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A B S T R A C T   

Glioma undergoes adaptive changes, leading to poor prognosis and resistance to treatment. CD99 influences the 
migration and invasion of glioma cells and plays an oncogene role. However, whether CD99 can affect the 
adaptiveness of gliomas is still lacking in research, making its clinical value underestimated. Here, we enrolled 
our in-house and public multiomics datasets for bioinformatic analysis and conducted immunohistochemistry 
staining to investigate the role of CD99 in glioma adaptive response and its clinical implications. 

CD99 is expressed in more adaptative glioma subtypes and cell states. Under hypoxic conditions, CD99 is 
upregulated in glioma cells and is associated with angiogenesis and metabolic adaptations. Gliomas with over- 
expressed CD99 also increased the immunosuppressive tumor-associated macrophages. The relevance with 
tumor adaptiveness of CD99 presented clinical significance. We discovered that CD99 overexpression is asso-
ciated with short-time recurrence and validated its prognostic value. Additionally, Glioma patients with high 
expression of CD99 were resistant to chemotherapy and radiotherapy. The CD99 expression was also related to 
anti-angiogenic and immune checkpoint inhibitor therapy response. Inhibitors of the PI3K-AKT pathway have 
therapeutic potential against CD99-overexpressing gliomas. 

Our study identified CD99 as a biomarker characterizing the adaptive response in glioma. Gliomas with high 
CD99 expression are highly tolerant to stress conditions such as hypoxia and antitumor immunity, making 
treatment responses dimmer and tumor progression. Therefore, for patients with CD99-overexpressing gliomas, 
tumor adaptiveness should be fully considered during treatment to avoid drug resistance, and closer clinical 
monitoring should be carried out to improve the prognosis.   

Introduction 

Gliomas are the most prevailing central nervous system (CNS) tu-
mors, accounting for approximately 80% of brain malignancies. Only 
30% of patients with gliomas survive at five years after diagnosis, and 
this number drops to 6.8% for glioblastoma (GBM) [1]. Gliomas grad-
ually develop tolerance to treatment, making recurrence almost inevi-
table [2]. 

Multiple adaptive responses exist in tumors to cope with various 
stressors, thus contributing to cancer malignancy and proposing chal-
lenges to therapy [3]. Proneural-mesenchymal transition (PMT) arises in 
gliomas under therapeutic pressure [4]. PMT enhances the tumor initi-
ation and recurrence potential of cancer cells and produces resistance to 
treatments [5,6]. Hypoxia is the most common microenvironmental 
stress in glioma [7]. Through metabolic reprogramming and angiogen-
esis, gliomas adapt to low oxygen content [8,9]. Anti-tumor immunity, 
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such as activation of cytotoxic T cells (CTLs) in the tumor microenvi-
ronment (TME), also poses stress to gliomas [10]. Gliomas recruit 
immunosuppressive cells including tumor-associated macrophages 
(TAMs), facilitating their immune escape [11]. These adaptive mecha-
nisms synergistically promote malignant progression and cause thera-
peutic resistance in glioma patients. Therefore, seeking biomarkers that 
reflect the adaptive responses is of biological and clinical significance. 

The CD99 gene encodes a highly O-glycosylated transmembrane 
protein, which influence cell adhesion, differentiation, and trans-
endothelial migration [12]. CD99 serves as a biomarker and potential 
therapeutic target for many tumors [13]. Previous studies have shown 
that CD99 is overexpressed in gliomas and plays an oncogene role [14]. 
CD99 affects the morphology and migration of glioma cells through the 
regulation of actin-related genes [15,16]. In GBM, CD99 is 
over-expressed mesenchymal and classical subtypes than that in pro-
neural subtype [15], suggesting that it may be related to the PMT. In 
normal tissues, CD99 is an important functional molecule in the process 
of leukocyte transendothelial migration and is related to various im-
mune response processes [17,18]. These implied CD99 may have po-
tential immune functions in tumors. Taken together, we suspected that 
CD99 may be related to the adaptive response of glioma. 

Herein, we aimed to use multiomics data to demonstrate the role of 
CD99 in glioma adaptative responses and expand its clinical signifi-
cance. We discovered that CD99 is upregulated in more adaptive gli-
omas cell states, and relates to hypoxia response and 
immunosuppressive phenotype. CD99 is a biomarker associated with 
glioma adaptiveness, thus patients with overexpressed gliomas tend to 
undergo tumor recurrence in a shorter period and have a poor prognosis. 
CD99 expression is also associated with a variety of treatment responses 
in gliomas. 

Material and methods 

The Fudan PGx dataset 

Thirty-five (35) glioma patients were enrolled in the Fudan PGx 
glioma cohort. All patients were newly diagnosed as WHO grade II and 
had at least 5 years of follow-up. During the five-year clinical moni-
toring, 12 patients had no recurrence were classified as non-recurrence 
patients, and 23 patients had recurrence were defined as relapse pa-
tients. The samples of these patients were divided into three groups: the 
primary operation samples of non-recurrence patients (NP samples), the 
first operation samples (RP samples) and the second operation samples 
(RS group) of relapse patients. Brain tissues of eight clinical donors (non- 
tumor patients) were included in this study as controls. The clinical data 
of the Fudan PGx cohort related to analyses were listed in Supple-
mentary Data 1. 

Multiomics data were generated using these tumor tissue samples. 
This work mainly used transcriptomic, proteomic, and metabolomic 
data. These data can be requested from the National Omics Data Ency-
clopedia (NODE, https://www.biosino.org/node/) and their accession 
numbers can be found in Supplementary Table 1. The clinical char-
acteristics of the samples from this cohort can be found in Supple-
mentary Data 3. 

Public datasets 

Processed RNA-seq and microarray data of bulk tissues from the 
TCGA and four other public datasets were obtained from the GlioVis 
[19] website (http://gliovis.bioinfo.cnio.es/). The expression matrices 
from the CGGA project [20] were downloaded from the CGGA data 
portal (http://www.cgga.org.cn/download.jsp; dataset names: mRNA-
seq_693, mRNAseq_325, and mRNA-array_301) and expression data 
were log2 transformed before analysis. CGGA referred to the mRNA-
seq_693 dataset unless specified otherwise. The data from the GLASS 
project [21] were extracted from the synapse repositories (https 

://www.synapse.org/). The proteomics data of the GBM patients from 
the CPTAC cohort was downloaded from the PDC data portal (https://pr 
oteomic.datacommons.cancer.gov/pdc/) under the study ID of 
PDC000204 [22]. The fluorescence-activated cell sorting and deep 
sequencing (FACS-seq) profiles of glioma derived cell population were 
obtained from the Brain Tumor Immune Micro Environment (Brain-
TIME) data portal (https://joycelab.shinyapps.io/braintime/) [23]. The 
scRNA-seq profiles of pan-glioma samples and the patient-derived cell 
lines were extracted from the synapse repositories [24]. The scRNA-seq 
profiles of GBM samples conducted by Neftel et al. was obtained from 
the Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) 
[25]. Three RNA expression datasets of hypoxic treatment glioma cells 
were obtained from Gene Expression Omnibus (GEO) under the acces-
sion of GSE45301 [26], GSE138535 [27], GSE118683 [28], and 
GSE78025 [29]. The expression profile of samples from 
bevacizumab-treated patients was obtained under the accession of 
GSE79671 [30], and the expression data of mouse tumor samples 
bearing glioma xenografts treated with different drugs was obtained 
under the accession of GSE39413 [31]. Data from the phase II clinical 
trial of nivolumab were collected from the supplementary materials of 
the literature [32]. All public datasets and their accessions were listed in 
Supplementary Table 1. The clinical characteristics of the patient 
samples mentioned above can be found in Supplementary Data 3. 

Transcriptional subtype classification 

We processed the RNA-seq profile using the “ssgsea.GBM.classifica-
tion” R package [4]. This method separately scores the representation of 
each glioma subtype and simultaneously evaluated the P value indi-
cating the significance of each subtype. We exhibit the P value of each 
subtype in the landscape. For analyses requiring assignment to a single 
subtype for each sample, we considered the subtype with the lowest P 
value. In cases where P values were equal, we assigned the sample to the 
subtype with the highest enrichment score. 

Cell stemness index analysis 

We used the method developed by Malta et al. to extract features 
from the transcriptome data in the Progenitor Cell Biology Consortium 
(PCBC) database [33]. The stemness signatures were applied to the 
expression profile data of patient samples from the TCGA dataset, and 
the mRNA-based cell stemness index (mRNAsi) was calculated in Sup-
plementary Figure 1. 

Enrichment analysis 

Gene set enrichment analysis (GSEA) was performed using the 
“clusterProfiler” R package [34]. The gmt files were downloaded in 
MSigDB v7.5.1. Gene ranks were tested between the CD99 high 
expression group and the CD99 low expression group in the TCGA 
dataset. The intersection of highly correlated genes in the TCGA and 
CGGA datasets was used for over-representation analysis which was 
demonstrated in Supplementary Figure 3. The Pearson correlation 
coefficient R of other genes and the expression level of CD99 was 
calculated, R greater than 0.5 was considered to be highly correlated. 

Deconvolution analyses of glioma microenvironment 

We conducted the CIBERSORT algorithm [35] using the “IOBR” R 
package [36] to deconvolute the bulk expression matrices to infer the 
cell proportions of each sample which were demonstrated in Fig. 3. 
Reference signatures were created from the Brain TIME dataset. The raw 
count data from glioma samples were normalized by TPM quantifica-
tion. Both the count and the TPM matrices served as input to generate 
the reference using the “GenerateRef” function under the mode of 
“DESeq2”. Since the TCGA RNA-seq data obtained from the GlioVis were 
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log2 transformed, we first removed the log2 transformation and then 
deconvoluted the data using the CIBERSORT function under the relative 
mode with 500 permutations for significance analysis. 

Calculation of immune and metabolism related signatures 

The hypoxia score of single-cell dataset demonstrated in Fig. 2 was 
measured by gene set variation analysis (GSVA) performed by “GSVA” R 

Fig. 1. CD99 is highly expressed in more adaptive glioma subtypes and cell states. (A) CD99 expression in gliomas and non-tumor tissues, results from the Rembrandt 
dataset. The P value was calculated by T-test. (B) CD99 expression of the different transcriptional subtypes in the TCGA dataset. Pro., proneural; Cla., classical; Mes., 
mesenchymal. ****, P value <= 0.0001, ***, P value <= 0.001. The P value was calculated by T-test. (C) CD99 expression was demonstrated in the Neftel single-cell 
dataset. The axes are relative meta-module scores. Glioma cells are divided into four cell states: OPC-like, NPC-like, MES-like, and AC-like. (D) Correlation between 
CD99 and cell state markers. R represents the Pearson correlation coefficient. (E) Representative IHC staining images of CD99 and cell-state markers. 3+, percentage 
of high positive area; 2+, percentage of positive area; 1+, percentage of low positive area. 
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package [37]. The immune and metabolism signatures in Fig. 3 and 
Fig. 4 were evaluated by the “IOBR” R package [36]. We inferred the 
tumor purity and stromal and immune cell admixture using the ESTI-
MATE algorithm [38]. The TAMs fraction in Supplementary Figure 3 
was estimated by three algorithms (xCell [39], EPIC [40], and quanTIseq 
[41]) and scored by three gene sets [42–44]. The metabolic signatures in 
Fig. 3 and T cell dysfunction gene set Supplementary Figure 5 were 
scored using the “calculate_sig_score” function under the PCA mode. 

Prediction of immunotherapy responses 

The immune checkpoint blockade (ICB) resistance level demon-
strated in Supplementary Figure 5 was predicted using the TIDE 
method [45] on the webserver (http://tide.dfci.harvard.edu/). The 
Rembrandt dataset was normalized by non-tumor samples and then 
served as the input matrices. 

Prediction of drug sensitivity 

The half-maximal inhibitory concentration (IC50) demonstrated in 
Fig. 5 was predicted using the “oncoPredict” R package. The gene 
expression profiles and IC50 data of glioma cell lines in Sanger’s Ge-
nomics of Drug Sensitivity in Cancer (GDSC) database [46] were used as 
training data to build ridge regression models. These were then applied 
to gene expression data of patient samples to predict their drug 
sensitivity. 

Immunohistochemistry (IHC) staining 

Ten formalin-fixed paraffin-embedded (FFPE) glioma tissues were 
obtained from Shandong Provincial Hospital. After deparaffinization, 
rehydration, antigen retrieval, quenching of endogenous peroxidase, 
and serum blocking, the sections were incubated with the primary an-
tibodies for 1 to 2 h at room temperature (RT) or overnight at 4 ◦C. Then, 
the sections were incubated with horseradish peroxidase (HRP)-conju-
gated polymer for 30 min at RT. The color development was performed 
using diaminobenzidine (DAB) solution after thorough rinsing in PBS. 
Detailed information on the IHC kit and antibodies can be found in 
Supplementary Table 2. The IHC staining images were analyzed using 
the IHC profiler under ImageJ software. 

Quantification and statistical analyses 

The statistical analyses were conducted in R v4.2.1. and the 
“ggplot2” was used for data visualization. Survival analysis and Cox 
regression were conducted by the “survival” and “survminer” R pack-
ages. Time-dependent ROC curves were constructed using the “time-
ROC” R package [47]. 

Results 

CD99 is highly expressed in more adaptive glioma subtypes and cell states 

We validated that CD99 is overexpressed in gliomas compared with 
non-tumor brain tissues (Fig. 1A and Supplementary Figure 1A), 
implying its oncogene role. Next, we confirm that CD99 showed the 
highest expression in the mesenchymal subtype rather than in classical 
and proneural subtypes (Fig. 1B and Supplementary Figure 1B). In 
addition, we observed that the epithelial-to-mesenchymal transition 
process was also upregulated in gliomas with highly expressed CD99 
(Supplementary Figure 1C). These indicate that CD99 expression is 
associated with PMT, which is an important adaptative response in 
glioma. 

Gliomas adapt to dynamically changing microenvironmental condi-
tions by switching to more adaptative cell states, thus eventually 
developing resistance to therapy [48]. Neftel et al. classified glioma 

neoplastic cells into four states according to the expression meta-module 
[25]. CD99 showed a strong expression inclination to Astrocyte-like 
(AC-like) and Mesenchymal-like (MES-like) states (Fig. 1C), which 
contribute to the major cell population of mesenchymal-subtype gliomas 
and are associated with hypoxia responses and immune microenviron-
ment. CD99 was positively correlated with the MES-like and AC-like 
markers at both transcriptomic and proteomic levels. (Fig. 1D and 
Supplementary Figure 1D). This inclination was also observed in the 
IHC staining results (Fig. 1E), wherein glioma sections with high CD99 
expression tend to express higher S100A4, CD44, and GFAP. Johnson 
et al. classified glioma cells into three pan-glioma states, and discovered 
that differentiated-like and proliferating stem-like states are associated 
with stress responses [24]. We observed that CD99 was also overex-
pressed in these cell states and negatively correlated with cell stemness 
(Supplementary Figure 1E and 1F). Collectively, CD99 is expressed in 
subtypes and cell states related to adaptative responses. 

CD99 is overexpressed in hypoxia adaptation process of gliomas 

Hypoxia is the most common stress factor in gliomas. Mesenchymal 
gliomas are adaptive to hypoxia and thus gain more aggressive pheno-
types [49]. Therefore, we suspected CD99 is associated with adaptive 
responses to hypoxia in glioma. To test this hypothesis, we first exam-
ined the hypoxia-related pathway in TCGA glioma samples and 
discovered that the hypoxia process was upregulated in gliomas with 
highly expressed CD99 (Fig. 2A). Angiogenesis is a predominant 
downstream response of hypoxia adaptation [7], we found that the 
angiogenesis gene set in the CD99 high expression group was also 
significantly upregulated (Fig. 2B). The expression of hypoxic markers 
was also associated with CD99. HIF1AN, the inhibitor of HIF1A, had a 
negative correlation. VEGFA, the vital regulator of angiogenesis, had a 
positive correlation (Fig. 2C). VEGFB expression also positively corre-
lated with CD99, whereas no significant correlation was discovered with 
HIF1A, HIF3A, and KDR (Supplementary Figure 2A). 

To further confirm whether CD99 is upregulated under hypoxic 
conditions, we tested its expression in glioma cells under hypoxic and 
normoxic treatment. In three datasets containing the U78-MG cell line, 
the A-172 cell line, and patient-derived glioma stem cells (GSCs), we 
found that the expression of CD99 was consistently upregulated after 
hypoxia treatment (Figs. 2D, 2E, and 2F). We also discovered that 
compared with the normal human astroglia HEB cell line, CD99 
expression had more steep changes in glioma cells U87-MG under 
hypoxia treatment (Supplementary Figure 2B). Due to the tumor 
heterogeneity, we tested the hypoxia response at the single-cell level. 
Johnson et al. performed scRNA-seq analyses of patient-derived glioma 
spheroid-forming cells exposed to continuous hypoxic stress. We eval-
uated the hypoxia level score of individual cells in this dataset with the 
GSVA method. CD99 showed a trend consistent with the level of hypoxia 
response (Figs. 2G and 2H, Supplementary Figures 2C and 2D). These 
discoveries implied that CD99 is a responder of hypoxia adaptation in 
gliomas. 

Metabolic reprogramming is an important mechanism during the 
hypoxic response. We found that the glycolytic pathway was positively 
correlated with CD99 expression, whereas the citric acid cycle was 
negatively correlated with CD99 expression (Fig. 2I). These results 
suggest that gliomas with highly expressed CD99 tend to behave 
stronger Warburg effect under hypoxic conditions. Next, we analyzed 
the metabolome data in the Fudan PGx dataset (Fig. 2J). The concen-
tration of D-glucose, 6-phosphofructose, and glyceric acid was up- 
regulated in glioma with highly expressed CD99, indicating that their 
glucose uptake was enhanced and more intermediates of glucose 
metabolism were accumulated. Fatty acids were negatively correlated 
with CD99 expression, such as adrenic acid, a common polyunsaturated 
fatty acid in the CNS. This suggested that fatty acids may serve as an 
alternative energy source for gliomas under hypoxia. Collectively, we 
confirm that gliomas with highly expressed CD99 had stronger hypoxia 
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Fig. 2. CD99 is overexpressed in hypoxia adaptation process of gliomas. (A) The GSEA plot in the hypoxia genes set of the TCGA dataset. (B) The GSEA plot in 
angiogenesis genes set of the TCGA dataset. (C) Correlation between CD99 and hypoxia response markers. R represents the Pearson correlation coefficient. (D) CD99 
expression in the U78-MG cell line of the GSE45301 dataset. (E) CD99 expression in the A-172 cell line of the GSE138535 dataset. (F) CD99 expression in eight 
patient-derived GSCs in the GSE118683 dataset. Paired t-test, gray lines represent GSCs from the same patient. (G) The UMAP plot of CD99 expression level in 
HF3016 GSCs from the Johnson et al. dataset. (H) The UMAP plot of hypoxia score in HF3016 GSCs from the Johnson et al. dataset. (I) The correlation between CD99 
expression and hypoxia-related metabolic pathways in the TCGA datasets. (J) The correlation between CD99 expression and metabolites in the PGx dataset. The panel 
showed metabolites with strong correlations (Pearson correlation coefficient R > 0.4). 
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adaptation. 

Increased CD99 expression is associated with the immune adaptation 
dominated by TAMs in gliomas 

Anti-tumor immunity is detrimental to cancer cells, but gliomas 
reshape the tumor immune microenvironment adapting to this stress 
and promoting cancer progression [50]. Genes highly correlated with 
CD99 are enriched in immune-related pathways (Supplementary 3A 
and 3B). We found that leukocyte transendothelial migration and in-
flammatory response pathways were significantly upregulated in gli-
omas with highly expressed CD99 (Fig. 3A and Supplementary 

Figure 3C). Next, we found that CD99 was positively correlated with 
immune scores, and negatively correlated with tumor purity, indicating 
that gliomas with high CD99 expression had more immune infiltration 
(Fig. 3B and Supplementary Figure 3D). The CD99 expression is 
associated with CD45, a ubiquitous surface protein marker of immune 
cells (Supplementary Figure 3E). In glioma sections with higher 
expression of CD99, we also observed more positive areas for CD45 
(Fig. 3C). 

To further explore the association between CD99 and the glioma 
TME, we analyzed different cell fractions to confirm the major cell type 
influenced by CD99. The expression level of CD99 is related to the 
composition of immune cells, and the association with TAMs is the 

Fig. 3. Increased CD99 expression is associated with the immune adaptation dominated by TAMs in gliomas. (A) The GSEA plot in the leukocyte transendothelial 
migration and inflammatory response of the TCGA dataset. (B) The correlation between tumor purity and CD99 expression in the TCGA dataset. (C) Representative 
IHC staining images of CD99 and immune cell marker CD45. 3+, percentage of high positive area; 2+, percentage of positive area; 1+, percentage of low positive 
area. (D) The landscape of TME heterogeneity in gliomas. Each column represents a sample in the TCGA dataset. Samples are divided by IDH mutation status and 
then arranged by CD99 expression level. The first track shows the normalized CD99 expression. The next three tracks indicate the P value of three transcriptional 
subtypes. The stacked bar plot in the middle demonstrates the cell fractions of each TME component. (E) The correlation between macrophage fraction and CD99 
expression. Left, results from IDHwt gliomas. Right, results from IDHwt gliomas. MDM, marrow-derived macrophages; MG, microglia. (F) The correlation between 
CD99 expression and immune-related markers in the TCGA dataset. 
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greatest (Fig. 3D). This association is consistent between multiple 
methods (Supplementary Figure 3F). CD99 expression was positively 
correlated with TAMs in different types of gliomas, and microglia were 
the main cause of this trend in the IDHmut subtype, while the elevated 
TAMs components in IDHwt were mainly due to marrow-derived mac-
rophages (MDMs) (Fig. 3E). The CD99 expression is correlated with a 
variety of macrophage expression markers, such as CD68 universally 
expressed by macrophages, M2 polarization macrophage marker 
CD163, TAMs surface receptor CSF1R, microglia cell marker CX3CR1, 
MDMs marker CCR2, and CCL2 secreted by TAMs (Fig. 3F). These an-
alyses together suggested that the increased TAMs are the main varia-
tion under CD99 expression changes. Since TAMs produce low levels of 
pro-inflammatory cytokines and lack T-cell co-stimulation factors, 
causing T-cell exclusion which facilitates tumor escape from immuno-
surveillance [51]. Thus, the function of CD99 in glioma TME is related to 
the immune adaptation dominated by TAMs. 

Increased CD99 expression indicates short-term recurrence and 
unfavorable survival for glioma 

The adaptive responses, especially the PMT, keep the cell viability 
under therapeutic stress and detrimental survival conditions, enhancing 
the recurrence potential of glioma [4,49]. Thus, CD99 may be related to 
glioma recurrence. To test this hypothesis, we used the PGx cohort to 
examine CD99 expression in the first-onset samples. At both tran-
scriptomic and proteomic levels, compared to the NP group there was 
significant overexpression of CD99 in the RP group with short-term 
recurrence (Figs. 4A and 4B). In the GLASS cohort containing more 
recurrence patient, the first-onset samples overexpressing CD99 presents 
a shorter interval between the first and the second surgery (Fig. 4C). 
These results suggested that overexpression of CD99 is an indicator of 
glioma recurrence. 

Moreover, adaptive tumors often become more aggressive and cause 
less favorable outcomes in patients, thus making CD99 overexpression to 
be a risk factor for glioma prognosis. Patients with CD99-overexpressed 

Fig. 4. Increased CD99 expression indicates short-term recurrence and unfavorable survival for glioma. (A) CD99 RNA expression level in the PGx cohort. (B) CD99 
protein expression level in the PGx cohort. RP represents the first surgical sample taken from patients with short-term (under 5 years) recurrence, whereas NP 
represents patients without recurrence in 5 years. (C) Kaplan-Meier curves of the GLASS dataset. The patients were divided into two groups based on the CD99 
expression level of the first-onset sample. The x-axis represents the time interval between the first and the second surgery. (D) Kaplan-Meier curves of all glioma 
patients in the TCGA dataset. (E) Cox-analysis of eight different datasets. 
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gliomas bear many malignant phenotypes, including higher WHO grade, 
IDHwt, and malignant histological diagnosis (Supplementary 
Figures 4A-C). The IHC staining showed that GBMs expressed higher 
CD99 compared to low-grade gliomas (LGG) (Supplementary 
Figures 4E and 4D). We validate the prognosis value of CD99 in glioma 
in multiple datasets. The Kaplan-Meier curves consistently showed that 
the high-expression group presents less favorable survival (Fig. 4D). 
Univariate Cox regression analysis of eight cohorts confirmed that CD99 
upregulation is a risk factor for patient survival, with six of the eight 
datasets showing a significant P-value and all hazard ratios over 1 
(Fig. 4E). After considering other variables, multivariate Cox regression 
analysis revealed that the CD99 high expression is an independent risk 

factor associated with the overall survival of glioma patients (Supple-
mentary Figure 4F and 4 G, Hazard Ratio [HR] = 1.5, p = 0.022). The 
time-dependent ROC analysis in the TCGA dataset showed that the CD99 
expression was able to predict patient survival (Supplementary 
Figure 4H). Taken together, the ability of CD99 for stratifying glioma 
prognosis was widely demonstrated. 

CD99 expression indicates therapeutic responses for glioma 

Tumor cells activate adaptive responses under therapy and eventu-
ally became resistant, thus we suspected CD99 may be associated with 
treatment response in glioma. The conventional treatment for glioma is 

Fig. 5. CD99 expression indicates therapeutic responses for glioma. (A) Kaplan-Meier curves of glioma patients who underwent chemotherapy and radiotherapy in 
the CGGA 693 dataset. (B) The CD99 expression changes of bevacizumab responding and non-responding patients. (C) The CD99 expression of bevacizumab-treated 
mice versus dibenzazepine-treated mice and control group. (D) The CD99 expression changes under different treatments. NIVO, Nivolumab adjuvant treatments. gray 
lines connect the samples before and after the treatment of the same patient. (E) Kaplan-Meier curves of the Schalper dataset; patient groups were divided by pre- 
treatment CD99 expression level. (F) The correlation between CD99 expression and the predicted IC50 of PI3K-AKT pathway inhibitors of the TCGA glioma samples. 
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surgical resection adjuvanted with radiotherapy and/or chemotherapy. 
Survival outcomes were analyzed in the CGGA data set by screening 
patient samples who received concurrent chemoradiotherapy, chemo-
therapy alone, and radiotherapy alone. We found that patients with 
CD99-overexpressed gliomas had poorer survival after treatment 
regardless of whether they chose monotherapy or combination therapy, 
indicating that the treatment effect is poor (Fig. 5A and Supplementary 
Figures 5A-D). 

Since gliomas which highly expressed CD99 are adaptable to hyp-
oxia, we speculated CD99 expression is associated with the response to 
anti-angiogenic therapy. To test this hypothesis, we analyzed samples 
from a cohort of patients with recurrent glioma treated with bev-
acizumab who underwent bevacizumab therapy followed by resection of 
the recurrent tumor [30]. In the responding patients, the expression of 
CD99 in the tumor after treatment decreased significantly compared 
with the tumor from the first onset. However, in the non-responding 
group, there was no significant difference in the expression level of 
CD99 before and after administration (Fig. 5B). In mice bearing glioma 
xenografts treated with bevacizumab, the expression of CD99 after 
treatment was significantly down-regulated compared with two control 
groups (placebo group and dibenzazepine-treated group) (Fig. 5C). In 
summary, we believe that whether CD99 is down-regulated after bev-
acizumab treatment is related to the treatment response. 

In previous analyses, we found that CD99 is highly correlated with 
TAMs, therefore, we speculate that it also affects the immunotherapy 
effect of glioma. To test this hypothesis, we first analyzed T cell 
dysfunction and immune checkpoint blockade (ICB)-related features in 
the TCGA dataset (Supplementary Figure 5E). We found that increased 
CD99 expression was negatively correlated with T cell accumulation but 
positively correlated with T cell exhaustion and other adverse factors, 
including TAMs, myeloid-derived suppressor cells (MDSCs), and regu-
latory T cells (Tregs). Next, we used the TIDE algorithm to predict the 
level of resistance to ICB therapy in the Rembrandt dataset, and CD99 
was positively correlated with the TIDE score, suggesting that CD99 is an 
unfavorable factor for ICB therapy (Supplementary Figure 5F). To 
further explore the impact of CD99 expression on ICB therapy, we 
analyzed a cohort including primary and secondary surgery samples 
from 27 patients with recurrent glioma who received neoadjuvant 
nivolumab therapy [32]. These patients received nivolumab adminis-
tration followed by tumor resection. Compared with patients who 
received standard of care (SOC) alone, patients treated with nivolumab 
showed a significant upregulation of CD99 after dosing, suggesting that 
CD99 is a responsive factor to ICB therapy (Fig. 5D). In addition, patients 
with higher expression levels of CD99 before dosing had poorer survival 
(Fig. 5E). But this inclination was not reflected by post-dosing CD99 
expression (Supplementary Figure 5 G). 

We further explored the association between CD99 and drug sensi-
tivity of glioma to screen for potential therapeutic targets. We found that 
CD99 was significantly negatively correlated with the IC50 of PI3K-AKT 
pathway inhibitors, which indicated that gliomas with high CD99 
expression may be more sensitive to these drugs (Fig. 5F). GSEA analysis 
showed that gliomas with high expression of CD99 were up-regulated in 
the PI3K-AKT pathway (Supplementary Figure 5H). Therefore, PI3K- 
AKT pathway inhibitors may provide new therapeutic strategies for 
patients with high CD99 expression. 

Discussion 

Glioma cells develop survival advantages by adapting to stressors. 
Under the pressure of treatments, glioma cells acquire resistance 
through PMT [4]. At the same time, the interaction between glioma cells 
and TME cells inhibits anti-tumor immunity, which brings challenges to 
immunotherapy [52]. Therefore, discoveries of biomarkers related to 
glioma adaptiveness enable understanding of glioma malignancy and 
thus assist clinical decision-making. 

In this study, we proposed that CD99 is a biomarker related to glioma 

adaptive responses by integrating multi-dimensional omics data, and 
further proved its clinical value. CD99 is highly expressed in MES-like 
and AC-like cell states of glioma and is related to PMT. Over-
expression of CD99 implies a higher level of hypoxic responses, 
including the initiation of transcriptional programs and metabolic 
reprogramming. Gliomas with high expression of CD99 also recruit more 
TAMs to help the immune escape of cancer cells. 

Glioma patients with high expression of CD99 are prone to relapse in 
a short period of time and often have worse postoperative survival. In 
addition, they have relatively insufficient responses to ICB therapy. 
Therefore, for patients with gliomas with high expression of CD99, 
tumor adaptability should be fully considered clinically. Such patients 
are prone to resistance to monotherapy thus multi-drug combinations 
should be taken into consideration, such as combining with anti- 
angiogenic therapy and PI3K-AKT pathway inhibitors. Moreover, 
closer clinical detection and follow-up should be carried out. 

However, the studies require further experimental verification for 
the mechanism of CD99 signaling. Previous studies have launched gene 
silencing experiments in U87MG cells and observed a significant 
morphological change and a decrease in cell migration, which is related 
to the down-regulation of actin dynamics genes [15]. Whether the 
change of CD99 expression can lead to the transition of cell states still 
needs knockout and overexpression experiments in multiple glioma cell 
lines with transcriptomic profiling to identify the changes in cell state 
markers. Although we observed the increase of CD99 expression in gli-
oma cells under hypoxic conditions, the upstream and downstream 
molecules of CD99 signaling involved in the hypoxic response still 
require further studies. Additionally, we found that gliomas with high 
expression of CD99 are related to the increase of TAMs, but the cellular 
mechanism is still unknown. To address this problem, patient-derived 
xenograft (PDX) models need to be constructed to observe the recruits 
of TME cells in vivo. This work points out several future directions for 
studies of the biological function of CD99 in glioma. 

Recent studies have shown that the adaptive responses in gliomas are 
interconnected. For instance, hypoxia induces mitochondrial dysfunc-
tion, which attenuates the cytotoxic and inflammatory functions of 
immune cells, allowing TAMs to exhibit an immunosuppressive M2-like 
phenotype [53]. The accumulation of lactic acid in the TME due to 
hypoxia can activate the function of Tregs, thereby further suppressing 
the anti-tumor immune response. TAMs can also induce PMT in glioma 
cells. The Oncostatin M (OSM) on TAMs can interact with the OSM re-
ceptor (OSMR) on GBM cells to induce the up-regulation of a series of 
major histocompatibility complex (MHC) genes, thus making the GBM 
cells transform into an MES-like state [54]. Since CD99 is related to 
many types of adaptive responses, it may be at the crossroad of these 
signaling pathways. 

In terms of the clinical value of CD99 expression, the results are 
mainly based on public data sets from retrospective research, lacking 
validation and quantitative research of prospective cohorts. The studies 
on anti-angiogenic therapy and ICB therapy also require larger cohorts. 
The screening of drugs based on bioinformatic prediction lacks phar-
macodynamic experiments. 

Notably, the role of CD99 in glioma anti-angiogenic therapy has 
recently attracted interest. It was found that in glioma samples with a 
high cuproptosis signature, both VEGFA and CD99 were highly 
expressed [55]. In a study using proteomic analysis to predict resistance 
to antiangiogenic therapy in recurrent GBM, CD99 was screened as a 
potential biomarker positively correlated with drug response and used 
for modeling [56]. In a study of various solid tumors such as osteosar-
coma, targeting CD99 with a tumor vaccine can inhibit angiogenesis and 
tumor growth [57]. Based on our observation, we suspected that CD99 
involve in hypoxia-induced angiogenesis and became an indicator of 
response to anti-angiogenesis therapy. Therefore, further exploration of 
the biological mechanism of CD99 in glioma angiogenesis has promising 
clinical significance. 
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Conclusions 

In conclusion, gliomas with high CD99 expression have significant 
tumor adaptiveness and malignancy. For glioma patients with overex-
pressed CD99, the combination of therapies should be considered to 
avoid drug resistance, and closer clinical monitoring and post-treatment 
follow-up should be carried out. 
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