE) but than dropped under 

baseline. 

While this placebo pattern has also been 

typicallyseen in pivotal trials with donepezil and other 

acetylcholine esterase inhibitors [105], the improvement 

seen for these drugs after several months did not remain 

stable but declined over time rather parallel to the decline 

of the placebo patients. The stable improvement by 

dimebon by continuos decline under placebo has been 

interpreted as possible indication of a disease-modifying 

effect of dimebon. This conclusion was further supported 

by a 26 weeks double-blind continuation phase of the trial 

with about 130 of the originally 180 patients [3]. While 

the placebo patients showed further deterientation on the 

ADAS-cog scale the dimebon group remained nearly 

stable leading to a much higher placebo-verum difference 

at week 52 (6.9. points). Continuous improvement by 

dimebon until week 52 was also seenin the presence of 

further decline in the placebo patients for all other scales. 

About 100 patients of both groups were further treated for 

another 26 weeks in an open design with dimebon. The 

originally dimebon treated patients still showed a 

substantial improvement [11] while the original placebo 

patients improved significantly under dimebon relative to 

the 52 weeks baseline. Taking together, these findings 

strongly suggested that a large part of dimebons benefical 

effect were related to a slowing down ofthe decline over 

time of the cognitive and behavioral symptoms of the AD 

patients. 

Following this study showing substantial benefits of 

dimebon treatment in AD, several other phase III trials 

were initiated, only one was finished [6,17]. This was a 

randomized placebo-controlled doube-blind trial where 

nearly 600 patients were treated for 26 weeks with 

placebo or either 5 or 20 mg dimebon t.i.d. Clinical 

efficacy was evaluated using the same rating scales 

already used in the Doody et al [3] trial. The data of this 

trial have not been published in detail [6,17]. Plasma 

levels have not been reported, which would be relevant 

regading the large first-pass metabolism of the drug and 
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the use of a different dimebon formulation. To make a 

long story short, no significant improvement over placebo 

was seen for both doses of dimebon on all measures. None 

of the measures showed a significant decline over the 26-

week period. On the MMSE the dimebon patients 

improved by 0.7 points but the placebo patients improved 

even by 1.2 points! This is rather strange and raises 

questions about the inclusion criteria of the patients. At 

least it suggests fundamental differences between the 

patient characeristics in both trials. The decline of 

symptomatology seen in the first trial over the 26 weeks 

period in the placebo group was very much within the 

range reported for AD patients in many epidemiological 

studies and typical for these patients. Showing no decline 

or even an improvement within 26 weeks is rather atypical 

for this disease. Thus, if dimebons benefical effects are 

related to slowing down the deterioration of 

symptomatology very little benefit can be expected in a 

patient population which gets better on placebo. 

The problem which arises is the question if we can 

predict deterioration of symptomatology in AD patients. 

The patients in the Doody et al. [3] study showed a 

substantial level of Neuropsychiatric symptoms (NPS) at 

baseline which significantly improved by dimebon 

treatment. NPS are typical symptoms of dementia and are 

present in most patients with AD or VD. The prevalence 

of NPS in different populations of patients with dementia 

is around 80-90% [106-112]. Thus, the presence of NPS 

is rather the norm than the exception. One major aspect 

oft the presence of NPS in dementia seems to be a faster 

cognitive decline in these patients [109,111,113-115]. 

Even if the neurobiology of NPS in dementia is not yet 

completely understood, patients with NPS or symptoms 

typical for NPS seem to have pronounced mitochondrial 

dysfunction beside other neurobiological deficits [116-

120]. Thus it seems that in the Doody et al. [3] trial typical 

AD patients with the presence of NPS and a decline of 

cogniton over time were included which seems rather not 

the case for the second dimebon trial [6]. It would be easy 

to go back to the datasets to see if the patients with high 

NPS values are the one who respond to dimebon or show 

decline in the placebo group. This scenario has been 

shown in a large clinical trial with the ginkgo special 

extract Egb761 [115] which improves impairend 

cognition over the whole spectrum of age-associated 

cognitive disorders from MCI to AD or even VD by 

enhancing mitochondrial function [53]. In this trial,a 

better response of cognitive symptoms to EGb761®and a 

faster cognitive decline has been reported for those 

patients with high levels of NPS [120]. 

 

Final conclusion 

 

Improvement of impaired mitochondrial function seems 

to be the most relevant pharmacological property of 

dimebon already present at the low plasma and tissue 

levels meassured in patients with AD and therefore seems 

to be the basis of its positive effects on cognition and 

behaviour in AD patients. Since impaired mitochondrial 

function seems to be the most relant driving force for the 

progression of the clinical symptoms of the disease and 

most of the clinical benefits of dimebon originate from an 

effect on the symptomatic deterioration, this mechanism 

of action also can explain the lack of efficacy of this drug 

in patients whose symptoms remain stable for the time of 

the clinical study. It seems worthwhile to reevaluate the 

clinical data to proof that clinical response is correlated 

with high levels of NPS as these show a good relationship 

to the individual speed of symptomatic decline in AD 

patients related to mitochondrial dysfunction. 
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