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INTRODUCTION

Heterotopic ossification (HO) is derived from the Greek terms
“heteros” (“other”), topos (“place”), and “ossification,” a
Latin-derived term for “to turn to bone.” HO references lamel-
lar bone ossifying in aberrant locations, such as in joints and
muscle. It has been cited through medical history, dating
to 1,000 C.E. when Al-Zahrawi described a complication of
fracture as a “callus often occurs after the healing of a frac-
ture…and sometimes there is limitation of the natural func-
tion of the limb…”.1 Outside of rare genetic forms of HO, any
state that causes local soft tissue damage, such as high-
energy trauma injuries and surgical approaches, can cause
HO.2 Because of its correlation with trauma, HO is among the
postinjury and iatrogenic complications that can cause pain
and impact a patient’s recovery and rehabilitation efforts.3

INJURIES AND SURGERIES

HO manifests following certain surgical approaches espe-
cially approaches to the pelvis and acetabulum. Follow-
ing total hip arthroplasty (THA), HO frequency has been
reported to be between 2% and 90%.2 Posterior approaches
for acetabular surgery, such as the Kocher-Langenbeck
approach, increase the risk of HO formation in the glu-
teus minimus muscle. This has been demonstrated by a
decreased incidence of HO when necrotic gluteus minimus
tissue is debrided after acetabular fracture fixation.4,5 The
upper extremity is also affected, especially following surgical
approaches about the elbow. Dual approaches to the prox-
imal radius, commonly utilized for bicep tendon repair and
reconstruction, result in proximal forearm synostosis. Trau-
matic injury is also associated with HO formation from iso-
lated limb fractures and fracture dislocations of the joints due
to polytrauma.6–10

TRAUMA STATES

The frequency of HO in civilian patients with spinal cord injury
is reported to range between 20% and 30%, of which up to
one-third will eventually experience limited mobility in their
affected joints. Additionally, a reported 10–20% of patients
with closed-head injuries will likely develop HO. Of those, 1
in 10 will experience joint mobility limitations.7 HO has been
reported in at least 50% of patients who have incurred major
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burn injuries, suggesting that severity and size of injury sig-
nificantly contribute to the production of HO. Additionally,
the ectopic bone can be found distant to the actual burn
injury.11 Recent military combat operations have heightened
attention to war-related wounds, 80% of which are caused
by high-energy explosive mechanisms. Combat injuries tend
to result in a higher Injury Severity Score and also higher
likelihood of HO development.12,13 The formation of HO is
reported in more than 63% of blast-injury patients requir-
ing amputation.14–17 HO occurring as a result of high-energy
blast injury is most commonly reported in men between
20 and 40 years of age.18

Due to the complexity of blast-injury etiology, understand-
ing the pathogenesis of HO resulting from multiple injury
types, which simultaneously affect several bodily systems,
is still under investigation.12 Furthermore, although medical
technology has improved the number of lives that can be
saved after high-energy trauma injuries, this has also brought
with it the opportunity for long-term complications, including
HO, following life-saving surgery.15 Much of the research thus
far largely focuses on the lower limbs; however, there is a crit-
ical need for further research on upper-limb amputations and
complications.

ABERRANT BONE GROWTH

The formation of bone during skeletal development, fracture
healing, and heterotopic bone formation, requires a highly
organized cascade of molecular, cellular, and tissue events.
The inciting pathophysiology of HO as opposed to normal
skeletal development or fracture healing is not entirely under-
stood. Multiple biological systems related to acute phase
reactants that are activated during trauma likely play some
role, whether activated in an attempt to maintain survival or
to begin healing injured sites. Recent research has elucidated
several candidate components to the pathogenesis of HO in
traumatic states.

Immune response
New findings suggest that both the innate and adaptive
immune responses contribute to bone repair and remodel-
ing following injury. The interaction between immune cells
and the inflammatory response that drives normal fracture
healing also contributes to ectopic bone formation. Both
adaptive and innate immune cells, such as neutrophils
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and TH17 cells, are involved in the release of inflamma-
tory cytokines, which stimulate cell differentiation, includ-
ing osteoblastogenesis. Osteoblasts release inflammatory
cytokines, which then stimulate osteoclastogenesis. The bal-
ance between osteoclastogenesis and osteoblastogenesis
must be maintained for normal fracture healing. However, an
imbalance in these processes conducted away from the site
of the fracturemay be implicated in ectopic bone formation.19

Acute phase response
The acute phase response (APR) signals the liver to modu-
late several genes that contribute to cytokine secretion and
are involved in coagulation, inflammation, and tissue repair.
The APR is critical to survival after large traumatic injury and
disease states, such as sepsis. However, elevated or dys-
regulated levels of inflammatory cytokines may influence the
proliferation of HO in trauma and surgical patients. Reports
demonstrate that total knee arthroplasty (TKA) and THA
patients exhibit different responses potentially due, in part, to
the use of a tourniquet and involvement of another long bone
in total knee arthroplasty.20 An elevated APR may contribute
to a prolonged inflammatory state that supports ectopic bone
formation. This is further supported by the association of HO
with systemic inflammatory insults, such as burn and neuro-
logical injury, suggesting that a combination of injuries per-
mits an environment conducive to the release of prolonged
inflammatory cytokines.21 Prolonged inflammation and APR
dysregulation may also be the cause of recurrence follow-
ing HO excision. Early excision patients, within 3 months of
injury, have a higher incidence of return to the operating room
for complications that are not associated with re-excision as
compared with those with excisions after 3 months or more
from the time of injury.22

Trauma “stem cells”
Normal fracture healing requires an initial inflammatory phase
and interactions between bone, overlying muscle, and sur-
rounding vasculature.23 As a result, the progenitor cells that
are primarily responsible for aberrant bone growth could
come from osseous, periosteal, muscle, or vasculature ori-
gin. Recent examination of progenitors cells from war-
traumatized (i.e., high energy trauma) muscle tissues present
with similarities to mesenchymal stem cells derived from
marrow surrounding soft tissue.6 Additionally, hematopoietic
stem cells have the potential to differentiate into many tis-
sue types, including bone.24 Furthermore, histological fea-
tures of osteogenic, adipogenic, and chondrogenic differenti-
ation in the traumatized muscle-derived multiprogenitor cells
were similar to those in bone-marrow-derived mesenchymal
stem cells, and were consistent in all 10 multiprogenitor cell
populations sampled.2

UNDERSTANDING THE HO ENVIRONMENT

Several animal models have been developed to facili-
tate a better understanding of the pathogenesis and out-
comes of various types of trauma and the occurrence of
HO.25,26 They are used to elucidate several aspects of HO
formation, including severity at specific locations, mecha-
nism of injury, and timing of HO formation after injury and

have been of great importance to furthering HO research
efforts (see Table 111,26–36). Outside of specific models aimed
directly at studying war-time injuries, such as the Walter-
Reed polytrauma and amputation models, few animal mod-
els focus directly on the contribution of blunt-force trauma to
the formation of HO.14,15,17,18,27 Although small animal models
cannot directly mimic the formation of clinically relevant HO,
each type of animal study provides the opportunity to bet-
ter understand the pathophysiology and pathogenesis under
unique circumstances. A comprehensive evaluation of the
mechanistic pathways of bone growth, healing, and compli-
cations that may contribute to HO is beyond the scope of
this review but some of the discussions are provided for fur-
ther investigation.28–37 With improved understanding, better
physical and pharmacological therapeutic protocols can be
developed for use in human patients.

PREVENTION AND TREATMENT

In certain surgical settings, such as immediately following
an at-risk surgical approach to the pelvis, primary preven-
tion strategies may be attempted. Currently, the prevention
approaches available to clinicians include systemic nons-
teroidal anti-inflammatory drugs (NSAIDs) and radiotherapy
(RT) to the surgical field within a short time-period post-
surgery. However, in trauma patients, the use of prevention
strategies is challenging as practicality, safety, and efficacy
of systemic NSAID therapy or RT is debatable and contin-
gent upon several factors, including severity of trauma and
ectopic bone formation potential.18,38–40 Additionally, patients
with polytrauma derived HO often present with concomi-
tant injuries that may be adversely affected by the systemic
NSAID or RT.12,14,17 NSAID delivery following acute trauma
can complicate bleeding, exacerbate gastritis, and poten-
tially impede fracture healing.41,42 Radiation can compromise
soft tissue healing, including surgical incisions, and affect
beneficial immunologic functions. As a result, few practical
options for prevention are available under traumatic-injury
circumstances.

TREATMENT: EXCISION

When HO is symptomatic, such that standard prophylac-
tic regimens are not effective, ectopic bone excision or re-
excision is often necessary, especially in high-energy trauma
patients. Excision of ectopic bone is required in approx-
imately 20–41% of combat-related amputees who have
developed HO.22 This can be done as early as 6–8 months
post-injury without risk of recurrence in some cases.12 Exci-
sion of ectopic bone is not without complications, how-
ever, and may include severe blood loss, infection, post-
operative pain management, rehabilitation obstacles, and
recurrence.22 Unfortunately, the risk of infection increases
after resection as ectopic bone excised from a patient with
HO has been found to be highly vascularized despite its
nontraditional placement and origin.43

Timing of excision is also controversial. As surgery inter-
vention itself may reintroduce an inflammatory state and
increase the risk for recurrence, surgical removal of HO
may not be advisable until it has fully matured.22 In a recent
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Table 1 Current heterotopic ossification animal models

Anatomic
location of
trauma Animal Purpose Advantage(s) Disadvantage(s)

Achilles tenotomy
model44,45

Achilles tendon Mice Preventative
strategies to
reduce the
occurrence of
HO formation

Simplicity and
predictability

Unclear relevance
to clinical setting

Immobilization-
manipulation
model46

Quadriceps
muscles

Rabbits Investigation of the
role of
inflammation in
HO formation

Supports role of
inflammation as
basis for HO
formation

Unclear relevance
to clinical setting

Implantation/injection
model47,48

Rectus femoris
muscle;
subcutaneous

Rabbits
Rats
Other

Therapy and
prevention
strategies; HO
induction

Straightforward,
reliable,
mechanistically
relevant to
humans

Artificial increase
in osteogenic
factors and
implantation is
local and does
not mimic
systemic effects

Direct trauma
model(s)26,49,50

Hind and forelimbs Rabbits
Dogs

Attempting to
induce HO
formation

Ability to produce
HO as a result of
mechanism of
injury

Not sufficiently
reliable

Irritant injection
model51

Muscle tissue Rabbits Attempting to
induce HO
formation

Some success
with alcohol
injection

Insufficient
repeatability and
unclear
relevance to
clinical setting

Burn model11 Partial-thickness
dorsum dermal
burn

Mice Demonstrate
pro-osteogenic
contribution of
burn to HO
development

Reproducible in
singular mouse
strain,
corroborates the
contribution of
inflammation
due to burn in
HO production

Amount of HO
variation among
species, supra-
physiological
levels of
osteogenic
factors

Hip arthroplasty52 Hip Rats Replicate response
due to
arthroplasty

Reportedly
reproducible

Small sample size,
unclear
reproducibility

Blast model(s)26,53 Hind limbs Rats Replicate wartime
injuries

Reproducible Relevant to
specific
population

HO, heterotopic ossification

retrospective study examining the symptomatic or radio-
graphic recurrence rate of both partially and fully excised
HO before or after 180 days post-injury, a higher risk of
recurrence was reported if HO was removed prior to 180
days. Likewise, partial excision was correlated with a higher
likelihood of radiographic recurrence and higher potential
for re-excision as compared with full excision patients.22

Additionally, several studies have also documented the
rate of recurrence after HO excision at the joints following
traumatic brain injury (TBI) but the results have been incon-
sistent in magnitude and timing.54–62 The unpredictability of
recurrence in a surgical setting is exponentially confounded
in polytrauma patients, thus necessitating further research
in recurrence prevention strategies.

Prevention: NSAIDs

Because patients with HO tend to present with severe
systemic and local inflammation, NSAIDs have long been

used as part of HO prophylaxis protocol.63 In some
cases, NSAIDs are feasible to administer within the optimal
24–48-hour time frame to aid in HO prophylaxis. However,
priority in theater is placed on life-saving practices.15 Sev-
eral NSAIDs are commonly used, including ketorolac, ibupro-
fen, celecoxib, and indomethacin; however, these are not
without complications, including hemorrhage, gastritis, and
patient noncompliance.22,27 Although the use of systemic
NSAIDs has been shown to reduce inflammation and the
risk for HO manifestation and proliferation, they have gar-
nered notoriety for their propensity to impede fracture heal-
ing, especially with the use of indomethacin.64–67 Because
indomethacin is a COX2 nonselective inhibitor, it works by
inhibiting prostaglandin-mediated bone remodeling and also
by directly inhibiting the differentiation of osteoprogenitor
cells.63,66 Local administration of NSAIDs for the prevention
of HO is currently under investigation. Small studies sug-
gest that locally administered NSAIDs may not hinder wound
healing.64 This finding has now generated further interest in
continuing research with the goal of becoming a clinically
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translatable treatment for current patients as it may be better
tolerated.

PREVENTION: RADIATION

Localized RT in 7-Gy doses administered within 4 days of
operation has succeeded in diminishing the effects of HO
proliferation as long as no other factors obstructed drug
administration. It does so by interfering with and suppress-
ing mesenchymal-cell progression to osteogenic cells.15,22,68

Preoperatively, RT delivery has shown varied reports of
effectiveness.2 Some animal studies suggest that the inhibit-
ing effect on bone healing after the use RT is more pro-
nounced if it is administered closer to the time of the actual
injury.63 However, high and frequent doses have the poten-
tial to cause cell death and be carcinogenic.63,69 As theremay
not be enough data to support RT’s long-term effects, espe-
cially on young individuals, it may be worth reconsidering it
as an option when deciding to use it on patients.63 To date,
there is no standard time frame, whether pre-operatively or
postoperatively, that is universally accepted by all surgeons
opting to initiate RT.18,63

COMPLICATIONS AND COSTS

From a patient’s perspective, frustration undoubtedly cor-
relates with wait-time to excision of mature bone.18 The
financial and social cost of treating complications due to
trauma-induced HO can be substantial. For example, when
comparing two of the most common treatments, RT or the
use of NSAIDs on patients with HO after THA, the cost of
NSAIDs is considerably more cost-effective at face value.
Postoperatively, the management of HO can be financially
costly as well. As NSAIDs are delivered systemically, other
complications to be considered include treatment failure or
complications due to the drug side-effects. In this regard, the
cost of NSAID usage approaches that of RT.70

When comparing high-risk patients with HO of THA receiv-
ing RT and low-risk patients with HO of THA receiving mul-
tiple oral doses of indomethacin (NSAID), the efficacy of
each after a 2-year follow-up was effectively the same when
defined by failure rates. However, the cost of indomethacin-
treated patients was >10 times less than those treated with
RT. In this case, it is seems that the risk-level of the patient is
a factor to consider when deciding the best plan of action for
postoperative treatment.71 Additionally, one study suggests
that some critical patients with specific injuries may be more
likely to produce HO after long-term care from extended lim-
ited mobility after a head injury.72 The long-term costs of
this complication may have considerable implications for the
patients both financially and socially.

FUTURE CONSIDERATIONS

Recent reports of acute treatment provide encouraging
potential for prevention of primary HO. Successful decreased
inflammation, osteogenic and chondrogenic gene expres-
sion, and connective tissue progenitor cell proliferation with
an oral-gavage delivered retinoic acid receptor-γ , palo-
varotene, in an established HO blast-injury model has

demonstrated promise in future studies.73 Additionally, orally
delivered palovarotene demonstrated at least 50% decrease
in polytrauma, infection-induced HO.74 Intraperitoneal deliv-
ery of rapamycin on an established blast-injury model has
been reported to successfully inhibit HO formation with no
reported wound-healing complications.75 Finally, local deliv-
ery of vancomycin powder in a trauma-induced HO rat model
reports suppressed HO formation by 86% when delivered at
the time of injury.76

Current treatment and prophylactic practices are not
always appropriate or effective for polytrauma patients due to
their complicated and unplanned nature. Novel combinations
of treatment, vehicle, and delivery time in established ani-
mal models suggest high success rates and potentially fewer
complications when delivered early. These results provide
promise for clinical implementation in other trauma-induced
patients with HO in the future. Further investigation into tim-
ing and modes of prevention and treatment is warranted and
should include trauma-relevant animal models. To address
recurrence rates, following excision of established HO, tim-
ing seems to be a confounding factor as studies suggest that
later excision is preferable to earlier excision. Local delivery
of novel treatment options, such as NSAIDs, following exci-
sion may help decrease recurrence rates and wound healing
complications. Additionally, reduced or eliminated delivery of
RT may be a viable consideration for patients with HO.

CONCLUSION

The multifaceted complexity of the mechanisms that drive
HO in trauma patients is poorly understood. As such, there is
no universal treatment without some level of adverse effects
to the patient. To mitigate the proliferation and recurrence of
this pathological, aberrant bone growth, studies in preven-
tion strategies for trauma patients warrant further investiga-
tion into the pathways involved in its development.
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