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Abstract
Scans without evidence of dopaminergic deficit (SWEDD) refers to patients who mimics motor and non-motor symptoms of 
Parkinson’s disease (PD) but showing integrity of dopaminergic system. For this reason, the differential diagnosis between 
SWEDD and PD patients is often not possible in absence of dopamine imaging. Machine Learning (ML) showed optimal 
performance in automatically distinguishing these two diseases from clinical and imaging data. However, the most com-
mon applied ML algorithms provide high accuracy at expense of findings intelligibility. In this work, a novel ML glass-box 
model, the Explainable Boosting Machine (EBM), based on Generalized Additive Models plus interactions (GA2Ms), was 
employed to obtain interpretability in classifying PD and SWEDD while still providing optimal performance. Dataset (168 
healthy controls, HC; 396 PD; 58 SWEDD) was obtained from PPMI database and consisted of 178 among clinical and 
imaging features. Six binary EBM classifiers were trained on feature space with (SBR) and without (noSBR) dopaminer-
gic striatal specific binding ratio: HC-PDSBR, HC-SWEDDSBR, PD-SWEDDSBR and HC-PDnoSBR, HC-SWEDDnoSBR, PD-
SWEDDnoSBR. Excellent AUC-ROC (1) was reached in classifying HC from PD and SWEDD, both with and without SBR, 
and by PD-SWEDDSBR (0.986), while PD-SWEDDnoSBR showed lower AUC-ROC (0.882). Apart from optimal accuracies, 
EBM algorithm was able to provide global and local explanations, revealing that the presence of pairwise interactions between 
UPSIT Booklet #1 and Epworth Sleepiness Scale item 3 (ESS3), MDS-UPDRS-III pronation-supination movements right 
hand (NP3PRSPR) and MDS-UPDRS-III rigidity left upper limb (NP3RIGLU) could provide good performance in predict-
ing PD and SWEDD also without imaging features.
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Introduction

The Parkinson’s disease (PD) is the second most common 
neurodegenerative disease after Alzheimer’s disease (AD) 
(Amoroso et al., 2018) and it affects an important percent-
age of the elderly population (de Lau & Breteler, 2006). 
The degeneration of dopaminergic neurons in the substan-
tia nigra is known as the cause of PD, which leads to motor 
symptoms such as the rigidity, tremor, akinesia, gait, and 
speech disturbance. Together with motor symptoms, the PD 
also presents alterations in non-motor functions, negatively 
affecting the daily activities of the patients (Vaccaro et al., 
2021; Sarica, 2021a). The motor and non-motor impair-
ment is usually quantified through several clinical scales, 
such as the commonly used Movement Disorder Society 
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) 
(Goetz et al., 2008). The Single-photon emission computed 
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tomography (SPECT) with the DaTSCAN (123I-Ioflupane) 
is the most widely applied diagnostic technique for assessing 
the dopamine deficit in PD. The SPECT tracer binds to the 
dopamine transporters in the brain regions of caudate and 
putamen (the striatum). Such clinical and imaging evalu-
ations are recognized as the main tools for the diagnosis 
of PD. However, in the 10% of clinically diagnosed PD 
patients, the dopaminergic functional imaging is negative, 
and these patients are classified as Scans without evidence 
of dopaminergic deficit (SWEDD) (Schwingenschuh et al., 
2010). It has been hypothesized that SWEDD patients suf-
fer from other neurological diseases, e.g. essential tremor or 
dystonia, which mimic PD and present overlapping motor 
and non-motor symptoms. For these reasons, the differential 
diagnosis of PD and SWEDD results to be still complex and 
challenging (Schwingenschuh et al., 2010).

Artificial Intelligence (AI) and Machine Learning (ML) 
are nowadays broadly applied for supporting the diagnosis of 
PD and Parkinsonisms (Vaccaro et al., 2021; Sarica, 2021a; 
Chien, 2021; Palumbo, 2014; Salvatore et al., 2014; Oliveira 
& Castelo-Branco, 2015; Yang et al., 2021), as well as 
for distinguishing between PD and SWEDD (Mabrouk 
et al., 2017; Mabrouk et al., 2019; Hirschauer et al., 2015; 
Prashanth et al., 2017) from clinical, neuropsychological and 
imaging features. Although the ML algorithms for the auto-
matic prediction and the differential diagnosis of PD showed 
excellent performance (Vaccaro et al., 2021; Chien, 2021; 
Palumbo, 2014; Salvatore et al., 2014; Oliveira & Castelo-
Branco, 2015; Mabrouk et al., 2017; Mabrouk et al., 2019; 
Hirschauer et al., 2015; Prashanth et al., 2017; Lei et al., 
2019), the usually applied approaches are black-boxes, that 
is they are not able to provide a satisfactory interpretation 
of ML findings. It is indeed beyond doubt that the applica-
tion of ML in the healthcare and neurological realm should 
provide an acceptable tradeoff between the accuracy and the 
interpretability (Ahmad et al., 2018; Sarica, 2022), and for 
this reason, a novel field of AI has been born very recently, 
the Explainable AI (XAI) (Arrieta et al., 2020). One of the 
interpretable ML algorithms that showed good performance 
on biomedical and clinical data is the Explainable Boost-
ing Machine (EBM) (Lou et al., 2012), a glassbox model 
based on the Generalized Additive Models plus interactions 
(GA2Ms) (Hastie & Tibshirani, 1990; Lou et al., 2013). 
EBM showed comparable accuracy to the state-of-the-art 
ML methods, such as Random Forest (Breiman, 2001; Sar-
ica et al., 2017) or XGBoost (Chen & Guestrin, 2016), and 
it has been successfully employed for the prediction of the 
Alzheimer’s disease from MRI data (Sarica et al., 2021b), 
for the assessment of the Pneumonia risk (Caruana et al., 
2015) and of the COVID-19 risk (Magunia, 2021), and for 
supporting the optimal treatment of Kawasaki disease (Wang 
et al., 2020). Because of the extreme novelty, very few works 
assessed the reliability and utility of the XAI approaches for 

the early and/or differential diagnosis of PD (Ma et al., 2021; 
Magesh et al., 2020; Shahtalebi et al., 2021), and further-
more none of these studies applied EBM for the prediction 
of PD. Thus, the main contributions of the present work are: 
(i) to investigate the performance of the EBM algorithm for 
the prediction of PD; (ii) to evaluate the reliability of EBM 
in distinguishing between PD and SWEDD patients by using 
clinical scales and imaging features; (iii) to compare the 
performance of EBM classifiers trained with and without 
striatal DaTSCAN uptake; (iv) to assess the influence of the 
pairwise interactions on the EBM models performance; (v) 
to provide the interpretability and the feature contribution 
in the single prediction of PD.

Methods

Participants

Data used in the preparation of this article were obtained 
from the Parkinson’s Progression Markers Initiative (PPMI) 
database (www.​ppmi-​info.​org/​data). For up-to-date informa-
tion on the study, visit www.​ppmi-​info.​org. Table 1 reports 
the demographic, the clinical and imaging characteristics of 
the cohort, which consisted of 168 healthy controls (HC), 
396 PD and 58 SWEDD. Only subjects without missing 
clinical and imaging features were considered and all data 
used for the analysis are acquired at the baseline visit.

Motor and non-motor evaluation of PD was conducted 
through the Movement Disorder Society Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008), 
which consists of three parts: part I, non-motor experiences 
of daily living; part II, motor experiences of daily living; 
part III, motor examination; part IV, motor complications. 
Other important scales for the assessment of non-motor 
symptoms, are the Montreal Cognitive Assessment (MoCA, 
for detecting cognitive impairment), State-Trait Anxiety 
Inventory (STAI, for assessing the level of anxiety), Geri-
atric Depression Scale (GDS, for evaluating the depression 
in older adults), Scales for Outcomes in Parkinson’s Dis-
ease - Autonomic Dysfunction (SCOPA-AUT, for evaluat-
ing autonomic symptoms), Judgment of Line Orientation 
(JLO, for assessing the visuospatial skills), the University 
of Pennsylvania Smell Identification Test (UPSIT, for test-
ing the function of the olfactory system) and the Epworth 
Sleepiness Scale (ESS, for assessing the daytime sleepiness). 
The Hoen and Yahr (H&Y) scale was also reported here, but 
it was not included in the training features set since it is used 
for assessing the stage of PD and not for diagnosis.

The dopamine transporter single-photon emission 
computed tomography (DaT-SPECT) is the neuroim-
aging approach usually applied for the diagnosis PD. 
The brain region of interest (ROI) investigated with the 
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123I-Ioflupane (DaTSCAN) and SPECT is the striatum, 
consisting of the caudate and the putamen. The specific 
binding ratio (SBR) of these two ROIs for each hemisphere 
is calculated from the count densities in the ROI masks, 
considering the occipital cortex as reference tissue.

The number of items per clinical assessment and the 
total number of features (178) used for training the ML 
models are reported in Table 1.

Statistical analysis

Statistical analyses were conducted for comparing demo-
graphic, clinical and imaging features among the three 
groups. One-way analysis of variance (ANOVA) was 
applied for assessing differences in age, MDS-UPDRS-I, 
MDS-UPDRS-II, MDS-UPDRS-III, H&Y, MoCA, STAI, 
GDS, SCOPA-AUT, JLO, UPSIT, ESS, and SBR of cau-
date and putamen, while differences in gender distribu-
tions were assessed with Chi-squared test (p < 0.05). Tuk-
ey’s method was employed for the multiple comparisons 
correction (p < 0.05).

Machine learning analysis

The EBM algorithm (Caruana et al., 2015) is based on stand-
ard Generalized Additive Models (GAMs) (Hastie & Tibshi-
rani, 1990), which accuracy is improved by adding pairwise 
interactions (Lou et al., 2013), taking the name of GA2Ms 
and the form:

where xi = (xi1,… , xip) is the feature vector with p features, 
yi the response, xj denotes the jth variable in the feature 
space, g is the link function that adapts the GAMs to regres-
sion (e.g., g = identity) or classification (e.g., g = logistic), �0 
is the intercept that adjusts the prediction from the model, 
and fj is the feature function, which could be plot for visual-
izing the contribution of each feature to the final prediction 
(Nori et al., 2019). The two-dimensional interaction fij(xi,xj) 
in Eq. 1 can be rendered as heatmap on a two-dimensional 
xi,xj-plane, thus still maintaining the intelligibility. The EBM 
improves the standard GA2Ms thanks to bagging and gradi-
ent boosting with shallow tree-like ensembles for mitigating 
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Table 1   Demographic, clinical and imaging data of the PPMI dataset (values are mean ± SD)

Statistical results are also reported
a  Number of items per test, i.e. number of features used for training EBM models. Age, gender and H&Y not included in the feature space
b  Tukey’s correction (p < 0.05)
Abbreviations: HC, healthy control; PD, Parkinson’s disease; SWEDD, Scans without evidence of dopaminergic deficit; N.A., Not applicable

HC
(168)

PD
(396)

SWEDD
(58)

#a p-value ANOVA Post-hocb

Age 61.1 ± 11.3 61.7 ± 9.65 60.6 ± 10 - 0.71 N.A.
Gender (M/F) 109/59 260/136 35/23 - N.A. N.A.
H&Y 0.005 ± 0.07 1.57 ± 0.51 1.41 ± 0.53 - < 0.0001 PD > HC, SWEDD; SWEDD > HC
MDS-UPDRS-I 2.89 ± 2.76 5.61 ± 4.12 8.24 ± 6.56 13 < 0.0001 SWEDD > HC, PD;

PD > HC
MDS-UPDRS-II 0.35 ± 0.95 5.39 ± 4.14 5.02 ± 5.03 13 < 0.0001 HC < PD, SWEDD
MDS-UPDRS-III 1.19 ± 2.06 20.9 ± 8.84 13.9 ± 9.31 33 < 0.0001 PD > HC, SWEDD;

SWEDD > HC
MoCA 28.1 ± 1.09 26.9 ± 2.38 26.8 ± 2.57 26 < 0.0001 HC > PD, SWEDD
STAI 47.7 ± 4.97 47.3 ± 5.32 46.7 ± 4.89 40 0.36 N.A.
GDS 5.17 ± 1.39 5.26 ± 1.45 5.71 ± 1.75 15 0.11 N.A.
SCOPA-AUT​ 5.11 ± 3.38 8.58 ± 6.51 12.1 ± 8.80 21 < 0.0001 SWEDD > HC, PD;

PD > HC
JLO 13.1 ± 1.95 12.8 ± 2.1 12.7 ± 2.49 1 0.18 N.A.
UPSIT 34 ± 4.75 22.3 ± 8.34 31 ± 6.42 4 < 0.0001 PD < HC, SWEDD; SWEDD < HC
ESS 5.66 ± 3.38 5.81 ± 3.42 8.24 ± 4.83 8 0.0009 SWEDD > HC, PD
Left Caudate SBR 3.0 ± 0.63 1.99 ± 0.59 2.86 ± 0.57 1 < 0.0001 PD < HC, SWEDD
Right Caudate SBR 2.9 ± 0.61 1.98 ± 0.59 2.83 ± 0.59 1 < 0.0001 PD < HC, SWEDD
Left Putamen SBR 2.14 ± 0.56 0.812 ± 0.35 2.05 ± 0.51 1 < 0.0001 PD < HC, SWEDD
Right Putamen SBR 2.16 ± 0.58 0.843 ± 0.36 2.09 ± 0.51 1 < 0.0001 PD < HC, SWEDD

Tot 178
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the co-linearity and for avoiding overfitting (Lou et al., 
2012, 2013; Caruana et al., 2015). The best feature func-
tion fj for each feature is learnt by training the model on one 
feature at a time, so to obtain its contribution to the predic-
tion, which is then added and sent through the link function 
g to make single predictions (Nori et al., 2019). The concept 
of additivity and modularity of the contributions allows to 
rank and visualize which features have the higher impact 
on the individual prediction (Nori et al., 2019). In terms 
of predictive performance, EBM is comparable or in some 
cases better than the state-of-the-art algorithms (Nori et al., 
2019), such as Random Forest (Breiman, 2001; Sarica et al., 
2017) and XGBoost (Chen & Guestrin, 2016).

ML analysis was conducted with Python 3.7 and the pack-
age InterpretML 0.2.7 (Nori et al., 2019), which implements 
the EBM algorithm, on a MacOS 10.14.6 (2.9 GHz, 32GB 
of RAM). First, the dataset containing the three diagnostic 
classes, was randomly split with a static seed into training 
and test sets with a percentage respectively of 80% and 20% 
and maintaining the balance in the distribution of classes. 
Then, the training and test sets were split into three pairs 
of training/test sets, so to contain two diagnostic classes 
for each: HC (134/34) and PD (317/79), HC and SWEDD 
(46/12), and PD and SWEDD. The binary EBM classifiers 
were built on two different feature spaces, with and without 
the caudate and putamen SBR: HC-PDSBR, HC-SWEDDSBR, 
PD-SWEDDSBR and HC-PDnoSBR, HC-SWEDDnoSBR, PD-
SWEDDnoSBR. With the aim of assessing the influence of 
the pairwise interactions on the model performance, their 
number was automatically varied in a range from zero (no 
interactions) to 20. Then, we searched for optimal number 
of pairs in term of the Area under the Curve of the Receiver 
Operating Characteristic (AUC-ROC), evaluated on test 
set. Only the best binary model with the highest AUC was 
considered for further analysis. In case there was an equal 
AUC-ROC value among different classifiers, the model with 
less interactions was preferred for minimizing the complex-
ity. The AUC-ROC of each best model was also calculated 
by applying a stratified 5-fold cross-validation to prevent 
overfitting and to assess the stability and reliability of the 
classifiers (reported as mean ± standard deviation). Sensitiv-
ity and specificity of the best models were calculated from 
the confusion matrix for test sets, and furthermore, given the 
imbalance of classes (Magunia, 2021), Balanced accuracy 
(BA) and AUC of the Precision-Recall curve (AUC-PR) 
were also calculated.

For each best binary classifier, the overall importance 
ranking (global explanation) of features was obtained by 
ordering their average absolute contribution in predicting 
training data. The local explanation of test subjects was also 
assessed as the ranking of the most important features in the 
single prediction, calculated as logit of the probability (loga-
rithm of the odds) from the logistic link function g (Eq. 1), 

where the logit of each feature is sum up for obtaining the 
final prediction (Lou et al., 2012, 2013).

Results

Demographic, clinical and imaging characteristics

No significant differences existed among the three groups 
in age, STAI, GDS, JLO and in gender distribution, while 
the remaining other twelve scales were significantly dif-
ferent among them (Table 1). Regarding the post-hoc, PD 
patients had higher values than HC in UPDRS-I, UPDRS-II, 
UPDRS-III and H&Y, and lower values than HC in MoCA, 
SCOPA-AUT, UPSIT, caudate and putamen SBR. SWEDD 
patients had higher values than HC in UPDRS-I, UPDRS-
II, UPDRS-III, H&Y and ESS, and lower values than HC in 
MoCA, SCOPA-AUT and UPSIT. PD and SWEDD groups 
were different in UPDRS-I, UPDRS-III, H&Y, SCOPA-
AUT, UPSIT, ESS, caudate and putamen SBR, as reported 
in Table 1.

Machine learning analysis

The results of EBM models are reported in Table 2. The 
two best classifiers HC-PDSBR (zero interactions) and 
HC-PDnoSBR (one pairwise interaction: NP3FACXPxN-
P3BRADY) reached both the maximum AUC-ROC of 1 and 
an AUC-PR of 0.999, while the BA was 1 and 0.987 respec-
tively. The two best classifiers HC-SWEDDSBR and HC-
SWEDDnoSBR showed both an AUC-ROC of 1, BA 0.97 and 
AUC-PR 1, with the same only interaction NP2HWRTxNP-
2TRMR. For distinguishing between PD and SWEDD 
patients, the best result (AUC-ROC 0.986, BA 0.75, AUC-
PR 0.998) was obtained by the model PD-SWEDDSBR with 
one interaction (PUTAMEN_LxPUTAMEN_R). When the 
SBRs were dropped from the feature space, the AUC-ROC 
of the model PD-SWEDDnoSBR decreased to 0.882 (BA 
0.625, AUC-PR 0.979), with a higher number of pairwise 
interactions (eleven).

The ROC and the overall importance of the six best EBM 
models, with and without SBR, could be found in Fig. 1. 
The overall feature importance of the best model HC-PDSBR 
showed that the first three most important variables were 
NP2TRMR (MDS-UPDRS II Self-assessment of tremor, 
item 2.10), NP3BRADY (MDS-UPDRS III Global Spon-
taneity of movement, item 3.14) and NP3FACXP (MDS-
UPDRS III Facial expression, item 3.2) (Fig. 1A). These 
three features were also the most predictive variables in the 
best model HC-PDnoSBR, except that they were outdated 
in importance by the pairwise interaction NP3FACXPxN-
P3BRADY (Fig. 1B). The features ranking of the two best 
models HC-SWEDDSBR and HC-SWEDDnoSBR showed that 
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the most important variables for both classifiers were the 
interaction between NP2HWRT​ (MDS-UPDRS II Handwrit-
ing item 2.7) and NP2TRMR, followed by the two features 
NP2TRMR and NP3RTCON (MDS-UPDRS III Constancy of 
rest, item 3.18) (Fig. 1C-D). The best three variables in the 
model PD-SWEDDSBR were the interaction between the left 
putamen SBR and right putamen SBR, followed by the left 
putamen SBR and the right putamen SBR (Fig. 1E). When 
the SBRs were dropped from the feature space, the overall 
importance of the model PD-SWEDDnoSBR revealed that the 
most predictive variable were three interactions between 
UPISTBK1 (UPSIT Booklet #1) and ESS3 (Epworth Sleep-
iness Scale item 3, Sitting, inactive in a public space), 
between UPISTBK1 and NP3PRSPR (MDS-UPDRS-III 
pronation-supination movements right hand, item 3.6a), 
and between UPSITBK1 and NP3RIGLU (MDS-UPDRS-
III rigidity left upper limb, item 3.3c).

The global explanations of the six EBM models are 
reported in Fig. 2 and in particular, Fig. 2A depicts the plots 
of feature interpretability for the first three most important 
variables in the model HC-PDSBR (NP2TRMR, NP3BRADY 
and NP3FACXP). These plots of feature interpretability 
are in other words risk profiles, in which the risk score 
is reported in the vertical axis and the actual value of the 
feature is reported in the horizontal axis (upper graphs in 
Fig. 2A). Bottom graphs in Fig. 2A also reports the density/
distribution of the feature. A feature risk score above zero 
represents a contribution to the classification towards the 
positive class (PD), while a score below zero denotes a con-
tribution towards the negative class (HC). Looking at the 
plot of the variable NP2TRMR (Fig. 2A), it is possible to 
interpret that, actual values of this feature higher than 0.923 
contribute to the diagnosis of PD, while values between 0 
and 0.308 contribute to the prediction of HC. Similarly, the 
plot of interpretability of the feature NP3BRADY (Fig. 2A) 

shows that actual values between 0 and 0.5 contribute to the 
classification of HC, while values higher 0.5 contribute to 
the classification of PD.

For the EBM models in which the interactions resulted 
to be the most predictive features, we reported their heat-
maps (Fig. 2B-E). In the model HC-PDnoSBR, the heatmap of 
the interaction NP3FACXPxNP3BRADY shows that having 
higher values of NP3FACXP and of NP3BRADY, or higher 
values of NP3BRADY and lower values of NP3FACXP, 
results to have higher risk of having a diagnosis of PD 
(areas in yellow/orange in Fig. 2B). The pairwise interaction 
NP2HWRTxNP2TRMR was the most important feature in 
both models HC-SWEDDSBR and HC-SWEDDnoSBR, where 
the higher risk to be diagnosed as SWEDD is obtained when 
these two features have both high values (yellow/orange area 
in the upper right corner of Fig. 2C). The heatmap of the 
pairwise interaction PUTAMEN_RxPUTAMEN_L - the most 
important feature in the model PD-SWEDDSBR – shows that 
higher risk to have a diagnosis of PD is when both putamina 
have lower SBR values (yellow area in the bottom left cor-
ner of Fig. 2D). Regarding the model PD-SWEDDnoSBR, the 
heatmaps of interactions (Fig. 2E) reveals that having lower 
values of UPSITBK1 accompanied by higher values of ESS3, 
NP3PRSPR and NP3RIGLU contributes to the prediction as 
PD (positive class in yellow).

The local explanations were assessed on the three 
SWEDD test subjects (#21, #39, #91) who were misclas-
sified as PD by the model PD-SWEDDnoSBR, but correctly 
classified by the model PD-SWEDDSBR. Figure 3 reports 
the contribution of each feature in the prediction of these 
three SWEDDs in both EBM classifiers, where feature 
scores below zero (in blue) contribute to the classification 
as SWEDD, while feature scores above zero (in orange) 
contribute to the classification as PD. In particular, the 
plots of the local interpretability in Fig. 3 show that the 

Table 2   Performance of the 
EBM binary models by varying 
the number of interactions

The performance of the best models are also reported
a  AUC-ROC values obtained by varying the number of pairwise interactions from 0 to 20 (21 iterations)
b  Referred to the best EBM binary model, i.e. with max AUC-ROC on the test set and smaller number of 
pairwise interactions
Abbreviations: HC, healthy control; PD, Parkinson’s disease; SWEDD, Scans without evidence of dopa-
minergic deficit; SBR, Specific Binding Ratio; pos, positive class; neg, negative class; AUC-ROC, Area 
under the Curve of the Receiver Operating Characteristic; BA, Balanced Accuracy; AUC-PR, AUC of the 
Precision-Recall curve; int, interactions; Sens, Sensitivity; Spec, Specificity; cv, cross-validation

AUC-ROC
min/mean/maxa

#intb Sens-Spec BAb AUC-PRb AUC-ROC
5-fold cvb

HC-PD
[neg-pos]

SBR 1/1/1 0 1–1 1 0.999 1 ± 0.0
noSBR 0.997/0.999/1 1 0.974-1 0.987 0.999 1 ± 0.0

HC-SWEDD
[neg-pos]

SBR 0.975/0.991/1 1 1-0.970 0.97 1 0.97 ± 0.02
noSBR 0.955/0.990/1 1 1-0.970 0.97 1 0.97 ± 0.02

PD-SWEDD
[pos-neg]

SBR 0.955/0.981/0.986 1 1-0.5 0.75 0.998 0.94 ± 0.03
noSBR 0.823/0.859/0.882 11 1-0.25 0.625 0.979 0.85 ± 0.06
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interaction PUTAMEN_RxPUTAMEN_L in the model PD-
SWEDDSBR is primarily responsible for the correct clas-
sification of the three SWEDD subjects.

Fig. 1   Findings of the best EBM binary classifiers: (A) HC-PDSBR; 
(B) HC-PDnoSBR; (C) HC-SWEDDSBR; (D) HC-SWEDDnoSBR; (E) 
PD-SWEDDSBR; (F) PD-SWEDDnoSBR. Upper plots are the ROC 

Curves (on test set) and densities of the absolute residuals, bottom 
plots are the rankings of the overall feature importance (first fifteen 
features) as mean absolute score (on training set)
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Discussion

A highly intelligible ML approach, the EBM, was here 
applied for the differential diagnosis of PD and SWEDD 
through clinical and imaging features. The EBM models 
for distinguishing PD from HC, and SWEDD from HC, 
reached the maximum of accuracy (1), both with and with-
out the striatum SBR as training feature. A slight decrease 
in the accuracy was obtained by the model for distinguish-
ing PD from SWEDD with the SBR as feature (0.986), 
while the model without SBR had a greater decrease of the 
AUC-ROC (0.882). Our results improved the accuracies 
for the automatic diagnosis of PD and SWEDD provided 
by the literature (Chien 2021; Palumbo, 2014), in models 
trained on the same clinical and imaging features here used 
(Mabrouk et al., 2017; Hirschauer et al., 2015), as well 

as in other explainable ML approaches (Ma et al., 2021; 
Magesh et al., 2020).

It is noteworthy that the drop of the caudate and putamen 
SBR from the feature space, did not worse the performance 
of HC-PD and HC-SWEDD classifiers thanks to the pres-
ence of the pairwise interactions, thus providing an accurate 
model that do not require subjects to be acquired with an 
invasive and expensive SPECT imaging method (Hirschauer 
et al., 2015). In particular, we improved the accuracy of the 
previous literature (Mabrouk et al., 2019), where PDs were 
distinguished from HCs with an AUC-ROC of 88% by a 
K-NN classifier trained only on MoCA and UPSIT total 
scores. In another work (Hirschauer et al., 2015), for distin-
guishing PD and SWEDD from HC, classifiers were trained 
only on six clinical examinations (UPDRS-I, UPDRS-II, 
UPDRS-III, MoCA SCOPA-AUT, UPSIT) obtaining accu-
racies of 97.2%, and 93.6% for the binary problems HC-PD 

Fig. 2   Global explanation of the EBM models: (A) Plots of feature 
interpretability (risk profiles) for the first three most important vari-
ables in the model HC-PDSBR, where the upper graph reports the fea-
ture risk score, and the bottom graph depicts the feature distribution. 
Heatmaps of the pairwise interactions (B) NP3FACXPxNP3BRADY 
in the EBM models HC-PDnoSBR where HC is negative class (purple) 
and PD is positive class (yellow); (C) NP2HWRTxNP2TRMR in the 
EBM models HC-SWEDDSBR and HC-SWEDDnoSBR, where HC is 
negative class (purple) and SWEDD is positive class (yellow); (D) 
PUTAMEN_RxPUTAMEN_L in the EBM model PD-SWEDDSBR, 
where PD is positive class (yellow) and SWEDD is negative class 

(purple); (E) UPSITBK1xESS3, NP3PRSPRxUPSITBK1, NP3RI-
GLUxUPSITBK1 in the EBM model PD-SWEDDnoSBR, where PD 
is positive class (yellow) and SWEDD is negative class (purple). 
The risk scores are logits (log odds). NP2TRMR = MDS-UPDRS-
II Tremor (item 2.10); NP2HWRT​ = MDS-UPDRS-II Handwrit-
ing (item 2.7); ESS3 = Epworth Sleepiness Scale item 3 (Sit-
ting, inactive in a public space); UPSITBK1 = UPSIT Booklet #1; 
NP3PRSPR = MDS-UPDRS-III pronation-supination movements 
right hand (item 3.6a); NP3RIGLU = MDS-UPDRS-III rigidity left 
upper limb (item 3.3c)
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and HC-SWEDD respectively. With our AUC-ROC on test 
set of 1 and a mean AUC-ROC of 1 with the 5-fold cross-
validation, we also outperformed the accuracies of explain-
able models recently applied for the detection of PD: the 
95.2% obtained by an Explainable ML model applied on 
DaTSCAN images (Magesh et al., 2020), and the accuracy 
of 98.41% of an explainable deep learning approach trained 
on Gait data (Ma et al., 2021).

Regarding the more challenging classification of PD 
and SWEDD, we found that SBRs were still necessary as 
training features for reaching optimal accuracy, as in pre-
vious ML works (Chien, 2021; Palumbo, 2014; Oliveira 
& Castelo-Branco,  2015; Mabrouk et  al., 2017,  2019; 
Hirschauer et al., 2015; Prashanth et al., 2017; Lei et al., 
2019; Magesh et  al., 2020), although no one until now 
evaluated and demonstrated the importance of left and 

Fig. 3   Local explanation of the three SWEDD test subjects (#21, 
#39, #91) misclassified as PD by the EBM binary model PD-
SWEDDnoSBR, but correctly classified by the EBM model PD-
SWEDDSBR. In round brackets the actual value of the feature. The 

local explanation scores are logits (log odds), where SWEDD is nega-
tive class (or class 0), and PD is positive class (or class 1). The prob-
abilities of the predictions are also reported
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right putamina pairwise interaction. The interaction PUTA-
MEN_RxPUTAMEN_L (Fig.2D) allowed us to obtain an 
AUC-ROC of 98.63% on the test set and a mean AUC-ROC 
with 5-fold cross validation of 94%, achieving similar or 
better performance than the literature. For example, in a 
study (Hirschauer et al., 2015) the classifier for distinguish-
ing PD from SWEDD had an AUC-ROC of 95.3% with both 
SBRs and clinical data as training features, and an AUC-
ROC of 93.7% with only putamen SBR (mean of the left 
and right putamen) as training feature. The importance of 
the striatum SBR was also confirmed when we looked at the 
local explanations of the misclassified SWEDD test subjects 
(Fig.3) provided by our PD-SWEDD classifiers. Although 
the model PD-SWEDDnoSBR showed worst performance than 
the PD-SWEDDSBR one, it had a good AUC-ROC (88.2%), 
which anyway improved the literature, as in comparison 
with Hirschauer et al. (2015), where, when the classifier was 
trained only on clinical examinations data, PD and SWEDD 
were distinguished with an accuracy of 86.8%.

Another important finding of the present work is that 
we demonstrated that one single pairwise interaction was 
enough for maximizing the accuracy in classifying HC-PD 
when SBRs was excluded from the feature space. We also 
found a stability of the results in the two best models HC-
SWEDD, with and without SBRs, since they had the same 
and only interaction pair - NP2HWRTxNP2TRMR- that was 
also the most predictive variable. In other words, we con-
firmed the robustness to excess feature pairs of the EBM 
algorithm reported by Lou et al. (2013), demonstrating 
small variations in the range of accuracy when varying the 
number of interactions (Table 2). Although the model PD-
SWEDDnoSBR showed this kind of stability too, a higher 
number of features pairs (11) was necessary for reaching the 
maximum performance. This could be due to the overlapping 
motor and non-motor symptoms between the two diseases, 
as well as to the heterogeneity of SWEDD patients, who 
can present a broad range of possible underlying diagnoses 
(Schwingenschuh et al., 2010), or to diagnostic uncertainty. 
Anyway, it is interesting to notice the predictive role of the 
UPSIT (Booklet #1) - a non-motor sign - in distinguishing 
SWEDD from PD, given its presence in the first three most 
important interactions (UPSITBK1xESS3, NP3PRSPRx-
UPSITBK1, NP3RIGLUxUPSITBK1, Fig. 1F). This result 
corroborates the previous literature that demonstrated that 
UPSIT best differentiated PD from SWEDD and proposed 
the UPSIT as an important indicator of the likelihood of 
SWEDD (Hirschauer et al., 2015).

Despite the promising findings, the present study has 
several limitations to be addressed. First of all, the low 
sample size, especially in the case of the SWEDD cohort, 
which could have limited the generalizability of the results, 
although it should be highlighted that the bagging and gra-
dient boosting procedures of EBM may have been able to 

minimize this issue. Moreover, the imbalanced dataset may 
have allowed the majority class (PD) to have a larger weight 
than the minority (SWEDD) during the process of train-
ing, leading to a poor specificity on the test set. We cannot 
exclude that the bias introduced by the class imbalance of 
the binary problem PD-SWEDD led to build “unfair” clas-
sifiers (Amoroso et al., 2018; Wahlström et al., 2019; Zeng 
et al., 2022), which completely ignored the feature contribu-
tion of the minority class. Although we obtained good bal-
anced accuracy (0.625) and optimal AUC-PR (0.979), future 
studies should investigate the ability of EBM algorithm to 
deal with imbalanced classes, or, from an algorithmic point 
of view, assess the EBM fairness through thresholding rules 
derived for example from Bayes-optimal classifiers (Amo-
roso et al., 2018; Wahlström et al., 2019; Zeng et al., 2022). 
Another limitation of this work is related to the possible 
presence of correlation among features, heavy multicol-
linearity and/or non-linearity around a prediction (Caruana 
et al., 2015), which may consider important interactions 
that are on the contrary spurious. Since we considered the 
subitem scores rather than the total score of the clinical 
assessments, the large feature space may have indeed intro-
duced multicollinearity among features. Our choice relies 
on the complexity of the differential diagnosis of PD and 
SWEDD patients for which subtle differences between PD 
and SWEDD patients could be lost when only the total score 
is considered. Furthermore, the use of the subitems as train-
ing features could enhance the ability of EBM in providing 
interpretable findings and supporting the clinical decisions. 
Regarding the imaging feature, we considered only DaTS-
CAN since this is the gold standard for the PD diagnosis, 
and it is the most common imaging approach used in the 
clinical routine. Further works are needed to confirm our 
results on a larger cohort and with different features, for 
example MRI structural or diffusion metrics, especially to 
improve the diagnostic accuracy of the binary problem PD-
SWEDD and to confirm the trustiness of the EBM global 
and local explanations.

Conclusions

In this study, a high intelligible ML approach, the EBM, was 
applied for the differential diagnosis of PD and SWEDD 
from clinical and imaging features obtaining excellent 
accuracies. We demonstrated that PD and SWEDD could 
be distinguished by the EBM algorithm with optimal per-
formance (AUC-ROC 0.882) also without the striatal uptake 
from DaTSCAN, which is an invasive, time-consuming and 
expensive imaging technique. We showed that including the 
pairwise interactions between features increased the EBM 
models accuracy still maintaining high intelligibility of ML 
findings. Moreover, the visual analysis of the global and 
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local explanations offered accurate information about the 
impact of each single feature around the prediction of PD 
and SWEDD, especially for understanding why a test subject 
was correctly or incorrectly classified.
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