
Hes6 Is Required for the Neurogenic Activity of
Neurogenin and NeuroD
Kasumi Murai1, Anna Philpott2, Philip H. Jones1*

1 MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom, 2 Department of Oncology, University of Cambridge,

Hutchison-MRC Research Centre, Addenbrooke’s Hospital, Cambridge, United Kingdom

Abstract

In the embryonic neural plate, a subset of precursor cells with neurogenic potential differentiates into neurons. This process
of primary neurogenesis requires both the specification of cells for neural differentiation, regulated by Notch signaling, and
the activity of neurogenic transcription factors such as neurogenin and NeuroD which drive the program of neural gene
expression. Here we study the role of Hes6, a member of the hairy enhancer of split family of transcription factors, in primary
neurogenesis in Xenopus embryos. Hes6 is an atypical Hes gene in that it is not regulated by Notch signaling and promotes
neural differentiation in mouse cell culture models. We show that depletion of Xenopus Hes6 (Xhes6) by morpholino
antisense oligonucleotides results in a failure of neural differentiation, a phenotype rescued by both wild type Xhes6 and a
Xhes6 mutant unable to bind DNA. However, an Xhes6 mutant that lacks the ability to bind Groucho/TLE transcriptional co-
regulators is only partly able to rescue the phenotype. Further analysis reveals that Xhes6 is essential for the induction of
neurons by both neurogenin and NeuroD, acting via at least two distinct mechanisms, the inhibition of antineurogenic
Xhairy proteins and by interaction with Groucho/TLE family proteins. We conclude Xhes6 is essential for neurogenesis in
vivo, acting via multiple mechanisms to relieve inhibition of proneural transcription factor activity within the neural plate.
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Introduction

During development, neural specification delineates the neural

plate from the surrounding ectoderm that is destined to form

epidermis. Whilst all early neural plate progenitor cells are

competent to undergo neurogenesis, only a subset actually exit

from the cell cycle and differentiate into neurons, a process that is

controlled by the expression and activity of proneural proteins.

The generation of primary neurons, the first neurons to

differentiate within the neural plate, has been studied extensively

in neurula Xenopus embryos, where the primary neurons expressing

the differentiation marker neural ß tubulin (N-tubulin) are

generated in three distinct domains on either side of the midline

[1,2].

A key step in neurogenesis is expression and activity of the basic

helix-loop-helix proneural transcription factors that both specify

the neuronal lineage and drive neuronal differentiation. The

neurogenic transcriptional program of Xenopus primary neurons

depends on the sequential activation of proneural proteins of the

Atonal/Neurogenin family, neurogenin (Xngn2, also known as

Xngnr1 in Xenopus) and NeuroD, which heterodimerize with

ubquitously expressed E proteins to activate transcription

[3,4,5,6]. Neurogenin induces the transcription of a range of

target genes implicated in neurogenesis [7], and is required for

neural commitment in Xenopus, Zebra Fish and mouse, as when the

protein is depleted or absent cells that would normally form

neurons adopt glial fate [8,9,10]. Conversely, overexpression of

Neurogenin drives cells into the neural lineage in Xenopus, chick

and rat [3,11,12]. NeuroD is a central effector of Neurogenin

function, sharing a number of common transcriptional targets in

Xenopus and mouse [7]. NeuroD is also able to promote ectopic

neurogenesis when mis-expressed in Xenopus, but has a more

restricted neuronal phenotype in knockout mice [4,13].

Maintaining the balance between progenitor maintenance and

differentiation is essential for generation of the appropriate

number of neurons at different developmental stages. One key

pathway regulating this balance is downstream of the Notch

receptor [2]. Notch acts via downstream effectors including

members of the Hes family of transcription factors, such as

Xhairy1, 2A and 2B in Xenopus and Hes1 and Hes5 in mammals

[14,15,16,17]. These Notch regulated Hes genes are key negative

regulators of neural differentiation. Over expression of Xhairy in

Xenopus or Hes1 in mice blocks neuron formation [18,19]. In

contrast, loss of Hes1 results in premature neuronal differentiation,

and mice null for both Hes1 and Hes5 are refractory to the

inhibitory effects of Notch signaling on neurogenesis [20,21].

Recently it has been shown that Hes1 expression oscillates in

antiphase with neurogenin 2 expression in neural precursor cells,

commitment to terminal differentiation resulting in sustained

repression of Hes1 expression and upregulation of neurogenin

[22].

Here we focus on the role of another Hes family protein, Hes6 in

primary neurogenesis. Hes6 is distinctive in that it is not regulated

by Notch, lies downstream of Neurogenin, and promotes

neurogenesis when overexpressed in Xenopus, cultured mouse

neural progenitors or retinal explants [23,24,25]. The protein
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shares four highly conserved domains with other Hes proteins: a

basic domain required for DNA binding, a Helix loop helix

domain required for protein dimerization, an orange domain by

which it binds to other Hes proteins and a C-teminal WRPW

motif that recruits the Groucho/TLE family transcriptional

corepressor proteins (Fig. 1) [26]. The sequence of the Hes6 loop

domain is distinct from other Hes proteins giving it distinctive

DNA binding properties compared to the Notch regulated Hes

proteins [23,27]. One potential mechanism whereby Hes6

promotes neurogenesis has been proposed to be binding to the

anti-neurogenic, Notch regulated Hes proteins. For instance, in

the mouse, Hes6 binds to Hes1, both preventing Hes1 from

binding DNA and destabilizing the Hes1 protein [23,24,25]. In

chick spinal cord there are two cHes6 genes, which act to repress

both the transcription and function of Hes5 [28,29]. Knockdown

of mouse Hes6 in primary cultures of mouse dorsal telencephalon

produced a decrease in the proportion of NeuN positive cells and a

larger increase in the proportion of cells exhibiting an astrocytic

morphology and expressing the astrocyte marker protein GFAP

[30]. However, it is unclear from this study whether cells were

diverted from neural to glial fate or whether the differences seen

reflect differences in survival and/or proliferation of lineage

committed progenitors. In contrast over expression of Hes6

inhibits glial differentiation in vitro, a function it shares with

neurogenin [11,30,31].

Collectively, the published work on Hes6 argues that it has a

conserved role in promoting vertebrate neurogenesis, interacting

with neurogenin and blocking the action of the antineurogenic,

notch regulated Hes genes. We set out to explore these crucial

interactions in the well characterized system of neural plate stage

Xenopus embryos, which can integrate findings from disparate cell

and tissue studies in a well characterized and accessible in vivo

model of vertebrate development. By using antisense morpholino

oligonucleotides to deplete Xenopus Hes6 (Xhes6) we demonstrate it

is essential for neurogenesis early Xenopus embryos. We further

show that Xhes6 is required for the induction of neurons by both

Xngn2 and NeuroD, acting via at least two distinct mechanisms,

the inhibition of antineurogenic Xhairy proteins and by

interaction with Groucho/TLE family proteins. These observa-

tions reveal Xhes6 as an essential protein for neurogenesis in the

early embryo, where it acts to promote the function of proneural

transcription factors by multiple mechanisms.

Results

Expression of Xhes6, Xhairy1 and Xgrg4 in Xenopus
neurula stage embryos

We began by confirming the expression of pattern Xhes6 mRNA

and transcipts encoding the proteins with which it interacts,

Xhairy1 and Xgrg4 (Fig. S1). Consistent with previous reports, we

find that Xhes6 is expressed strongly in the posterior region of

neurula stage embryos, but is also present in the medial and lateral

domains of the neural plate and at low levels anteriorly (Fig. S1,

[24]). The expression of Xhairy1 is both more restricted and clearly

delineated than that of Xhes6, lying in fine stripes in neural plate

and also in the trigeminal ganglia and placode areas (Fig. S1).

Groucho/TLE transcriptional cofactors are expressed widely in

early stage embryos, but their expression becomes more restricted

during development [32,33]. We detected transcripts of Xgrg2 and

Xgrg4 within and around the neural plate in neurula stage embryos

(Fig. S1,data not shown). Thus at neural plate stage, Xhes6, Xgrg2

and Xgrg4 and Xhairy1 each have a distinctive pattern of

expression, but are all expressed within the neural plate.

Xhes6 is required for neuronal differentiation
To examine whether Xhes6 is required for primary neurogen-

esis, we used previously validated antisense morpholino oligonu-

cleotides to prevent translation of Xhes6 mRNA, [33]. Xenopus

embryos were injected with either a control morpholino (CTL) or

morpholinos against Xhes6 (Xhes6 MO1) in one cell at two-cell

stage and analysed for the expression of the early neural

progenitor marker Sox3, NeuroD and Neural beta-tubulin (N-tubulin),

a marker for terminally differentiated primary neurons, at neurula

stage, comparing the imjected and the uninjected sides. Scoring

followed the scheme shown in Figure S2. There was no change in

the expression of any of these markers in embryos injected with

CTL (Fig. 2A, 2I, 2Q, 2R and Table 1). Injection of Xhes6 MO1

had no effect on Sox3 expression (data not shown) but markedly

reduced expression of both N-tubulin (in 81% of embryos (n = 31,

Fig. 2B, 2Q and Table 1) and neuroD (in 62% of embryos, n = 39,

Fig. 2J, 2R and Table 1). To confirm that the inhibition of primary

neurogenesis was caused specifically by loss of Xhes6 function, a

rescue experiment was performed. mRNA encoding Xhes6 that is

not recognised by Xhes6 MO1 was injected into 2-cell stage

embryos with or without the morpholino [33]. As reported

Figure 1. Conserved domains in Xhes6 and mutants used in this study. Xhes6 contains a conserved basic domain, required for DNA binding,
a helix-loop-helix domain, implicated in dimerization with Xhes6 and other bHLH proteins, an ‘‘orange’’ domain, comprising the third and fourth
helices of the protein, required for protein-protein interaction, and a C terminal WRPW motif, required for binding to Groucho/TLE family
transcriptional coregulatory proteins. In this study a mutant of the basic domain which is unable to bind DNA (Xhes6 DBM) and a mutant lacking the
WRPW motif (Xhes6 DWRPW) were used.
doi:10.1371/journal.pone.0027880.g001

Hes6 in Xenopus Neurogenesis
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Figure 2. Xhes6 expression is required for neural differentiation. Whole mount in situ hybridization of neurula stage embryos for neural
markers neural b-tubulin (N-tubulin, A-H) or NeuroD (I-P). A, B, I, J: One cell of two cell stage embryos was injected with control (CTL, A, I) or Xhes6
(MO1, B, J) morpholinos along with b-gal tracer mRNA (red staining). Injection of MO1 decreases both N-tubulin and NeuroD expression on the
injected side (yellow box). C-H, K-P: Rescue of MO1 phenotype. 500 pg of mRNA encoding wild type Xhes6 or DNA binding domain (DBM) or Groucho
binding domain, (DWRPW) mutants was injected with or without MO1. Overexpression of Xhes6 (C, K) or DBM (E,M) alone enhances neural
differentiation, both Xhes6 and DBM rescue neural maker expression in Xhes6 morphants (D, F, L, N). The DWRPW mutant has minimal effect when
injected alone (G, O) and is less efficient in rescuing the MO1 phenotype. Q,R quantitation of phenotypes observed, scored as in Fig. S2, Q, N-tubulin
mRNA expression, corresponding to panels A-H, R, NeuroD mRNA expression, corresponding to panels I-P. Full data on the frequency of phenotypes
and the number of embryos analyzed is given in Table 1.
doi:10.1371/journal.pone.0027880.g002
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previously, embryos injected with Xhes6 mRNA alone showed

increased expression of both N-tubulin and NeuroD generally within

the neural plate at neurula stage, indicating that over expression of

Xhes6 promotes neurogenesis (Fig. 2C, 2K and Table 1, [24]).

This neurogenesis occurs within the usual stripes of primary

neurons although some expansion of these stripes, particularly

those lying most laterally, can be seen (Fig. 2C). When coinjected

with Xhes6 MO1, Xhes6 mRNA restored or caused small increase

in expression of N-tubulin within the neural plate in 51% of

embryos (n = 49) and NeuroD in 89% of embryos (n = 36) (Fig. 2D,

2L, 2Q, 2R and Table 1). In addition, Xhes6 mRNA occasionally

induced ectopic epidermal N-tubulin and NeuroD expression beyond

the normal boundary of the neural plate in some embryos

(Table 1). Such expansion of the region of neural differentiation is

also seen when Xhes6 mRNA is injected without MO, and is

associated with broadening of the domain of Xngn2 expression,

albeit within the normal stripes of primary neurons, leading to the

hypothesis that Xhes6 promotes Xngn2 expression and function in

the neural plate [24]. Taken together the MO phenotype and the

results of the rescue experiments indicate that Xhes6 is required

for primary neurogenesis.

Previous studies have used mutant forms of Xhes6 to identify

domains in the protein essential for its function. It has been reported

that overexpression of a DNA-binding mutant (DBM) of Xhes6, in

which the basic domain amino acids have been mutated to acidic

residues, causes a similar increase in the level of N-tubulin positive

cells to that seen with wild-type Xhes6, suggesting that Xhes6 does

not need to bind DNA to promote neurogenesis [24]. We therefore

investigated whether the DBM mutant could rescue the Xhes6

MO1 phenotype. Coinjection of mRNA encoding Xhes6 DBM

rescued the expression of neural marker genes with the same

efficiency as wild type Xhes6 mRNA, restoring a normal pattern of

N-tubulin and NeuroD transcription in 76% (n = 41) and 81% (n = 37)

of embryos respectively (Fig. 2F, 2N, 2Q,2R and Table 1). We went

on to determine whether a DWRPW mutant of Xhes6 that lacks the

WRPW Groucho/TLE -interaction motif could also rescue the

Xhes6 MO1 phenotype [24]. In marked contrast to wild type and

the DBM forms of Xhes6, injection the same 500 pg dose of mRNA

encoding the DWRPW mutant has no effect on neural marker

expression when injected on its own (Fig. 2G, 2O, 2Q, 2R and

Table 1). Interestingly, however, this dose of the DWRPW mutant

partially restored primary neurogenesis when injected together with

Xhes6 MO1, resulting in essentially normal N-tubulin and NeuroD

expression in 53% (n = 40) and 61% (n = 38) of embryos

respectively, although the remaining embryos still often showed a

marked reduction in neurons (Fig. 2H, 2P, 2Q, 2R, Table 1 and

data not shown). It should be noted that higher doses of the

DWRPW mutant result in a modest induction of neural marker

expression, although significantly less than that seen with the same

dose of wild type or DBM mutant Xhes6 [27]. These results indicate

that Xhes6 does not need to bind DNA directly to promote

neurogenesis and is still able to support neurogenesis, although to a

lesser extent, when unable to recruit Groucho/TLE proteins.

Xhes6 is required for the function of neurogenic
regulatory factors

Hes6 expression is upregulated by proneural genes during

neurogenesis in both mouse and Xenopus and the data presented

above indicates that Xhes6 plays an essential role during neuronal

differentiation [24]. Previous overexpression studies also indicated

that Xhes6 upregulates the expression of Xngn2 during the early

stage of neurogenesis in the stripes where it is normally expressed

[24]. We saw that injection of Xhes6 MO1 reduced Xngn2

expression (in 53% of embryos, n = 61), supporting the hypothesis

that Xhes6 is not only a downstream target of Xngn2 but also acts

in a positive feedback loop to sustain Xngn2 expression (Fig. S3).

If Xhes6 is required to maintain normal expression of Xngn2,

might it also be required for the function of Xngn2 protein? To

examine this question, embryos were injected with Xngn2 mRNA

and either the CTL MO or Xhes6 MO1 and analyzed for neural

marker expression. Usually 5 pg of Xngn2 mRNA is sufficient to

induce ectopic neurogenesis in the epidermis, and co-injection of

this dose with the CTL MO did indeed result in differentiation of

neurons expressing N-tubulin and NeuroD both within and beyond

the neural plate in 83% (n = 41) and 92% (n = 38) of embyos

respectively (Fig. 3C, 3I, 3K, 3L and Table 2). The ectopic

expression of N-tubulin demonstrates the ability of Xngn2 to divert

epidermal cells into the neural lineage. However when the same

5 pg dose of Xngn2 mRNA was co-injected with Xhes6 MO1, N-

tubulin and NeuroD expression within the neural plate was either

unchanged or substantially decreased compared with the unin-

jected side, although ectopic neurons in the epidermis were still

seen in one third of embryos (Fig. 3D, 3J, 3K, 3L, Table 2).

The ability of Xhes6 MO1 to inhibit such Xngn2-mediated

neurogenesis was dependent on the amount of Xngn2 mRNA

injected. Co-injection of 10 pg Xngn2 mRNA with Xhes6 MO1

resulted in increased expression of N-tubulin and neuroD in

approximately half of the embryos, whilst Xhes6 MO1 had no

effect on neural marker expression following a 50 pg dose of

Xngn2 RNA (Fig. 3K, 3L, Table 2 and data not shown). These

observations are consistent with Xhes6 acting to promote the

Table 1. Effect of Xhes6 morpholinos on neural marker
expression.

% embryos

N-tubulin in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n
embryos

uninjected 0 0 0 100 0 0 35

CTL 0 0 0 100 0 0 34

MO1 0 0 0 19 0 81 31

MO2 0 0 0 97 0 3 34

MO1+Xhes6 0 0 0 51 33 16 49

MO1+DBM 0 0 7 76 10 7 41

MO1+DWRPW 0 0 0 53 0 48 40

Xhes6 0 5 59 36 0 0 44

DBM 0 0 52 48 0 0 46

DWRPW 0 0 0 89 0 11 35

NeuroD in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n
embryos

uninjected 0 0 0 100 0 0 54

CTL 0 0 0 100 0 0 44

MO1 0 0 0 38 0 62 39

MO2 0 0 0 95 0 5 44

MO1+Xhes6 0 0 22 67 8 3 36

MO1+DBM 0 0 11 81 8 0 37

MO1+DWRPW 0 0 5 61 0 34 38

Expression patterns of N-tubulin and NeuroD transcripts in embryos injected
with the morpholinos and/or mRNAs shown. Appearances of typical embryos
are shown in Figure 1. Scoring is as shown in Figure S2.
doi:10.1371/journal.pone.0027880.t001
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expression and/or function of Xngn2, in a dose dependent

manner, both within the neural plate and in the epidermis. At high

Xngn2 doses, the requirement for Xhes6 may be bypassed by an

excess of Xngn2 protein, or alternatively Xngn2 induced Xhes6

transcription may overcome the inhibitory effect of the Xhes6

morpholino [18,24].

Given the requirement for Xhes6 for Xngn2 protein function,

we went on to investigate whether Xhes6 is also required for the

function of the proneurogenic NeuroD, a direct downstream target

of Xngn2. The majority of embryos co-injected with 20 pg of

NeuroD mRNA and CTL MO showed increased N-tubulin

expression at injected side, both within the neural plate and in

the epidermis (72%, n = 97, Fig. 3E, 3M, Table 3), whereas co-

injection of NeuroD mRNA and Xhes6 MO1 resulted in the

inhibition of neurogenesis in majority (67%, n = 96) of embryos

(Fig. 3F, 3M, Table 3). These data indicate that Xhes6 is required

for the neurogenic activity of both Xngn2 and NeuroD, both

within the neural plate and for the formation of ectopic neurons in

the epidermis.

Figure 3. Xhes6 is required for the function of Xngn2 and NeuroD. Xngn2 or NeuroD mRNA was injected into one cell of two cell stage
embryos with or without control (STD CTL) or Xhes6 (MO1) morpholinos. At neurula stage, embryos were analysed for expression of transcripts
encoding N-tubulin (A2F) or NeuroD (G2J) by in situ hybridization. Injection of mRNAs encoding Xngn2 and NeuroD increases the number of
primary neurons (C, E) but this effect is blocked by co-injection of the Xhes6 MO (D, F). Xhes6 is also required for Xngn2 to induce its target gene,
NeuroD (J). K-L quantitation of phenotypes seen, scored as shown in Fig. S1; K, L effects of MO1 on Xngn2 induced expression of N-tubulin (K) and
NeuroD (L) mRNA, M, effect of MO1 on N-tubulin mRNA expression induced by NeuroD. Full data on the frequency of phenotypes and the number of
embryos analyzed is given in Table 2.
doi:10.1371/journal.pone.0027880.g003
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We speculated that Xhes6 may act by binding to Xngn2 and/or

blocking the ability of Xngn2 to bind its E protein coactivators.

However, Xhes6 had no effect on the binding of Xngn2 to E12 as

assayed in an electrophoretic mobility shift assay using E-box

containing probe and in vitro translated proteins, and there was no

interaction between tagged forms of Xhes6 and Xngn2 in a co-

immunoprecipitation experiment (Fig. 4 and data not shown). The

presence of Xhes6 also had no effect on the stability of the Xngn2

protein in an interphase Xenopus egg extract in vitro, where Xngn2

undergoes rapid ubiquitin mediated proteolysis (Fig. S4) [34].

These observations led us to investigate whether Xhes6 regulates

Xngn2 function indirectly, via interaction with other Hes family

members which inhibit the expression and/or function of

proneural transcription factors as has been suggested by studies

in other species. Xhairy inhibits the activity of neurogenic

regulatory factors.

Hes1 has been shown to inhibit the expression and/or function

of proneural proteins in mammals [23,35]. In Xenopus, there are

three homologues of Hes1, Xhairy1, Xhairy2A and Xhairy2B, all

of which are expressed in the neural plate (Fig. S1, [18,24]). We

speculated that these Xhairy proteins may inhibit the function of

Xngn2 and NeuroD. Overexpression of Xhairy1 or 2 by

microinjection of mRNA at the 2 cell stage substantially reduced

neuronal differentiation at neurula stage (Fig. 5B, 5G, 5H,

Tables 4, 5, [18]). Furthermore, whilst injection of mRNA

encoding Xngn2 or NeuroD produces extensive neurogenesis

both within the neural plate and epidermis (Fig. 5C, 5E, 5G, 5H,

Tables 4, 5), co-expression of Xhairy1 mRNA abolishes this

phenotype (Fig. 5D, 5F, 5G, 5H, Tables 4, 5). We conclude that

Xhairy1 powerfully inhibits the function of Xngn2 and NeuroD,

consistent with the actions of homologous proteins in other species.

However we see that Xhairy1 does act by not blocking the ability

of Xngn2 to bind DNA or Xenopus E12 proteins in vitro (Fig. 4).

Xhes6 and Xhairy1 antagonise each other independently
of Groucho binding

The results presented above indicate that both Xhes6 and

Xhairy1 regulate the activity of Xngn2 and NeuroD. Tagged forms

of Xhes6 and Xhairy1 co-immunoprecipate in vitro (Fig. 6). We

therefore examined whether Xhes6 acts by antagonizing Xhairy1

function in vivo. Injection of Xhairy1 mRNA significantly reduced the

expression of N-tubulin in 91% of embryos (n = 43, Fig. 7B, 7H,

Table 6), whereas embryos injected with Xhes6 mRNA showed

increased neurogenesis within the neural plate (63% of embryos,

n = 59, Fig. 7C, 7H, Table 6). The majority of embryos coinjected

with both Xhairy1 and Xhes6 mRNAs showed essentially normal N-

tubulin and NeuroD expression (70%, n = 57, Figure 7D, Table 6, and

data not shown). We conclude that Xhes6 and Xhairy1 bind

directly to each other and are functionally antagonistic.

To investigate the mechanism of antagonism between Xhes6

and Xhairy1, we investigated the DWRPW mutants of Hes6 and

Xhairy1 that lack the Groucho/TLE binding WRPW motif. Co-

immunoprecipitation of tagged proteins indicates that the WRPW

domain is not required for Xhes6 protein to bind Xhairy1 in vitro

(Fig. 6). We reasoned that if the in vivo antagonism between Xhes6

and Xhairy1 was result of a direct interaction between the two

proteins, rather than via titration of Groucho cofactors, the Xhes6

DWRPW mutant should be able to rescue the inhibition of

neurogenesis by exogenous Xhairy1. Injection of mRNA encoding

the Xhes6 DWRPW mutant results in no change in N-tubulin

expression (Fig. 7E, 7H, Table 6). Strikingly, however, coinjection

of mRNAs encoding Xhairy1 and DWRPW mutant Xhes6

restored normal N-tubulin expression in 86% (n = 98) of embryos

(Fig. 7F, 7H Table 6). Moreover, deletion of the WRPW domain

in Xhairy1 has little effect on its ability to supress neurogenesis,

confirming its antineurogenic effect does not require interaction

with Groucho proteins (Fig. 7G, Table 6). It should be noted,

however, that alongside its inhibition of Xhairy1 function, Xhes6

requires Groucho binding ability to be fully active in promoting

neurogenesis (Fig. 2H, 2P, 2Q, 2R). This argues that Xhes6 acts

both in a Groucho dependent and independent manner to

promote neurogenesis.

Discussion

The data presented here show that Xhes6 is important not only

for the expression of Xngn2 and NeuroD but also for their function,

Table 2. Activity of Xngn2 in Xhes6 morphant embryos.

% embryos

N-tubulin in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n
embryos

uninjected 0 0 0 98 0 0 66

Xhes6 MO1 0 0 0 18 0 82 66

MO1 + Xngn2 5 pg 0 5 16 22 35 22 37

MO1 + Xngn2 10 pg 10 24 9 2 36 19 58

CTL 0 0 0 93 0 7 58

CTL + Xngn2 5 pg 0 29 54 17 0 0 41

CTL + Xngn2 10 pg 19 55 21 5 0 0 58

NeuroD in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n
embryos

uninjected 0 0 0 100 0 0 72

Xhes6 MO1 0 0 0 34 0 66 47

MO1 + Xngn2 5 pg 0 0 51 23 17 9 35

MO1 + Xngn2 10 pg 0 21 46 2 27 4 48

STD CTL 0 0 0 97 0 3 39

CTL + Xngn2 5 pg 0 3 89 8 0 0 38

CTL + Xngn2 10 pg 0 66 34 0 0 0 44

Table shows the expression patterns of N-tubulin and NeuroD transcripts in
embryos injected with the mRNAs and/or morpholinos shown. Appearances of
typical embryos are shown in Figure 2. Scoring is as shown in Figure S2.
doi:10.1371/journal.pone.0027880.t002

Table 3. Activity of NeuroD in Xhes6 morphant embryos.

% embryos

N-tubulin in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n embryos

uninjected 0 0 0 98 0 2 46

Xhes6 MO1 0 0 0 20 0 80 61

MO1 + NeuroD 0 0 14 20 15 52 96

STD CTL 0 0 0 95 0 5 59

CTL + NeuroD 0 9 63 28 0 0 97

Table shows the expression patterns of N-tubulin transcript in embryos injected
with the morpholinos and/or mRNAs shown. Appearances of typical embryos
are shown in Figure 2. Scoring is as shown in Figure S2.
doi:10.1371/journal.pone.0027880.t003

Hes6 in Xenopus Neurogenesis
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and is required for formation of primary neurons in Xenopus. Our

results are consistent with Xhes6 acting by at least two distinct

mechanisms, resolving some of the paradoxes in the current

literature. Xhes6 blocks the antineurogenic function of Xhairy1 by

direct protein-protein interaction. This inhibition is independent

of the ability of Hes6 to bind Groucho as the Xhes6 mutant

lacking the WRPW domain both binds Xhairy1 in vitro and

relieves the inhibition of neurogenesis by Xhairy1 in vivo (Figs. 6,

7). However, Xhes6 also acts in a Groucho dependent manner, as

the presence of the WRPW domain is essential for full rescue of

the Xhes6 morpholino phenotype. This finding is consistent with

previous overexpression studies that show the WRPW deletion

mutant of Xhes6 is inefficient in inducing neurons compared with

wild type Xhes6 [24,27]. As well as regulating the transcription of

Xngn2 and NeuroD, Xhes6 has an additional role regulating the

activity of Xngn2 and NeuroD proteins. However, this functional

regulation is not achieved by altering the DNA binding ability of

Xngn2 or its stability (Figs. 4 and S4). Similarly there is no

evidence for interaction between Xhairy1 and either the Xenopus E

protein E12 or proneural bHLH proteins in vitro, which might

otherwise have accounted for a requirement for Xhes6 for

proneural protein function.

Our results from Xenopus may usefully be compared with data of

the role of Hes6 in neurogenesis in other species. In the chick, two

Hes6 genes have been identified, both of which are expressed in

the developing neural tube, where their expression is dynamically

regulated and electroporation studies indicate that they function to

relieve differentiating neural progenitors from the effects of Notch

signaling [28,29]. cHes6-2 is induced early in differentiation as

cells become committed to the neural lineage. It acts as a DNA

bound repressor, recruiting Groucho proteins via the WRPW

domain to repress transcription of the Notch effector cHes5 [29].

cHes6-1 is transiently expressed later in differentiation, in post

mitotic cells which co-express proneural transcription factors,

where it relieves the cHes6-2 mediated inhibition of cHes5

transcription. DNA binding domain and WRPW deletion mutants

of cHes6-1 retain their ability to upregulate cHes5 expression,

arguing that cHes-1 acts by directly binding other Hes proteins

and inhibiting their function. The multiple mechanisms of Hes6

function described in the chick, both Groucho dependent and

independent, show parallels with those we report here in Xenopus.

Studies of cortical progenitor cells in culture have revealed that

Hes6 acts to both increase neurogenesis and inhibit gliogenesis

when overexpressed [30]. In keeping with the results reported here

in vivo, proneurogenic function of Hes6 is found to be independent

of Groucho binding, although suppression of glial differentiation

requires both the Groucho binding domain and the phosphory-

lation of conserved C terminal serine residues [31]. A range of

candidate mechanisms for Hes6 activity have been proposed based

on these in vitro studies, including interactions with Hes1 but also

titration of Groucho family proteins [30]. Our observations that

Xhes6 can relieve Xhairy1 mediated inhibition of neurogenesis in

a Groucho independent manner, but also promote neurogenesis

by a mechanism that requires Groucho binding supports these

hypotheses.

Whether the single Hes6 protein found in mouse and other

mammals fulfills the functions of both chick Hes6 proteins remains

to be determined. To be able to act by distinct mechanisms at

different stages of neural differentiation a single Hes6 protein

would require regulation. In keeping with this hypothesis, mouse

Hes6 contains two C terminal motifs which are subject to

phosphorylation and regulate Hes6 function in vitro. These are an

SDLE motif is phosphorylated by Casein Kinase 2 and an

SPXXSP motif which is phosphorylated by MAP Kinase.

Mutation of the SDLE motif abolishes CK2 mediated phosphor-

ylation and decreases the proneural activity of Hes6 [25]. In

contrast mutation of the SPXXSP motif has minimal effect on

neuronal induction but blocks the anti astrocytic activity of Hes6

Figure 4. Effects of Hes6 and Xhairy1 proteins on Xngn2/E12 DNA-binding activity. A DNA fragment containing E-box element from the
mouse NeuroD promoter was labeled with 32P and incubated with the in vitro translated proteins shown. The reaction mixture was then analyzed on
a native polyacrylamide gel. (A) Effect of Xhes6 on DNA-binding activity of Xngn2/E12. Arrow indicates complex of Xngn2/E12 and DNA. Free probes
are shown by arrowhead. (B) Effect of Xhairy1 on DNA-binding activity of Xngn2/E12. Faint bands with slow mobility (thin arrow) are non-specific
protein and DNA complexes. Thick arrow indicates Xngn2/XE12 probe complex. Neither Xhes6 and Xhairy1 affect heterodimer formation or the DNA
binding activity of Xngn2/XE12 proteins.
doi:10.1371/journal.pone.0027880.g004
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[31]. Mammalian Hes6 proteins also contain an N terminal

EDED motif, not found in either chick protein, which inhibits the

formation of heterodimers with Hes1 [31]. These observations

argue the loss of a second Hes6 gene may be associated with

increased regulation of the single Hes6 protein in mammals.

It should be noted that mice null for Hes6 appear grossly

normal [24]. However a definitive characterization of these

animals has not been published and whilst some aspects of Hes6

Figure 5. Xhairy1 inhibits the proneurogenic activity of Xngn2 and NeuroD. Embryos either uninjected (A) or with mRNAs encoding
Xhairy1 (B), Xngn2 (C), Xhairy1 plus Xngn2 (D), NeuroD (E) or NeuroD plus Xhairy1 (F) injected into one cell at the two cell stage were analyzed for N-
tubulin expression by in situ hybridization at neurula stage. G,H quantitation of phenotypes seen, scored as shown in Figure S2; Full data on the
frequency of phenotypes and the number of embryos analyzed is given in Tables 3, 4, and 5.
doi:10.1371/journal.pone.0027880.g005

Table 4. Effect of Xhairy1 on Xngn2 activity.

% embryos

N-tubulin in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n
embryos

uninjected 0 0 0 100 0 0 60

Xhairy1 0 0 0 20 0 80 65

Xngn2 49 48 0 3 0 0 75

Xngn2+Xhairy1 0 0 0 21 5 74 58

NeuroD in situ

mRNA/MO 3+ 2+ 1+ 0 21 22 n
embryos

uninjected 0 0 0 100 0 0 43

Xhairy1 0 0 0 33 0 67 43

Xngn2 0 96 4 0 0 0 54

Xngn2+Xhairy1 0 0 0 32 11 57 28

Table shows the expression patterns of N-tubulin and NeuroD transcripts in
embryos injected with the mRNAs shown. Appearances of typical embryos are
shown in Figure 3. Scoring is as shown in Figure S2.
doi:10.1371/journal.pone.0027880.t004

Table 5. Effect of Xhairy1 on NeuroD activity.

% embryos

N-tubulin in situ

mRNA 3+ 2+ 1+ 0 21 22 n embryos

uninjected 0 0 0 100 0 0 15

Xhairy1 0 0 0 8 0 92 24

NeuroD 63 27 10 0 0 0 52

NeuroD+Xhairy1 0 0 4 14 29 54 28

Table shows the expression patterns of N-tubulin transcript in embryos injected
with the mRNAs shown. Appearances of typical embryos are shown in Figure 3.
Scoring is as shown in Figure S2.
doi:10.1371/journal.pone.0027880.t005
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function may be redundant, it remains a possibility that Hes6 is

essential for the normal differentiation of some neuronal types in

mouse. It is clear that such questions are easier to study in more

accessible model organisms such as Xenopus.

A further intriguing possibility is that Hes6 may act to alter the

fluctuating expression patterns of neurogenins and Hes proteins

that accompany neural differentiation. In neural progenitors,

transcription of Hes1, neurogenin 2 and the Notch ligand

Deltalike-1 (Dll1) oscillate [22]. On differentiation, Ngn2 and

Dll1 expression are maintained at a high level and Hes1

expression is downregulated. Hes6 may play a role in the dynamic

interactions between Hes1 and neurogenin that control their

reciprocal oscillations, which in turn plays an essential role in

progenitor maintenance.

We conclude that Hes6 is a mutltifaceted regulator of neuronal

differentiation in diverse systems where it plays distinct roles both

at the level of regulation of gene expression, and at the level of

regulation of proneural protein function.

Materials and Methods

Plasmid, mRNA and in situ probes
Plasmids encoding Xngn2, NeuroD, Xgrg4AA, b-galactosidase

and Xhes6 were described previously ([33,34]). The Xhairy1

Image clone (4030543; BH19-d2) was purchased from Geneser-

vice. The coding region of Xhairy1 cDNA was amplified by PCR

and subcloned into pCS2+. Capped mRNA was synthesized in vitro

from linearized plasmids using the SP6 Message Machine kit

(Ambion).

Xenopus embryos and injection of mRNA and
morpholinos

Xenopus laevis embryos obtained by hormone induced laying

were in vitro fertilized, dejellied in 2% cysteine pH8.0, and washed

Figure 6. Physical Interaction of Xhes6 and Xhairy1. HA tagged
Xhairy1 and myc tagged Xhes6 proteins (wild type, DNA binding
mutant (DBM) and WRPW deletion mutant (DWRPW)) were translated in
vitro and mixed as indicated. Following incubation with the antibody
shown immunocomplexes analyzed by sodium dodecyl sulfate gel
electrophoresis after which tagged proteins were detected by Western
blotting. Wild type and both mutant forms of Xhes6 protein bind
Xhairy1.
doi:10.1371/journal.pone.0027880.g006

Figure 7. Inhibition of Xhairy1 by Xhes6 does not require the
Xhes6 Groucho binding domain. Expression of N-tubulin transcript
in uninjected embryos (A) or embryos in which mRNA encoding Xhairy1 (B),
Xhes6 (C), Xhairy1 plus Xhes6 (D), Xhes6DWRPW mutant (E), Xhairy1 plus
Xhes6DWRPW (F) or Xhairy1DWRPW mutant (G) was injected into one cell at
the two cell stage. H: quantitation of changes in N-tubulin mRNA expression,
scored as shown in Figure S2. Full data on the frequency of phenotypes and
the number of embryos analyzed is given in Table 6.
doi:10.1371/journal.pone.0027880.g007
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in 0.1x MBS. Capped mRNAs and/or morpholinos (40 ng, [33])

were injected into 2-cell stage embryos in 0.2x MBS supplemented

with 4% Ficoll and 25 mg/ml Gentamicin (Gibco).

Whole mount in situ hybridization
Xenopus embryos were fixed for 1 hr in MEMFA and stained for

b-galactosidase (250 pg mRNA injected embryo) using Salmon

Gal (Research Organics). Whole-mount in situ hybridisation was

carried out as described [36] with a digoxigenin (Roche)-labeled

antisense RNA probe [37,38]. Changes in gene expression were

scored in comparison with the uninjected side of the embryo.

Scoring followed the scheme shown in Figure S2.

Immunoprecipitation and Western blotting
Xhes6, its mutants and Xhairy1 were transcribed and translated

in vitro using TNT SP6 Quick Coupled transcription/translation

system (Promega). Immunoprecipitation and Western blotting

were carried out as described previously [33].

Protein degradation Assay
Preparation of Xenopus egg extracts, labeling of Xngn2 with 35S-

methionine and degradation assays were performed as described

previously [34].

Electrophorectic mobility shift assay
All proteins were transcribed/translated in vitro as described

above. E-box containing probes were designed based on the

mouse NeuroD promoter sequence [39] as follows:

E1: 59-GGACCGGGAAGACCATATGGCGCATGCC–39,

59-GGGCCGTACGCGGTATACCAGAAGGGCC-39,

E3: 59- GTCTAACTGGCGACAGATGGGCCACTTT–39,

59-TTCTTTCACCGGGTAGACAGCGGTCAAT-39.

Oligonucleotides were annealed and labeled with alpha-32P-

dCTP using Klenow fragment. Probe was incubated with protein

in buffer containing 20 mM Tris-HCl pH7.4, 2 mM MgCl,

50 mM KCl, 1 mM EDTA, 10% Glycerol, 1 mM DTT and

0.05 mg/ml poly(dI-dC), and protein-DNA complexes were

resolved by 5% polyacrylamide gel.

Supporting Information

Figure S1 Expression of Xhes6 in neurula stage embry-
os. In situ hybridization of Xenopus embryos at neurula stage for

mRNA encoding Xhes6 (A), Xhairy1 (B) and Xgrg4 (C). Xhes6

mRNA expression was detected within the region where primary

neurons form.

(TIF)

Figure S2 Scoring of neural marker phenotypes. In situ

hybridizations were scored in comparison to the un-injected side of

the embryo. Criteria for each category and typical appearances of

embryos in each category are shown.

(TIF)

Figure S3 Effect of Xhes6 MO1 on the expression of
Xngn2 and Xhairy1. Embryos were injected with control

(CTL, A, C) or Xhes6 morpholino (MO1) (B, D) along with b-gal

tracer (red staining) and analyzed for for Xngn2 (A, B) and Xhairy1

(C, D) transcript at neurula stage by in situ hybridization. Injection

of MO1 slightly decreases Xngn2 expression at injected side (yellow

box), but not the expression of Xhairy1.

(TIF)

Figure S4 Effect of Hes proteins on stability of Xngn2
protein. Extracts were prepared from interphase Xenopus eggs

and supplemented with 35S-methionine labeled Xngn2 and the

non labeled in vitro translated proteins shown. Samples were taken

at the time points indicated and analyzed by sodium dodecyl

sulfate gel electrophoresis. E12 stabilizes Xngn2 protein but Xhes6

has no effect on Xngn2 stability. The stability of Xngn2 in the

presence of XE12 is not affected by Xhairy1.

(TIF)
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