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Abstract. Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neuro-
genesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor
(TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review,
we discuss the variable findings of TNF’s effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF
release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmis-
sion, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving
for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing
neurogenic deficit after alcohol exposure, there is no evidence for TNF’s essential involvement in alcohol’s effect on neuro-
genesis. Overall, defining TNF’s role in alcohol use disorder is complicated by poor understanding of its variable effects on
synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely
acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual
relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF’s effects within the brain.
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INTRODUCTION

The ability to learn, remember and adapt after
unique experiences is allowed by neuroplasticity.
On a cellular level, neuroplasticity is the flexibil-
ity of neurons to adjust their synaptic strength and
relationships through genetic, neurochemical and
structural mechanisms. The best characterised type
of neuroplasticity is described by Hebbian theory,
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which dictates colloquially that “neurons that fire
together wire together” [1]. This theory postulates
that recurrent postsynaptic activation associated with
presynaptic activation increases the strength of a
synapse above a certain basal level [2]. Other forces
of synaptic plasticity include homeostatic plastic-
ity, whereby the strength of a synapse is shifted
back towards its basal homeostatic level [3]. Through
the forces of plasticity, the shape of the brain is
dynamically changing to integrate, disintegrate and
modulate different synapses within circuits. It has
been suggested that the modulation of neuroplasticity
by various drugs of abuse is an integral component
of the progression of addiction [4, 5].
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Alcohol use disorder (AUD) is characterised by
behaviours of problematic alcohol use and is a sig-
nificant burden to individual and public health. It is
estimated that AUD affects approximately 12% of the
population in the US [6]. Alcohol use is recognised
as a leading risk factor for disease burden and has
been linked to 60 acute and chronic diseases [7, 8].
Alcohol’s promiscuous action on neural function is
thought to drive neural plasticity that manifests as the
many symptoms of AUD including addiction, depen-
dence and tolerance [4, 5]. Alcohol’s activation of
the neuroimmune system is a highly relevant compo-
nent of AUD [9–13]. Indeed, altered neuroimmune
function is associated with numerous psychiatric dis-
orders including major depressive disorder, bipolar
disorder, schizophrenia and drug addiction [13–16].
Experimentally, it has been shown that activation of
the immune system results in increased ethanol self-
administration in mice and there is support for the
idea that alcohol induced neuroinflammation drives
further alcohol consumption in a relentless cycle [17,
18].

Tumour necrosis factor (TNF) is a neuroimmune
and inflammatory molecule that was first discovered
as a factor in the haemorrhagic necrosis of tumours
and has associations with numerous pathological
states [19]. Despite its association with pathology,
it is now known that TNF has numerous beneficial
physiological effects in the CNS which can be altered
during inflammation or challenge [20, 21]. The neu-
roimmune system is involved in neuroplasticity and
in AUD and these relationships have been the sub-
ject of numerous reviews [22–27]. Given that TNF
is an early initiator of inflammation in the CNS, and
one of a few cytokines that are involved directly in
both synaptic plasticity and neuroimmune signalling,
its effect on neurotransmission in AUD deserves
discussion. Here, we will provide an overview of
TNF’s effect on neuroplasticity in normal physiol-
ogy, followed by its effect on neuroadaptation and
neurogenic deficit during AUD.

ETHANOL’S ACTION

Alcohol has many molecular targets that are
involved in its rewarding effects. Notably, alcohol’s
interactions with numerous synaptic ion channels,
signalling molecules, neuropeptide mechanisms and
enzymes elicit short and long term effects [4, 5, 28].
Upon repeated exposure, alcohol’s interactions with
these synaptic targets are thought to lead to long

term changes in synaptic function [5]. While there
is still much unknown about how alcohol interacts
with its direct synaptic targets to induce neuroplas-
tic changes, this topic has been the focus of previous
reviews [4, 28, 29]. Aside from alcohol’s direct tar-
gets, alcohol also affects numerous components of
the neuroimmune system. The neuroimmune system
includes neurons, microglia, astrocytes, oligoden-
drocytes, peripheral immune cells and vascular and
endothelial cells [16, 30]. Signalling between these
cells promotes neuroinflammation in response to
injury and stress.

Alcohol consumption can increase intestinal per-
meability to lipopolysaccharide (LPS or endotoxin),
which circulates through the blood and stimulates
toll like receptor 4 (TLR4) on peripheral immune
cells such as resident macrophages [31–33]. TLR4
activation results in the initiation of cellular cas-
cades that activate nuclear transcription factor nuclear
factor kappa-light-chain-enhancer of activated B
cells (NF-κB) causing the release of inflammatory
cytokines, such as TNF, interleukin 1-� and inter-
leukin 6 (IL-6) [34]. Upon alcohol related cell death
within the brain, an array of damage associated
molecular patterns (DAMPs) are released and stim-
ulate pattern recognition receptors to further the
inflammatory response. Of particular significance
is the DAMP high motility group box 1 (HMGB-
1). HMGB-1 is released actively from neurons and
other glial cells upon alcohol exposure but is also
passively released after cell death [32, 35]. HMGB-
1 has differential effects depending on the status
of certain cysteine residues; oxidation of HMGB-1
appears to attenuate its inflammatory effects, while
disulphide and all thiol containing HMGB-1 sig-
nal for inflammation through TLR4 and receptor for
advanced glycation end products (RAGE) respec-
tively [36].

TNF exists in two forms as transmembrane
(tmTNF) and soluble (solTNF) TNF. Upon acti-
vation, TNF-� converting enzyme (TACE) cleaves
tmTNF into solTNF to be released and have reaching
inflammatory effects [21]. The transmembrane form
signals through both tumour necrosis factor recep-
tors 1 and 2 (TNFR1 and TNFR2) while solTNF
signals solely through TNFR1. Although both recep-
tors are involved in inflammatory responses, TNFR1
activation pathways can lead to cell death while
TNFR2 is associated with pro survival responses
[21]. Numerous regulatory mechanisms exist to
regulate TNF production and curb inflammatory sig-
nalling including cyclic AMP, prostaglandins, soluble
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Fig. 1. Overview of TNF signalling after alcohol consumption within a neuron. Peripheral immune cells release TNF following binding of
lipopolysaccharide (LPS) through toll like receptor 4 (TLR4), which crosses the blood brain barrier (top left) to stimulate TNFR1 signalling
and NF-κB translocation to the nucleus for transcription of TNF and other cytokines. High motility group box 1 (HMGB-1) also activates
NF-κB through receptor for advanced glycation end products (RAGE) and toll like receptor 4 (TLR4). Microglia (blue), astrocytes (green),
neurons (yellow) and oligodendrocytes (purple) are represented here with their respective TNF receptors.

circulating TNF receptors and anti-inflammatory
cytokines [37–40]. Previous reviews provide detailed
descriptions of TNFR signalling and regulation
[41–43]. During inflammation, released solTNF
activates TNFR1 signalling, furthering NF-κB tran-
scription and stimulating activator protein 1 (AP-1) to
amplify the inflammatory response in a positive feed-
back loop [44, 45]. Results in TLR4 knockout mice
show that TLR4 signalling is necessary for ethanol
induced increases in brain levels of TNF [46]. Despite
the importance of TLR4 in ethanol’s effect on TNF,
in the context of this paper it is important to note that
inactivation of TLR4 does not result in reduced lev-
els of ethanol self-administration in multiple rodent
models [47, 48]. Inflammatory cytokines induced by
ethanol travel throughout the periphery to promote
inflammatory responses and some molecules, includ-
ing TNF, travel across the blood brain barrier (BBB)
to participate in neuroinflammation [11, 49]. In addi-
tion to chemokines crossing the BBB, circulating
monocytes and macrophages are able to infiltrate the
BBB during inflammation (Fig. 1).

The neuroimmune system differs between the
sexes, and is even involved in the masculinisation
of the brain during development [50, 51]. It has been
shown in animal models that female and male mice
display different drinking patterns [52]. While the

general trend of an inflammatory response to ethanol
is shared between males and females, there are vari-
ations in neuroimmune responses and female mice
appear more vulnerable to inflammatory effects fol-
lowing binge drinking [53]. Similar sex associated
disparities are seen in many aspects of AUD. Gen-
erally, men are more likely to develop AUD and
consume larger amounts of alcohol while women are
more prone to experience AUD related medical prob-
lems [54, 55]. An investigation in rats showed that sex
had no effect on TNF mRNA levels following expo-
sure to ethanol vapor; however, this review’s bias
towards discussing neuroimmune signalling mod-
elled in the male sex remains a shortcoming, which
should be kept in mind throughout reading.

TNF IN PHYSIOLOGICAL SYNAPTIC
PLASTICITY

TNF is a well known modulator of synaptic plas-
ticity [56–59]. The most popular area of discussion is
its ability to potentiate excitatory transmission, which
is achieved through numerous mechanisms that will
be reviewed throughout this chapter. Firstly, TNF’s
ability to increase �-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) expres-
sion has been a dominant subject of research. Seminal
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research demonstrated that TNF increases AMPAR
surface expression and synaptic strength, with TNF
treated slices showing increased frequency of minia-
ture post-synaptic excitatory currents (mEPSCs) [60,
61]. TNF’s activity dependent scaling of synap-
tic strength in these studies indicates its role as
a mediator of homeostatic plasticity [62]. Genetic
deletion of TNFR1 suppressed synaptic transmission
via AMPAR dependent mechanisms in cortical neu-
rons [63]. Importantly, induction of GLuR2-lacking
AMPAR trafficking by TNF allows for enhanced cal-
cium influx which has been shown to contribute to
excitotoxicity [64, 65]. In contrast to this mecha-
nism in hippocampal neurons, it has been shown
in cortical and motor neurons that TNF can prefer-
ence the expression of GluR2 containing AMPAR
expression, thereby protecting against excessive cal-
cium influx [66]. The reasons for this disparity may
include differences in neuron type, which under-
scores the diverse role of TNF in plasticity [66].
Interestingly, TNF can boost glutamate levels by
increasing neuronal glutaminase production, which is
involved in the conversion of glutamine to glutamate
[67].

An effect on N-methyl-D-aspartate receptor
(NMDAR) modulation has also been observed.
TNF’s enhancement of hippocampal mEPSC fre-
quency and amplitude was abolished in TNFR1
knockout mice and mice treated with the NMDAR
antagonist ifenprodil, with indications for a role of
NR2B subunit containing NMDARs in TNFR1 sig-
nalling [68]. The involvement of NMDARs in TNF
mediated excitatory transmission has been observed
elsewhere, with TNF exposure resulting in a quickly
observed change in cellular activity that increased
the NR1 subunit of NMDAR surface expression and
enhanced EPSCs [69, 70].

To further increase neuronal excitability, TNF can
decrease inhibitory signalling. TNF was found to
cause GABAA receptor endocytosis in hippocampal
pyramidal neurons, furthering excitatory transmis-
sion at these synapses [60]. Later, the intracellular
pathway of this GABAA receptor endocytosis was
further characterised in rats and found to be TNFR1
dependent [71]. In contrast, TNF had no effect on
reducing the frequency of spontaneous post-synaptic
inhibitory currents in rat spinal cord slices [72].

In addition to the neuronal mechanisms discussed
above, TNF’s recruitment of glia to enhance excita-
tory signalling is extremely important, if not critical.
For example, TNF induced increases in synaptic
strength that were abolished in a model of TNFR1

inactivation were returned with the selective acti-
vation of TNFR1 in astrocytes [68]. In particular,
TNF’s ability to affect glial glutamate regulation is
an important mechanism of TNF excitation [73].
In rat hippocampal entorhinal cortex slices, TNF
was shown to dose-dependently decrease uptake of
glutamate [74]. Specifically blocking glial gluta-
mate uptake transporters alone resulted in the same
NMDAR dependent neurotoxicity as elicited by TNF
[74]. TNF has also been shown to downregulate the
expression of the excitatory amino acid transporter
gene EAAT2, which regulates neuronal glutamate
transporters, and has associations with reducing
astroglial glutamate transporter 1 [75, 76]. TNF fur-
ther potentiates excitatory transmission by inducing
glial glutamate release. In microglia, TNF activates
TNFR1 in an autocrine manner to induce glutamate
release through transporters and through gap junc-
tion hemi channels [77]. TNF has also been shown
to positively regulate astrocytic glutamate release,
with microglial-astrocytic communication amplify-
ing release [78]. Furthermore, microglial TNF release
potentiates the intrinsic excitability of Purkinje neu-
rons, as seen in a model of LPS induced cerebellar
inflammation [79].

In the hippocampus, astrocytic purinergic recep-
tor activation and subsequent calcium influx can
induce mEPSCs in adjacent neurons through glu-
tamate release [80]. It was shown in Tnf−/− mice
that this effect is abolished due to alterations in
the docking and exocytosis of glutamate vesicles,
which affects the balance between astrocytic gluta-
mate uptake and release [80]. Investigators noted that
low concentrations of TNF appear to be necessary for
this mechanism of gliotransmission and that fluctua-
tions in TNF would have subtle, if not greater, effects
on synaptic transmission [80]. However, regulatory
feedback systems do exist, with glial release of TNF
being regulated by detection of extracellular gluta-
mate. Glutamate treated astrocytes transplanted into
neuronal cultures released less TNF and elicited less
AMPAR expression in neurons, indicating a role in
synaptic scaling to protect against excessive excita-
tion [61].

In contrast to TNF’s potentiation of excitatory
transmission, studies have demonstrated that TNF
application can inhibit components of LTP [81–86].
In the rat hippocampus, it was suggested that TNF’s
inhibition of LTP is a biphasic mechanism initially
involving p38 mitogen-activated protein kinase in the
early stage of inhibition while relying on another
mechanism in repressing long term LTP [87]. Later,
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the same group did similar work and implicated
the disruption of intracellular calcium levels related
to mGluR5 activation as involved in TNF’s LTP
inhibition [88]. Another group showed that TNF
in low concentrations enhances LTP expression in
mouse pyramidal neurons, an effect which was absent
when intracellular calcium stores were depleted [89].
Importantly, this study showed that concentration
is critical in what effect TNF will have on synap-
tic plasticity, as low levels of TNF enhance LTP
expression while high levels of TNF impair the
establishment of LTP but do not affect previously
existing LTP. This effect was able to be reversed
with neuronal pretreatment with ryanodine, implicat-
ing calcium levels in the effect of TNF on both the
inhibition and establishment of LTP. Alterations in
calcium transport have also been observed in a study
involving old age rats where administration of soluble
TNF inactivator Xpro1595 was shown to reverse age
related hippocampal LTD and behavioural deficits
[90]. The importance of TNF in LTD has been
shown elsewhere, with TNFR knockout mice show-
ing no LTD establishment in CA1 neurons [91].
Interestingly, another model of transgenic rats with
overexpressed TNF showed increased LTP in CA1
neurons and spatial cognition deficits in behavioural
tasks [92]. These results indicate TNF’s negative
effect on cognition through modulation of both LTD
and LTP.

Notably, there is evidence that directly conflicts
with TNF as a booster of synaptic strength. Research
by Lewitus and colleagues demonstrates TNF can
downregulate synaptic strength in the striatum under
certain conditions [93]. In this study, haloperidol
treatment resulted in increased AMPA/NMDA ratios
in striatal medium spiny neurons (MSNs) in Tnf−/−
but not WT mice. In contrast to previous litera-
ture, this work illustrates TNF’s ability to dampen
synaptic strength rather than increase it under altered
function [93, 94]. The authors noted that MSNs are
inhibitory cells, and reduced excitatory transmission
of these cells would result in reduced overall circuit
inhibition [93]. Later, the same group showed that
TNF has a protective effect on dopaminergic neurons
within the nucleus accumbens in an animal model
of cocaine use. It was found that microglial TNF
release, regulated by microglia sensing extracellular
dopamine through D2 receptors, was able to reduce
AMPA/NDMA ratios in D1 expressing MSNs and
reduce cocaine sensitisation [95].

Other research using a mouse model of experi-
mental autoimmune encephalomyelitis (EAE) found

that microglial TNF was associated with potentiated
transmission in the striatum, likely through AMPARs
[96]. Anxiety was associated with TNF and altered
excitatory transmission in a similar model by the
same group [97]. It has been suggested that TNF has
region specific effects on AMPAR expression [13].
However, as TNF has displayed opposing effects on
synaptic transmission in the same brain region, it is
also likely its effect varies based on different con-
ditions, with activity blockade and models of EAE
involving the striatum discussed here. As previously
mentioned, the concentration of TNF is a critical
determinant factor in whether TNF will enhance or
inhibit synaptic plasticity; variability in TNF con-
centration has also been used by others to explain
disparate results [89, 98].

Adding to its diverse array of qualifications, TNF
has an effect on altering neuronal morphology. Acti-
vation of TLR3 signalling following injection of
the immunostimulant polyinosinic-polycytidylic acid
(poly(I:C)) resulted in TNF dependent remodelling
of dendritic spines of pyramidal neurons in the
motor cortex [99]. Tnf–/– mice did not show altered
dendritic spine dynamics or motor learning deficits
following poly (I:C) injection. Interestingly, deple-
tion of microglia did not alter the effects of poly (I:C)
administration, indicating that peripheral immune
cells are the determinant source of TNF that pro-
duce the observed dendritic spine alterations. The
importance of peripheral TNF has been demon-
strated elsewhere, where increases in peripheral TNF
preceded microglial activation and increased den-
dritic spine turnover in the somatosensory cortex of
mice in an EAE model [100]. This is not to dis-
count the importance of microglia in TNF signalling;
microglia coordinate numerous TNF effects and have
been implicated as important in recruiting peripheral
immune cells into the brain in response to peripheral
TNF release [101]. Through NF-κB signalling, TNF
has also been shown to inhibit neurite outgrowth in
mouse neurons in vitro [102].

Importantly, the effect of TNF on excita-
tory/inhibitory receptor regulation, glial cells, gluta-
mate regulation and intrinsic plasticity means TNF
can contribute to vulnerability to glutamate induced
excitotoxic cell death [65, 103, 104]. Illustrating this
point, treatment with soluble TNFR1 was able to pro-
tect against cell death in a model of spinal cord injury
in rats [64]. However, TNF does have variable and
conflicting effects on synaptic strength, which must
be considered when discussing the role of TNF in
synaptic plasticity during AUD.
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ALCOHOL EXPOSURE AND TNF
EXPRESSION

Interestingly, early research found that in vitro
cultures of monocytes or rats injected with alcohol
showed an abolished or reduced TNF response fol-
lowing immune challenge [105, 106]. This effect
was supported using human blood, with ethanol
pretreatment reducing TNF levels in response to
LPS in vitro [107, 108]. A possible mechanism
for alcohol’s ability to acutely diminish TNF lev-
els includes an interaction with TACE function to
reduce TNF release [109, 110]. More recent research
suggests that LPS tolerance following ethanol expo-
sure in human monocytes is due to alterations in
heat shock factor 1 and heat shock protein 70 [111].
In support of ethanol working at a post transla-
tional level to inhibit TNF release, increases in TNF
mRNA expression are seen in animal models after
ethanol administration while protein levels in both
the brain and serum remain unaffected [112, 113].
Further supporting alcohol’s role as an immuno-
suppressive agent, ethanol pretreatment lowers the
release of TNF and other cytokines in the brain fol-
lowing traumatic brain injury; similarly, intragastric
administration of alcohol in rats for 3 days prior
to physical trauma reduces TNF release [114, 115].
Other short term binge models in rats report no
significant increases in TNF protein expression in
serum, brain or other tissues compared to controls,
although other markers of neuroinflammation can
be found [116–118]. It should be noted that TNFR
and TLR4 pathways are not the only inducers of
TNF expression, and alcohol shows minimal effect on
TNF release via TLR2 pathways in human monocytes
[119].

In contrast to in vivo models and some in vitro
models, a range of studies show that both acute and
chronic ethanol exposure enhance the expression and
release of TNF (Table 1) [46, 120–123]. While there
may be multiple mechanisms for TNF release after
ethanol consumption, one suggestion involves neu-
roimmune potentiation after drug use, resulting from
the ‘priming’ of microglia which boosts TNF levels
following alcohol consumption [10, 13, 123, 124].
It is also likely that the systemic inflammation that
can arise in AUD contributes to the enhanced release
of TNF after alcohol consumption. This is illustrated
in a post-mortem investigation of individuals with
AUD, which found the DNA binding patterns of NF-
κ� in the prefrontal cortex were modified resulting in
inhibition of κ� regulated transcription and upregula-

tion of genes usually repressed by p50 homodimers,
which includes TNF [125, 126]. It is clear that dif-
ferential effects on TNF levels have been observed
between in vitro and in vivo results, furthered by dis-
parity between species and brain regions. It is also
known that different patterns of alcohol administra-
tion can alter neuroimmune gene expression [127].
However, a variable trend of acute alcohol exposure
being able to diminish TNF expression with pro-
longed alcohol exposure increasing TNF expression
is observed.

ALCOHOL’S EFFECT ON TNF IN HUMAN
MODELS

As shown in Table 1, there is a general consensus
in rodent models that acute ethanol decreases TNF
while chronic ethanol treatment increases TNF; how-
ever, depending on brain region and alcohol exposure
model, gene and protein expression of TNF can still
vary [128]. Similar disparities are seen in human stud-
ies, shown in Table 2.

Investigations in humans have shown significantly
elevated plasma levels of TNF and IL-6 in alco-
hol dependent patients compared to healthy controls
[129]. Increased plasma TNF was observed at a
relatively constant level throughout 14 days of with-
drawal and was not associated with self-reported
craving or withdrawal symptoms. Keifer and col-
leagues corroborated this observation, showing a
positive association between duration of alcohol
abuse but no direct association with self-rated crav-
ing during withdrawal [130]. Another study found
plasma TNF that was upregulated in alcohol depen-
dent patients, and was able to find a significant and
positive association with alcohol craving both at the
start and end of a three week alcohol withdrawal
period [33]. Importantly, the individuals in this latter
study did not have alcohol associated liver disease
(AALD), which would be a confounding source of
TNF. Increased TNF levels in those with AUD is also
supported by Zahr and colleagues [131]. These results
highlight an interesting, albeit variable, effect of TNF
on withdrawal during AUD.

In contrast, a study of healthy men without AUD
showed that the daily consumption of approximately
four glasses of whisky for 17 days did not affect
plasma TNF levels [132]. In individuals with AUD,
levels of TNF within cerebrospinal fluid did not differ
significantly to control groups [133]. Another study
saw no significant differences in TNF plasma levels
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Table 1
Ethanol induced changes in TNF gene expression and protein levels in the brain of rodents

Ethanol Treatment Study Brain region mRNA levels Protein levels
Mice

Acute – 5, 10 or 15 hours of continuous
infusion of EtOH (total amount 156 mg/25
g) into the right internal jugular vein

[220] Whole brain ↑ ↑

Acute – 5 g/kg EtOH via intragastric
gavage, 25% EtOH (w/v) daily for 10 days

[221] Whole brain ↑ ↑

Acute – 6 g/kg EtOH via intragastric
gavage for 10 days

[222] Hippocampus, cerebellum
or cortex

No change

Acute – 5 g/kg EtOH via intragastric
gavage daily for 10 days

[223] Whole brain and serum ↑ ↑

Chronic – 5% (v/v) EtOH (36%
ethanol-derived calories) or an isocaloric
control diet for 5 weeks

[46] Cerebellum ↑

Chronic – 10% EtOH (v/v) in drinking
water and solid diet ad libitum for 5
months

[224] Striatum ↑ striatum

Rats

Acute – 7% EtOH (w/v) for either 15 days
ad libitum access or 3 intermittent 5 day
binges

[225] Cortex ↓acute ↑ chronic

Acute – 2 g/kg EtOH injected
intraperitoneally at 3, 9, 15, 18 hours

[226] Hypothalamus,
paraventricular nucleus of
the hypothalamus,
hippocampus, cerebellum

Hypothalamus = ↓ at 3hrs
and 9hrs, ↑ 18hrs
Hippocampus = ↓ 3, 9 and
18hrs Cerebellum = ↓ at
3hrs, 9hrs PVN = ↓ 3hrs

Acute (single 14 hour exposure),
subchronic (1 week intermittent
exposure), chronic (6 week intermittent
exposure) EtOH vapor

[227] Basolateral amygdala,
nucleus accumbens, and
ventral tegmental area

↑ acute and subchronic in
all 3 areas ↑ chronic in
the NAC

Acute – 3 g/kg 25% EtOH (v/v) via
intragastric gavage every 8 hours for 4
days

[118] Anterior cerebellar vermis,
cingulate cortex, frontal
cortex, hippocampus,
hypothalamus, striatum

No difference observed

Acute – 25% EtOH (w/v) in drinking
water or an isocaloric dextrose diet via
intragastric gavage every 8 hours over 4
days

[116] Hippocampus No difference observed

Acute – 25% EtOH (w/v) or an isocaloric
dextrose diet via intragastric gavage every
8h for 4 days

[117] Hippocampus and
entorhinal cortex

No difference observed

Chronic – 10 weeks voluntary
consumption and 4 g/kg EtOH intragastric
challenge

[226] Paraventricular nucleus of
the hypothalamus,
hippocampus, amygdala

Paraventricular nucleus of
the hypothalamus
(PVN) = No change
Hippocampus = ↓ at 3hrs
Amygdala = Trend for ↓
at 3 hours

Chronic – 5.0 g/kg via intragastric gavage,
20% EtOH (w/v) on a 2day on/2day off
schedule

[228] Frontal cortex ↑

between Spanish populations of self-reported alco-
hol abstainers and light, moderate and heavy drinkers
[134]. Similar results were found in AUD patients
without AALD and with compensated liver disease
in multiple studies [135, 136]. Interestingly, a con-

trasting study found that elevations in serum TNF
predicted decreased long term survival in patients
with AALD [137]. Taken together, alcohol related
TNF levels in humans show marked differences
between studies, even accounting for AALD.
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Table 2
Ethanol induced changes in TNF levels in humans

Participants Study Method TNF

7 female and 6 male healthy controls, and 9
females and 19 male participants with AUD

[229] Cerebrospinal fluid levels
collected on days 4 and 25 of
abstinence

No differences on day 4, ↓ in
alcoholics after 25 days

26 female and 28 male healthy controls, and
27 female and 54 male participants with
AUD

[230] Whole blood plasma ↑

18 healthy male controls and 30 male
participants with AUD

[231] Serum levels collected during
withdrawal at 1, 7 and 14 days

↑ consistently elevated during the
whole period of withdrawal

30 healthy controls and 30 male participants
with AUD

[232] Blood plasma collected during
withdrawal at 15–25 hours

↑

20 healthy controls and 43 participants with
AUD

[233] Blood sample collected during
withdrawal at 12–36 hours

No significant differences

16 healthy controls and 40 participants with
AUD

[217] Blood plasma collected during
withdrawal at onset and end of 3
weeks

↑ onset ↓ decreases during
withdrawal but remains increased
compared to controls

23 healthy male subjects consuming 4
standard drinks daily for 17 days

[234] Blood plasma No differences seen after 17 days

14 healthy controls and 32 participants with
AUD. Some participants had AALD

[235] Blood plasma collected at time of
admission (withdrawal around 3
weeks) and 30 days later

No differences in alcoholic patients
without clinically apparent liver
disease, with alcoholic cirrhosis, or
in non-alcoholic healthy controls
↑severe alcoholic hepatitis

459 participants ranging from non-drinkers
to heavy drinkers. 137 of these participants
were hospitalized for AUD

[236] Blood plasma collected across a
number of hospitals around Spain

↑ admitted alcoholics ↑ higher TNF
levels in alcoholics with liver disease

21 participants with compensated alcoholic
liver cirrhosis (ALC) and 23 with
decompensated ALC

[237] Blood sample collected on
admission (withdrawal varied)

No difference ↑ decompensated ALC

11 male and 4 female healthy controls, and
11 male and 4 female participants with AUD

[138] Blood samples collected,
peripheral blood mononuclear
cells isolated and cultured

No difference was observed with
LPS stimulation between groups

The majority of these studies use subjects who
enter clinical settings as patients during with-
drawal. Therefore, it is possible that variability
in the neuroimmune state of the subject could
contribute to incompatible results. Recent studies
using positron emission tomography (PET) scans
to measure translocator protein (TSPO) binding in
withdrawn or abstinent individuals with a history
of long term AUD show reduced microglial and
astrocytic activation in the striatum and hippocam-
pus compared to controls [138, 139]. Another study
showed similar results in total brain TSPO binding,
but this difference disappeared when both alcohol
dependant patients and healthy controls possessed a
TSPO rs6971 polymorphism which confers higher
binding affinity for TSPO [140]. The same group
later showed that in vitro autoradiography with the
TSPO ligand [3H]PK11195 had higher levels of bind-
ing than in vivo PET with [11C]PBR28 in the brains of
alcohol exposed rats, indicating that observations in

the aforementioned human studies may be a result
of imaging methodology rather than a true effect
[141]. Furthermore, histological results in the brains
of humans with alcohol use disorder show region
specific increases in microglia immunoreactivity,
indicating increased neuroinflammation [142–144].
However, long term alcohol use disorder resulting in a
‘blunting’ of the neuroimmune response, perhaps due
to lowered glial density or glial adaptations, remains a
possibility.

Additionally, the reliability of serum TNF as an
indicator of brain TNF must be considered. While
TNF is able to be transported across the BBB, pre-
vious work has shown significant increases in TNF
within the brain following a 10 day regiment of intra-
gastric ethanol exposure that were not observed in
serum [113]. Similarly, other cytokine changes in
response to ethanol have previously been restricted
to the CNS with no changes in serum levels being
detected [145, 146]. Admittedly, these studies were
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both in mice and it is possible that TNF serum lev-
els may be more representative of brain TNF in the
human. However, these results imply the probabil-
ity that increased TNF within the brain may not be
apparent when measuring serum.

TNF’S INVOLVEMENT IN AUD

TNF’s ability to modulate synaptic strength as
discussed in this review has implications with drug
associated neuroinflammation and neuroplasticity.
However, it is difficult to contextualise the neuro-
plastic effects of TNF in AUD. Firstly, there are
contrasting results on the effect of alcohol on TNF
levels in those with AUD, and concentration appears
to be pivotal in the effect of TNF on neuroplasticity.
Secondly, TNF is a single molecule among a family of
neuroimmune signals and inflammatory molecules.
These cytokines often act in concert in parallel, pos-
sibly redundant, pathways that converge on NF-κB
transcription and it is therefore difficult to attribute
effect to a single immune molecule [62, 147]. Despite
this, TNF is in a relatively privileged position of being
a potent inflammatory molecule and a modulator of
synaptic plasticity and this section will discuss TNF’s
role in AUD rather than the collective role of all
inflammatory cytokines.

To begin with an unforgiving perspective, ethanol
consumption was not significantly decreased in
TNFR1 knockout mice [148]. In contrast, inter-
leukin 1 receptor (IL-1R) knockout mice showed
significant decreases in ethanol consumption and
double knockouts for IL-1R and TNFR1 showed
marked decreases in ethanol consumption. However,
these results imply that TNF/TNFR1 signalling is
not involved in regulating ethanol consumption and
do not exclude a contributory effect of TNF on
altered neurotransmission, which may affect other
aspects of AUD. Demonstrating TNF’s effect on drug
related adaptation, TNF has been correlated with
alcohol craving in humans, associated with ethanol
withdrawal-induced anxiety in mice and is involved
in cocaine use in mice [33, 130, 149, 150]. In inves-
tigations involving cocaine use, mice subjected to
maternal separation show increased levels of TNF
gene expression in the nucleus accumbens and the
prefrontal cortex in a sex dependent manner, with
females experiencing no effect [150]. Importantly,
mice who experienced maternal separation showed
a place preference for cocaine where their control lit-
termates did not. This preference was abolished after

administration of Xpro1595, which blocks solTNF.
Although this investigation was not related to AUD,
it supports TNF as a regulator of drug induced
plasticity and highlights the relationship between
stress activated neuroimmune signalling and drug use
[13].

A proposed mechanism of brain damage in AUD
involves adaptations in GABAergic and glutamater-
gic signalling leading to higher susceptibility to
excitotoxic cell death during withdrawal. Although
the effect of alcohol on glutamate signalling is
complex, it has been proposed that glutamate exci-
totoxicity during alcohol use disorder is linked to
neurodegeneration [151]. Additionally, while evi-
dence supporting this mechanism in vivo is not
clearly demonstrated, drugs used to reduce with-
drawal symptoms such as benzodiazepines work by
interacting with GABA receptors to reduce excita-
tory transmission [152, 153]. TNF’s augmentation
of excitatory transmission deserves discussion in this
context. Theoretically, TNF’s effect on susceptibility
to excessive calcium influx, through calcium perme-
able AMPAR expression, and positive enhancement
of glutamate release, should create an optimal envi-
ronment for excitotoxic cell death [57]. Surprisingly,
while there are broad associations, there is a lack
of definitive evidence implicating TNF in with-
drawal related excitotoxic changes. For example,
TNF is known to increase GluR2 subunit contain-
ing AMPARs in some models, and the brains of
individuals with AUD show increased expression
of GluR2 and GluR3 subunit containing AMPARs
in the cingulate cortex [66, 154]. However, links
such as these are tenuous and do not demonstrate a
causative role. Due to the role of TNF in potentiating
excitotoxicity, its role in AUD withdrawal warrants
investigation. The validity of this topic for further
investigation is increased by the observation that TNF
administration can manifest increased anxiety related
withdrawal symptoms following alcohol withdrawal
in mice [149].

In regards to human TNF polymorphisms, a
meta-analysis found an association between alcohol
dependence and TNF polymorphism in individuals
with AALD [155]. However, this relationship was
not present in those without AALD and further anal-
ysis showed this link was more representative of
AALD and AUD rather than TNF polymorphisms.
Indeed, associations between TNF and AALD are
well documented in some populations [134, 155,
156]. In other populations, no links between TNFR1
or TNFR2 polymorphisms and AALD are found
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[157]. Therefore, while there is no evidence to sup-
port TNF related predisposition to AUD, there is the
possibility that TNF polymorphisms could amplify
peripheral inflammation, leading to increased TNF
levels to exacerbate neurodegeneration and altered
neurotransmission. Somewhat nullifying this propo-
sition, a study of common TNF polymorphisms in a
Japanese population of alcoholics showed no associa-
tion between TNF polymorphisms and brain atrophy
[158]. An association was found between lympho-
toxin, previously known as TNF-�, related alleles and
atrophy which is of interest as lymphotoxin signals
through both TNFR1 and TNFR2. Polymorphisms
involving TNF and brain derived neurotrophic factor
(BDNF) genes have been observed to affect spatial
memory retention, which is interesting in its own right
[159].

Intriguingly, it is possible TNF may play an almost
‘invisible’ role in AUD. In hippocampal rat neurons,
it was shown that the presence of a cannabinoid
receptor 1 (CB1R) agonist reduced TNF induced
AMPAR membrane expression [160]. In alcoholic
patients, CB1R availability as measured through PET
was lower both during withdrawal and after alco-
hol consumption compared to healthy controls [161].
Downregulation of CB1R is also observed in animals
chronically exposed to ethanol [162, 163]. Therefore,
a possible mechanism exists involving changes in
neuronal excitability associated with CB1R and TNF
in AUD. Notably, changes in the regulation of TNF
could result in strengthening or dampening of synap-
tic transmission independent of changes in TNF brain
or serum level.

While this review highlights TNF’s potentiation of
excitatory transmission, there is some evidence that
TNF protects against excitotoxicity in cortical and
hippocampal neurons [66, 164–166]. Of note, inves-
tigators showed that pretreatment of murine cortical
neurons with ethanol prevented the neuroprotective
effects of TNF against excitotoxic challenge [164].
Additionally, it has been suggested that TNF lev-
els, mediated by drug induced neuroinflammation,
and their possibly protective effects against exci-
tatory transmission could drop during withdrawal
[13]. However, the sum of human and animal studies
taken together imply increases of TNF levels after
chronic alcohol consumption. Additionally, some
of the studies illustrating neuroprotection involve
TNFR2, which is not the primary receptor acti-
vated during inflammation induced solTNF release
[165].

TNF IN NEUROGENESIS

Neurogenesis describes the generation of new neu-
rons from neural stem cells. Neurogenesis occurs
during development and continues throughout adult-
hood where it is restricted to the subventricular zone
(SVZ) of the lateral ventricles and the subgranu-
lar zone (SGZ) of the hippocampal dentate gyrus.
The neurons born in the SVZ migrate through the
rostral migratory stream and become granule and
periglomerular neurons within the olfactory bulb
whereas neurons born in the SGZ migrate into the
granular layer of the dentate gyrus of the hippocam-
pus and become dentate granule cells [167]. The
regulation of adult neurogenesis is thought to be
involved in memory formation and cognition but is
also involved in mood and stress. Recent research
has emerged suggesting that inflammation and the
immune system itself can influence the way adult
neurogenesis occurs in the brain.

While TNF production has been linked to
decreased neural stem cell proliferation and shown
anti-neurogenic properties, it has demonstrated pro-
neurogenic properties in other studies [23, 168–170].
In embryonic neural progenitor cell culture, LPS acti-
vated microglia and macrophages inhibited neuronal
differentiation or induced neuronal cell death [171,
172]. Treatment with pentoxifylline, an inhibitor of
TNF, partially restored neurogenesis [171]. The anti-
neurogenic role of TNF has also shown to stimulate
differentiation of neuronal progenitor cells into astro-
cytes [172]. In neuronal spheroid culture, it has been
shown that TNF has no effect on differentiation or
proliferation and instead induces neuronal progenitor
cell migration [168, 173].

The effect of TNF on neurogenesis also depends on
whether TNFR1 or TNFR2 signalling is involved. In
a TNF receptor knockout model, TNFR1 activation
reduced hippocampal neurogenesis in normal con-
ditions and after status epilepticus [169]. Although
TNFR2 is known for its neuroprotective effects, it can
also induce apoptosis and TNFR2 knockout mouse
models show increased proliferation and survival
of newborn neurons [169, 174–176]. An investiga-
tion using a mouse model of irradiation induced
chronic inflammation showed reduced neurogenesis
in TNFR2 knockout animals while TNFR1 knockout
mice showed little difference compared to controls
[177]. This result suggests a role of TNFR2 in
promoting neurogenesis after injury. In vivo, TNF
knockout models show reduced hippocampal BDNF
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levels and decreased apical dendrite arborization of
CA1 and CA3 pyramidal cells [178]. Another study
reported that primary hippocampal neurons in culture
reduced neurite outgrowth and dendritic branching in
response to TNF [179]. Overall, the proposed mech-
anism of TNF’s modulation of neurogenesis that is
generally accepted involves disruption of I kappa
� kinase/ NF-κ� (IKK/NF-κ�) signalling in neu-
ral progenitor cells [173]. This process results in an
upregulation of Cyclin D1, an important protein for
cell cycle progression, which promotes the passage
through the G1/S restriction point therefore encour-
aging proliferation of neural progenitors cells [172,
173]. However, the literature on TNF’s role on neuro-
genesis varies and further research needs to evaluate
the effects of TNF and its receptors on neuronal pro-
genitor cells in neurogenesis.

ALCOHOL’S EFFECT ON TNF AND
NEUROGENESIS

Decreased neurogenesis contributes to both anxi-
ety and depression and selective serotonin reuptake
inhibitor antidepressants can alleviate and promote
hippocampal neurogenesis [180]. Under healthy con-
ditions, stem cells in the brain are under constant
stimulation to proliferate, migrate, differentiate and
survive. However, pathological conditions like AUD
impact these neurogenic stages with differential
effects between alcohol intoxication and withdrawal.
Ethanol intoxication studies in vivo have shown that
the consumption of ethanol decreases neurogene-
sis through ethanol’s effect on cell proliferation and
cell survival [180–185]. However, studies observ-
ing abstinence of ethanol after ethanol dependence
show increases in neurogenesis [186]. Some stud-
ies conflict with the general consensus that ethanol
intoxication inhibits neural stem cell proliferation and
have observed no effect after 10 days of ethanol con-
sumption, or an increase in proliferation after chronic
ethanol exposure [183, 187, 188].

AUD is known to disrupt neurogenesis and
hippocampal integrity [182]. Although the exact
mechanism is unknown, numerous mechanisms have
been proposed. Ethanol’s interaction with neuro-
transmission may be relevant due to the importance
of glutamate and GABA signalling in hippocampal
neurogenesis [189]. BDNF is a modulator of neu-
rotransmitters and increases neurogenesis through
enhancement of cell birth, survival, and maturation

within the hippocampal SGZ [190]. After ethanol
consumption, levels of serum BDNF decrease in
humans and can return to baseline after alcohol absti-
nence [191–193]. BDNF levels have also been shown
to decrease in rodents in the hippocampus, cortex
and hypothalamus [194–196]. Finally, there is con-
siderable evidence suggesting ethanol has significant
cellular effects on glia that impact the hippocampal
neurogenic niche. Excessive consumption of ethanol
results in activation and damage to astrocytes which
are primary components of the neural stem cell niche
[197–203]. Activation of microglia can also inhibit
neurogenesis [204]. Microglial TNF release during
neuroinflammation is a key contributor to inflam-
mation induced death of newly formed hippocampal
neural progenitor cells in the adult brain after injury
[205]. Microglia are activated by ethanol consump-
tion depending on their phenotype and inflammatory
environment and the duration, dose, and pattern
of alcohol exposure [116, 117, 206–208]. Other
cytokines released by microglia such as IL-1� and
IL-6 are also thought to contribute to inhibition of
neurogenesis [209, 210].

However, limited studies have explored the
relationship between alcohol, TNF and adult neu-
rogenesis. Broadly, TNF is usually explored in
conjunction with other cytokines and is rarely stud-
ied individually. Both LPS and ethanol treated mice
have shown to increase proinflammatory cytokines
such as TNF, monocyte chemoattractant protein-1
(MCP1) and IL-1� and reduce the proliferation
of hippocampal neural progenitors and newly born
neuron differentiation in mice [211–213]. However,
the role of TNF in neurogenic deficits after alco-
hol exposure should not be overstated. One study
showed reversal of ethanol’s inhibition of neuroge-
nesis by neutralising IL-1� and blocking the IL-1�
receptor with an antagonist against IL-1R, an effect
that could not be replicated with neutralizing anti-
bodies to TNF or MCP1 [214]. Antioxidant drugs
have been tested to rescue the neurogenic deficits
elicited after ethanol consumption. Butylated hydrox-
ytoluene (BHT) has been shown to restore ethanol
inhibition of neurogenesis by blocking NF-κB induc-
tion of proinflammatory genes [215, 216]. Rolipram,
a phosphodiesterase-4 inhibitor, has also been tested
and induced an increase in neurogenesis after ethanol
consumption [214]. The success of these treatments
supports a role of inflammatory cytokines in mediat-
ing ethanol’s inhibition of neurogenesis but does not
highlight TNF as an essential signal in this process.
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CONCLUDING REMARKS

TNF has a demonstrated effect on synaptic plastic-
ity and neurogenesis in vitro and in animal models.
There is some evidence for TNF having an important
role during withdrawal, with associations between
alcohol craving and TNF in humans and in animal
studies showing a direct effect of TNF on anxiety
during withdrawal [149, 217]. This role in anxiety
during withdrawal may be important when consider-
ing relapse and further studies involving the blocking
of TNF during withdrawal may be beneficial. Its pos-
sible involvement in excitotoxicity during withdrawal
is also an interesting research avenue. Additionally,
TNF has prominent involvement in peripheral inflam-
mation during AUD, particularly with AALD, which
would exacerbate other neuroimmune signals and
their effects [218, 219]. However, there is a lack of
definitive evidence for TNF having a clearly defined,
unique effect on neuroplasticity and neurogenesis in
AUD. Rather, it is likely TNF contributes to neuroim-
mune signalling within a party of cytokines [32, 62].
Understanding TNF in AUD is also complicated by
its differential effects on synaptic strength in different
brain regions, which remain to be elucidated. In our
opinion, the relevance of TNF in AUD going forward
should be decided using animal models of voluntary
drinking with inducible knockdowns of TNFR1 or
TACE followed by behavioural testing during with-
drawal. Furthermore, the roles of TNF should be
further investigated to understand its effect on neuro-
transmission in physiology and pathology.
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