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Abstract: Transparent conducting electrodes (TCEs) are the most important key component in
photovoltaic and display technology. In particular, graphene has been considered as a viable
substitute for indium tin oxide (ITO) due to its optical transparency, excellent electrical conductivity,
and chemical stability. The outstanding mechanical strength of graphene also provides an opportunity
to apply it as a flexible electrode in wearable electronic devices. At the early stage of the development,
TCE films that were produced only with graphene or graphene oxide (GO) were mainly reported.
However, since then, the hybrid structure of graphene or GO mixed with other TCE materials has
been investigated to further improve TCE performance by complementing the shortcomings of each
material. This review provides a summary of the fabrication technology and the performance of
various TCE films prepared with graphene-related materials, including graphene that is grown
by chemical vapor deposition (CVD) and GO or reduced GO (rGO) dispersed solution and their
composite with other TCE materials, such as carbon nanotubes, metal nanowires, and other
conductive organic/inorganic material. Finally, several representative applications of the graphene-
based TCE films are introduced, including solar cells, organic light-emitting diodes (OLEDs),
and electrochromic devices.
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1. Introduction

Transparent conductive materials have been extensively used as essential components of
optoelectronic devices, such as liquid crystal displays, touch panels, organic light-emitting diodes
(OLEDs), and solar cells. Furthermore, the development of foldable or wearable displays and
photoelectric devices has led to a need for electronic conductors that are transparent as well as
stretchable. Owing to its relatively high electrical conductivity and transparency, indium tin oxide
(ITO) is considered as a standard transparent electrode material for such devices. However, the high
cost of raw materials, poor mechanical flexibility, and relatively high temperature of ITO deposition
significantly limit the scope of its practical applications. For this reason, it has been attempted to use
various kinds of nanoscale materials, such as carbon nanotubes (CNT), graphene, metal nanowires,
metal nanogrids, and thin films as a replacement for ITO in transparent conducting electrodes
(TCEs) [1–18]. Of these, CNT-based transparent electrodes showed the TCE performance, with a sheet
resistance of 24 Ω·Sq−1 at 83% transmittance [18]. TCEs that are composed of randomly distributed
metal nanowire networks have also been reported to have high optical transparency, low sheet
resistance, and excellent mechanical flexibility [9,16,17]. However, silver or copper nanowires are
easily damaged by moisture and external mechanical impact and their adhesion to the plastic substrate
is poor [19–23]. Graphene-based electrodes have been investigated using the liquid suspension of
graphene and macro-scale graphene synthesized via chemical vapor deposition (CVD) [12,24–28].
Liquid-based suspensions of graphene have an advantage in coating, as they would enable relatively
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low-cost methods of spin coating, roll-to-roll processing, and printing to be used. Additionally, CVD
graphene has excellent physical properties, namely a sheet resistance of 30 Ω·Sq−1 at 90% transmittance,
and thus is a promising candidate for TCE technology [12].

Despite the fact that TCEs based on graphene are easy to process, low in cost, and have excellent
stability, they have a disadvantage in that the sheet resistance is larger than that of metal-based
transparent electrodes that exhibit the same level of transparency [29]. Therefore, in recent years,
an attempt has been made to complement the shortcomings and disadvantages of each material
by constructing a hybrid structure of metallic nanostructure and graphene or graphene oxide (GO)
or reduced GO (rGO) [3,30]. It has been reported that the performance of TCEs is improved by
hybridizing organic and inorganic materials, such as ITO and poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT:PSS) with graphene [31,32].

This paper will review the fabrication methods of TCEs using graphene or GO (or rGO), which
have been studied previously, and the optical, electrical, and mechanical properties with their limited
application. Next, recent studies that have attempted to overcome the limitations of TCEs made with
graphene or GO (or rGO) by introducing hybrid TCEs containing other materials are summarized.
The performances of various hybrid TCEs that are based on graphene are summarized in Table 1.
Lastly, various applications in optics and optoelectronics, especially in several newly emerging areas,
such as electrochromic devices, are addressed along with their challenges and prospects in these fields.

Table 1. The performance of transparent conducting electrodes (TCEs) based on graphene-related
materials. CVD–chemical vapor deposition, DETA–diethylenetriamine, rGO–reduced graphene
oxide, CNT–carbon nanotubes, SWNT–single-walled carbon nanotubes, MWNT–multi-walled carbon
nanotubes, NW–nanowire, GP–Graphene, PEDOT:PSS–poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate, ITO–indium tin oxide.

Material Details Deposition/Transfer
Techniques

Sheet Resistance
(Ω·sq−1) Transmission (%) Ref.

CVD
graphene

HNO3 doping Dry transfer/thermal
release tape ~30 (4-layers) 90 [12]

Cu catayst Polymer-free transfer 810 (1-layer)
230 (4-layers)

97.4 (1-layer)
89.4 (4-layers) [33]

Cu catalyst, HNO3 doping Clean-lifting transfer 50 (4-layers) ~90 (4-layers) [34]

Cu catalyst Roll-to-Roll green
transfer 97.5 5.2k [35]

Ni catalyst Wet transfer 500 75 [28]
No catalyst Direct CVD 370–510 82 [36]

No catalyst, 400–600 ◦C Direct CVD 5.2k 84.6 [37]
Ni/C films on dielectrics Transfer-free growth 50 96 [38]

Cu-Ni alloy Wet transfer 409 96.7 [39]
Layer-by-layer, acid-doping Wet transfer 80 (4-layers) 90 (4-layers) [40]

Dual n-doping
(NH2-SAMs/DETA) Wet transfer 86 ± 39 96 [41]

rGO

Theraml reduction of GO Spin -coating 102–103 80 [42]
rGO/POEGMA layer Dip-coating 23.8k 90 [43]

Thermal reduction of GO Filtration 43k 95 [44]
Thermal reduction of GO Dip-coating 1.8 ± 0.08k 70.7 [45]

Graphene/
CNT

Graphene growh on SWNT Wet transfer 300 96.4 [46]
Graphene flake/SWNT Filtration 100 80 [47]

CVD Synthesis Wet transfer ~600 95.8 [48]
Thermal reduction of rGO on

MWNT
Electrostatic
adsorption 151k 93 [48]

Chemically converted
grpahene/SWNT hybrid

suspension
Spin-coating 636 92 [49]

Ultralarge GO/SWNT Langmuir-Blodgett 180–560 77–86 [50]
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Table 1. Cont.

Material Details Deposition/Transfer
Techniques

Sheet Resistance
(Ω·sq−1) Transmission (%) Ref.

Graphan/
metallic

nano-
structure

CVD graphene on AgNW - 22 88 [51]
AgNW on GP - 33 94 [52]
GP on AgNW - 64 ± 6.1 93.6 [53]

Roll-to-roll encapsulation - 8 94 [54]
Graphene/CuNW -Core/shell

structure - 36 79 [55]

Graphene/CuNW
Embedded structure - 25 82 [56]

Ag-mesh/Graphene - 5.39 (GP on mesh)
4.54 (Mesh on GP)

88.1 (GP on mesh)
89.3 (Mesh on GP) [57]

Graphene/
organics

Graphene/PEDOT:PSS,
hybrid ink Spray coating 600 80 [58]

rGO/PEDOT:PSS, hybrid ink Filtration 2.3k 80 [59]
PEDOT:PSS supproting layer

on CVD graphene Wet transfer 80 ± 4 84.6 [60]

Graphene/
inorganics

CVD graphene on ITO film - 76.46 88.25 [61]
ITO nanoparticle on CVD

graphene - 522.21 85 [62]

2. Fabrication of Graphene-Based Transparent Conducting Electrodes (TCEs)

2.1. Chemical Vapor Deposition (CVD) Graphene-Based TCEs

CVD graphene is usually produced by flowing hydrocarbon gas onto a transition metal catalyst
in a high-temperature furnace, which has been regarded as the most promising way to synthesize
high-quality large-area graphene [12,63–66]. CVD graphene that is grown on transition metals, such as
Ni, Cu, Pt, and Co, can be used as a TCE after transferring it onto the desired transparent substrate by
removing the underlying metal [67].

In the first report on CVD graphene, multiple layers of graphene were grown on a Ni substrate
via carbon dissolution and segregation using a Ni catalyst by a CVD process [48,68]. However,
Ni possesses high carbon solubility, which makes it difficult to control the number of graphene
layers. Thus, a mixture of monolayer graphene and multilayer graphene were formed on Ni foil.
A breakthrough in CVD graphene has been achieved by developing synthetic ways of producing
large-area monolayer graphene on a Cu foil using a roll-to-roll method [12,64,69–74]. Unlike Ni, Cu has
a low carbon solubility, which makes it possible to grow monolayer graphene with a grain size of
several centimeters on Cu foil using a mixture of methane and hydrogen gas at a high temperature
of 1000◦C as shown in Figures 1a–c and 2; the sheet resistance was reported to be 125 Ω·sq−1 at
97.4% transparency [12]. It has also been demonstrated that Cu–Ni alloy can be used to produce
monolayer and multilayer graphene using CVD with methane gas as precursor, since the carbon
solubility can be controlled by adjusting the atomic fraction of Ni in Cu (Figure 1d) [39,75–79]. For
example, Chen et al. presented the CVD synthesis of large-area, primarily bilayer, graphene on Cu–Ni
foil by the use of a cold-wall reactor with methane and hydrogen as precursors [74]. Additionally,
Cho et al. recently reported that extremely thin Cu–Ni alloy film could promote the formation of
monolayer graphene, regardless of alloying contents by constraining the total amount of carbon that
was absorbed into the film [78]. There have also been various attempts to directly grow graphene on a
glass substrate [36–38,80]. Recently, it was reported by Sun et al. that large-area and uniform graphene
film could be directly grown on glass substrate using catalyst-free atmospheric CVD (APCVD), with
the resulting material presenting a sheet resistance of 370–510 Ω·sq−1 at a transmittance of 82% [36,38].
In comparison, annealing-based capping-metal catalyzed synthesis provides a fairy high quality
of graphene. Xiong et al. showed that monolayer graphene that was grown on various dielectric
substrates via rapid thermal process of substrate coated with amorphous carbon and Ni thin films
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exhibited a low sheet resistance of ~50 Ω·sq−1 at 95.8% transparency [37]. However, the processing
temperature of 1100 ◦C was too high and not applicable to glass and plastic substrates.
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reactor. The lower image shows the stage in which the copper foil reacts with CH4 and H2 gases at 
high temperatures. (b) Roll-to-roll transfer of graphene films from a thermal release tape to a 
polyethylene terephthalate (PET) film at 120 °C. (c) A transparent ultralarge-area graphene film 

Figure 1. (a) Copper foil enclosure prior to insertion in the furnace. (b) Schematic of the chemical
vapor deposition (CVD) system for graphene on copper. (c) SEM image of graphene on copper grown
by CVD. Graphene grown at 1035 ◦C on Cu at an average growth rate of ~6 µm/min. Reproduced
with the permission of Reference [65], Copyright 2011. American Chemical Society (d) Morphology
and layer distribution of various few layers graphene segregated from Cu-Ni alloy at 900 ◦C after
transfer to 300 nm SiO2/Si substrate. Reproduced with the permission of Reference [76]. Copyright
2011, American Chemical Society.
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Figure 2. (a) Copper foil wrapping around a 7.5-inch quartz tube to be inserted into a 8-inch quartz
reactor. The lower image shows the stage in which the copper foil reacts with CH4 and H2 gases at high
temperatures. (b) Roll-to-roll transfer of graphene films from a thermal release tape to a polyethylene
terephthalate (PET) film at 120 ◦C. (c) A transparent ultralarge-area graphene film transferred on
a 35-inch PET sheet. Reproduced with the permission of Reference [12]. Copyright 2010, Nature
Publishing Group.
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In order to utilize CVD graphene grown on catalyst metal as a TCE, a transfer step is required
to separate graphene film from the catalyst metal and move it to a transparent substrate, such as
glass or polyethylene terephthalate (PET) [3,33,52,67,81–85]. Generally, a polymer-support layer is
employed to protect the graphene from the external force during the transfer process. After coating
the graphene onto the catalyst metal with a protective layer, such as polydimethylsiloxane (PDMS) or
poly(methylmethacrylate) (PMMA), a metal catalyst, such as Cu or Ni, is etched away using a chemical
etchant, such as HCl, HNO3, etc. The as-prepared polymer/graphene film after etching the metal
catalyst is cleaned with deionized (DI) water and then transferred onto the target substrate. After
removing the supporting polymer layer by organic solvent, only some polymer residues are left on
the substrate for use as TCEs [67,80,82]. However, one of the disadvantages of this polymer-support
transfer method is that polymer residues and defects are generated on graphene [52]. Therefore,
various methods have been devised for transferring graphene without a support layer, which are called
“polymer-free” methods as described in Figure 3; for example, a thermal release tape-assisted transfer,
using a tape with specific adhesives that strongly adheres to substrates at room temperature while
losing adhesion at high temperature, and a metal-assisted transfer method, using a metal as a protective
layer instead of a polymer [83,85]. In particular, the thermal release tape-assisted transfer method is
likely to be suitable for large-scale production because it can inherit the roll-to-roll (R2R) production
process for graphene growth [62,63]. For instance, Bae et al. have successfully demonstrated the R2R
production and coating of CVD graphene onto flexible substrate using a thermal release tape-assisted
transfer method (Figure 2) [12]. Additionally, Lin et al. transferred the graphene to the substrate using
“graphite holder”, in which monolayer graphene was etched and the etchant was pulled out to be
replaced by mixed solvents when the solution was pulled out with the syringe [82]. Although the
polymer-free transferred graphene exhibits superior electronic characteristics, the size and shape of
the transferred graphene film is limited by the graphite holder. Furthermore, Wang et al. developed a
unique “clean-lifting transfer” technique using a controllable electrostatic attraction force to transfer
graphene film on various rigid or flexible substrates [81]. In this method, the graphene is attracted to
the negatively charged target substrate by the electrostatic force during the transfer process. However,
there was a problem with the “polymer-free” transfer method, in that the graphene was deformed
easily by external force, such as liquid fluctuation, during metal etching because of the lack of a
support layer. Therefore, the development of the “transfer-free” method is crucial for promoting
the application of graphene, although the transfer process will still play an important role in the
production of graphene devices before the “transfer-free” method becomes mature.

2.2. Graphene Oxide-Based TCEs

Another potential way of producing graphene film on a large scale for TCEs is to deposit GO
sheets on the desired substrate and then reduce them using thermal and chemical methods [45,86,87].
Since GO with hydrophilic properties is easily dispersed in water or other organic solvents, it has
the advantage that GO solutions can be easily made into a large-area film using a liquid-based,
cost-effective method.
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Figure 3. Schematic illustration of (a) the polymer-free transfer process, (b) the roll-to-roll delamination
of copper and graphene onto ethylene-vinyl acetate (EVA)/polyethylene terephthalate (PET) substrate,
and (c) the clean-lifting transfer process of as-grown graphene on copper foil onto a substrate.
Reproduced with the permission of Reference [33,35,81]. Copyright 2014, American Chemical Society.
Copyright 2015, 2013, Wiley-VCH.

In general, GO is synthesized by oxidizing graphite with strong acids, followed by intercalation
and exfoliation in water, which is represented by the Brodie, Staudenmaier, or Hummers method
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(Figure 4a) [88,89]. All three methods involve the oxidation of graphite to various levels [90,91].
The polar oxygen functional groups of GO that are produced by the oxidation process, that is, epoxy
and hydroxyl group on the base plane and carboxyl group at the edge, cause it to be exfoliated and
disperse well in water and other polar solvents with the assistance of ultrasonic agitation. The prepared
GO suspension is then uniformly deposited on an arbitrary substrate while controlling the thickness of
GO films for the subsequent TCE production [42,44]. Methods of coating the GO suspension with a film
include spin coating, spray coating, dip coating, electrophoretic deposition, Langmuir–Blodgett (LB)
assembly, etc. [42,45,92–96]. Spin coating and spray coating are the most convenient ways to deposit a
thin film on a substrate from liquid suspension. In particular, spray coating has been proposed as a
suitable method for production scale, owing to its fast, scalable, and easy operation [92,93]. Dip coating
is also a popular way of coating a GO film on a rigid or flexible substrate, including the immersion of a
substrate into GO suspension, the draining of remaining suspension, and the drying of a substrate [94].
However, it was found to be very hard to avoid the partial aggregation and wrinkling or folding of the
GO sheet during the spray, spin, or dip coating due to the high flexibility of the sheet. Electrophoretic
deposition is performed through the migration of GO sheets in a suspension toward the positive
electrode when a direct current (DC) voltage is applied [95]. Despite the many advantages of this
technique in film preparation, such as high deposition rate, thickness controllability, and convenience
in scaling-up, electrophoretic deposition is limited by the fact that only conductive substrates, such
as ITO-coated glass, Al, Ni, and stainless steel are applicable for TCE fabrication. LB assembly is
a sophisticated method which allows continuous and uniform film to be deposited on an arbitrary
substrate, in which GO sheets floating on water are compressed by LB trough until the desired surface
pressure is reached to realize the uniform deposition of GO sheets [96,97].
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Figure 4. (a) Preparation of graphene by chemical reduction of graphene oxide synthesized by
Hummers’ method. Reproduced with the permission of Reference [98]. Copyright 2012, Royal
Society of Chemistry. (b) SEM images of reduced graphene oxide-P (rGO-P) bilayer film deposited
on undoped Si wafer. (c) High-resolution C 1s spectra of rGO-P bilayer film. (d) Ultraviolet–visible
(UV−vis) transmittance spectra of GP bilayer film (I) and rGO-P bilayer film (II). Reproduced with the
permission of Reference [43]. Copyright 2018, American Chemical Society.
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Since GO thin film is electrically insulating, it is necessary to reduce it using the thermal and
chemical method to recover its conductivity for TCE application. Chemical and thermal reduction
is the most common way of reducing GO thin film [97]. In the chemical reduction process, various
inorganic and organic reducing agents are applied, such as phenyl hydrazine, hydrazine hydrate,
sodium borohydride, ascorbic acid, glucose, hydroxylamine, hydroquinone, pyrrole, amino acids,
strongly alkaline solution, and urea [99,100]. However, the chemical reduction is not sufficient to
completely recover graphene from GO, and it leaves a substantial amount of residual functionality of
epoxy and hydroxyl and carbonyl groups. Thermal reduction by annealing is generally regarded as a
more efficient way to reduce GO than chemical reduction [101,102]. Many researchers have reported
that the conductivity of GO thin film increases with annealing temperature in a vacuum or reducing
atmosphere. In a recent report, rGO thin film exhibited a conductivity of up to 104 S·cm−1 and a
transparency on the level of 90% after annealing at 1100 ◦C under Ar or N gas flow (Figure 3b–d) [43].
However, since most thermal reduction is carried out at high temperature above 1000 ◦C for a relatively
long time, this approach is not applicable for plastic substrates for flexible TCEs. Other methods have
been attempted to reduce GO, such as microwave-assisted heating and the removal of the functional
group using a photocatalyst, such as TiO2 [43,103].

2.3. Chemical Doping of Graphene

Although the graphene films that were prepared using the methods described in Sections 2.1
and 2.2 possess excellent electrical properties and high transparency, their sheet resistance is still too
high for the sheets to be used as TCEs. One approach to reduce the sheet resistance of graphene
film is post- chemical doping of graphene after transferring it to the desired substrate. The chemical
doping of graphene, achieved using chemical species, is classified with surface transfer doping and
substitutional doping [104,105]. Surface doping is achieved by charge transfer between graphene and
a dopant that is absorbed on the surface of graphene. Graphene can be p-type or n-type doped via
chemical doping, depending on the relative position of density of states (DOS) of the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the dopant and the
Fermi level of graphene. If the HOMO of a dopant is above the Fermi level of graphene, hole transfers
take place from the dopant to the graphene, inducing the p-type doping of graphene. If the LUMO of
a dopant is below the Fermi level of graphene, then electron transfer takes place from the dopant to
the graphene, inducing the n-type doping of graphene.

The resistance of graphene is significantly decreased by charge transfer leading to the p-type
doping of graphene when the graphene is exposed to HNO3, NO2, SOBr2, Br2, and I2 [105–108]. Karsy
et al. demonstrated that an eight-stacked layer of graphene which was interlayer-doped with HNO3

exhibited a sheet resistance of 90 Ω·sq−1 at a transmittance of 80% [106]. As described in Figure 5a,
through the layer-by-layer doping of four layers of graphene with HNO3, a sheet resistance of graphene
of 80 Ω·sq−1 was achieved at a transmittance of 90% [108]. Redox dopants, such as AuCl3 and AgNO3,
were also found to lower the sheet resistance of graphene TCEs when graphene was immersed in
AuCl3 or AgNO3 solution and Au3+ was reduced to form Au nanoparticles on graphene by charge
transfer from graphene [109,110]. Surface-adsorbed molecules with electron withdrawing groups can
induce a p-type doping effect in graphene. Tetrafluoro-tetra-cyanoquiondimethane (F4-TCNQ) is a
strong electron acceptor that is widely used to improve the performance of graphene TCEs for various
devices [111–113]. For instance, by using the local density functional theory, Pinto et al. demonstrated
that a charge transfer of 0.3 holes/molecule occurs between graphene and F4-TCNQ, which is in
agreement with the experimental findings on F4-TCNQ [112]. Graphene can be doped with electrons,
that is, n-type doping, via donors such as potassium, ethanol, and ammonia [41,114,115]. Additionally,
polymers with amine groups can be used to produce electron-doped graphene. For example, Jo et al.
demonstrated a stable and strong n-type doping method with pentaethylene hexamine (PEHA), which
reduced the sheet resistance of graphene by up to ~400% compared to pristine graphene [116]. The
dual-side n-doping of graphene with diethylenetriamine (DETA) on the top and amine-functionalized
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self-assembled monolayers (SAMs) at the bottom has been developed to enhance the conductivity of
graphene. This method resulted in a sheet resistance as low as ~86 Ω·sq−1 with a transmittance of
~96% (Figure 5b–e) [41].
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Figure 5. (a) Schematic illustrating the interlayer doping methods. The sample is exposed to nitric
acid after each layer is stacked. (b) Illustration of the graphene band structure, showing the change in
the Fermi level due to chemical p-type doping. Reproduced with the permission of Reference [105].
Copyright 2010, American Chemical Society. (c) Dual-side doped graphene (left) and graphical
representation of the molecular structure of the dopants on the both sides of graphene (right).
(d) Histogram of the sheet resistance of graphene doped by NH2-SAMs, diethylenetriamine (DETA),
and DETA/NH2-SAMs (dual-side doped). (e) Averages and distributions of the sheet resistance plot
of four different types of graphene field-effect transistors (FETs). Reproduced with the permission of
Reference [41]. Copyright 2014, Royal Society of Chemistry.

3. TCEs of Graphene-Related Materials Hybridized with Other Materials

Combining graphene and other conductive materials can overcome the drawbacks of each
individual material. Based on this concept, the hybridization of graphene with various materials,
including metal nanowires, carbon nanotubes, and conductive organic and inorganic materials,
has been attempted to enhance the conductivity and the optical characteristics of TCEs.
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3.1. Hybridization of Graphene with Carbon Nanotubes

CNTs have delivered high axial carrier motilities, making them an obvious choice for use as TCEs.
However, TCE films consisting of CNTs have a spiderweb-like network structure with many voids
between nanotube bundles; the presence of these voids contributes to the high transparency of CNT
films, but restrain the conductance of the films. Meanwhile, CVD graphene presents a fundamental
limitation in transmittance and sheet resistance due to its polycrystalline structure, making it difficult
to compete with ITO.

To overcome these shortcomings of each substance, a composite that is based on polycrystalline
CVD graphene and a subpercolating network of nanowires has been demonstrated, in which nanowires
provide the number of electronic pathways to bridge the percolating bottleneck, such as high resistance
grain boundary, resulting in reduced resistance while maintaining high transmittance [46,47,51,117].
Kim et al. synthesized a graphene hybrid film by growing graphene using thermal chemical vapor
deposition on Cu foil that was coated with single-walled CNTs (SWNTs). The SWNT/graphene hybrid
film exhibited superior TCE properties, with a sheet resistance of 300 Ω·sq−1 and transmittance of
96.4%, as compared to graphene spin-coated with SWCNTs, which had a sheet resistance of 1100 Ω·sq−1

and a transmittance of 96.2%. This is presumably due to the low contact resistance between graphene
and SWNTs in the hybrid film [47]. Another type of CNT/graphene hybrid film, which has been named
as rebar graphene sheets synthesized by annealing the functionalized multi-walled CNT (MWNT) on
Cu foil without an exogenous carbon source, has been reported to have ~95.8% transmittance with
a sheet resistance of ~600 Ω·sq−1 [118]. Kholmavnov et al. also reported that when CVD graphene
is on the top of the MWNT sheet layer (the “G/MWNT” configuration), it significantly modified the
MWNT sheet, giving rise to better electrical and optical properties than the reversed structure of the
“MWNT/G” configuration [119].

There have also been several attempts to form a nanocomposite comprised of carbon nanotubes
and rGO or chemically converted GO (CCG) as shown in Figure 6. The rGO/MWNT double layer was
prepared by the sequential electrostatic adsorption of negatively charged GO and positively charged
MWNTs on the substrate, followed by the reduction of GO in hydrazine solutions and annealing
under an argon atmosphere. The sheet resistance of the rGO/MWNT thin films had the lowest
value of 151 kΩ·sq−1 for a 60 µg/mL concentration of aminated MWNT, with a transparency of
93% at a wavelength of 550 nm [48]. Another approach to combine CCG and CNT is to produce
hybrid suspension of CCG and CNTs (called G-CNT), as reported by Tung et al. [49]. The stable
G-CNT dispersion in hydrazine was readily deposited on a variety of substrates by spin-coating and
subsequently heated to 150 ◦C to remove excess solvents. The G-CNT film had an optical transmittance
of 92% and a sheet resistance of 636 Ω·sq−1, which is two orders of magnitude lower than that of the
analogous vapor-reduced GO film. This vast improvement in sheet resistance for the G-CNT film is
presumably due to the formation of an extended conjugated network with individual CNTs bridging
the gap between graphene sheets.

The method of LB assembly was also employed to deposit GO and SWNT in a layer-by-layer
manner (Figure 6a). Zheng et al. prepared ultra-large GO sheet/SWNT hybrid films using the LB
assembly technique, in which COOH-functionalized SWNTs were crucial for the successful deposition
of SWNT layers [50]. The GO/SWNT hybrid film on the substrate was subsequently thermally reduced
by heating at 1100 ◦C to achieve graphitization. A remarkable transmittance, exceeding 90% at a
wavelength of 550 nm, was delivered by the 0.5–1.5 bilayer hybrid films and decreased gradually
with increasing numbers of bilayers. However, the sheet resistance of the 1.5-bilayer hybrid film was
~600 Ω·sq−1, requiring further improvement by additional acid treatment or doping.
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Figure 6. (a) Flow chart for the synthesis of ultra-large GO (UL-GO)/SWNT hybrid films using
Langmuir–Blodgett (LB) assembly. Reproduced with the permission of Reference [50]. Copyright
2012, Royal Society of Chemistry. (b) SEM images of the graphene oxide multi-walled carbon
nanotubes (GO/MWNT) double on 500 nm SiO2/Si substrates that were pretreated with 10 Mm
3-aminopropyltriethoxysilane. (c) A photograph of a large, transparent rGO/MWNT electrode
fabricated on a 4 in quartz wafer. Reproduced with the permission of Reference [48]. Copyright
2009, American Chemical Society.

3.2. Hybridization of Graphene with Metal Nanostructure

TCEs based on metallic nanostructures, such as metallic nanowires and patterned metal grids,
have attracted much attention due to their promising properties of low sheet resistance, high
optical transparency, and excellent mechanical durability [17,29]. However, when subjected to
conditions of high temperature and current, metallic nanowire networks can experience early failure
rates that are caused by the electromigration process and can be destroyed by chemical surface
reaction [56,120]. TCEs composed of metallic nanowire networks have the limitation of increasing
the electrical conductivity due to the junction resistance between the individual nanowires [121].
Recently, the hybridization of metallic nanostructures and graphene has been devised with the hope
that the graphene will complement these drawbacks of TCE of metallic nanostructures, schematically
described in Figure 7 [3,16,57,122]. Zhu et al. developed a graphene/metal grid hybrid electrode
that was placed onto PET film whose sheet resistance was ~20 Ω·sq−1 at 90% transmittance [123].
The graphene/metal grid hybrid electrode was fabricated by the following sequence. First, metal grids
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were formed on a transparent substrate, such as PET film. Subsequently, a graphene film grown on
Cu foil was transferred to the top of the grid via the wet transfer method and the sacrificial PMMA
layer was removed to form the final graphene/metal grid hybrid transparent electrodes. Additionally,
high-performance dye-sensitized solar cells fabricated using a hybrid TCE of Pt or Ni grids covered
by graphene have been demonstrated, whose efficiencies were comparable to that of the oxide-based
transparent electrode [124]. The superior optical and mechanical properties of these graphene/metal
grid hybrid electrodes compared to conventional TCEs has motivated the study of hybrid electrodes
with various types of graphene and metal nanostructures [60,125].
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Figure 7. (a) Optical transmittance at wavelength of 550 nm (T@550nm) vs. sheet resistance (RS)
for previous experimental reports, including networks of carbon nanotubes, networks of silver
nanowires (AgNW Network and Welded AgNWs), indium tin oxide (ITO), CVD-grown single-layer
polycrystalline graphene (SLG) and graphene/NW hybrid structures with various nanowire densities.
(b,c) illustrate the transport across grain boundaries (GBs) in CVD SLG and hybrid SLG AgNWs
networks, respectively. Low-resistance grain boundaries (LGBs, blue lines) and high-resistance grain
boundaries (HGBs, red lines) are shown. The HGBs dominate the resistance in SLG. In hybrid structures
with appropriate densities of AgNWs, the NWs bridge the HGBs, providing a percolating transport
path for the electrons and therefore lowering the sheet resist. Reproduced with the permission of
Reference [51]. Copyright 2013, Wiley-VCH.

TCEs composed of a random network of metal nanowires, such as silver or copper nanowires, have
the advantage that they can be manufactured in an inexpensive roll-to-roll process while maintaining
the high conductivity of the metal [32,51,53,54]. As shown in Figure 8, a hybrid structure employing
CVD graphene and a network of silver nanowires has shown a very low sheet resistance of 22 Ω·sq−1

at 88% transmittance with excellent stability, and its sheet resistance was stabilized to 13 Ω·sq−1,
even after 4 months [54]. The co-percolating conduction model demonstrates that these superior TCE
properties of hybrid structure of CVD graphene and a network of metal nanowires are due to the fact
that the high-resistance grain boundaries in graphene are bridged by the silver nanowires and the
junction between the nanowires are bridged by graphene, and consequently a low sheet resistance
was possibly accomplished, even at moderate nanowire densities. Furthermore, this hybrid TCE of
graphene and metal nanowires exhibited multiple functionalities, such as robust stability against
electrical breakdown and oxidation and superb flexibility [55,77,126,127]. The hybrid silver nanowire
and graphene electrode showed the ultimate flexibility without experiencing a significant change of
sheet resistance for bending radii of curvature as small as 3.7 µm with a strain of ~27%. Lee et al.
presented an inorganic light-emitting diode (ILED) on a soft contact lens that was fabricated with this
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hybrid metal nanowire and graphene TCE, with the results suggesting a substantial promise for future
flexible and wearable electronics and implantable biosensor devices [77]. Moreover, Metha et al.
fabricated graphene-encapsulated copper nanowires, whose electrical and thermal conductivity
outperformed those of uncoated copper nanowires using a low-temperature plasma-enhanced CVD,
with the results suggesting that graphene-encapsulated copper nanowires can be adopted for TCEs in
air-stable flexible device applications [55]. On the other hand, Deng et al. demonstrated continuous
R2R production of TCEs based on a metal nanowire network that was fully encapsulated between a
graphene monolayer and plastic. This low cost and scalable manufacturing method of graphene/metal
nanowire hybrid TCEs is expected to accelerate its application to various fields in industry [54].
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Figure 8. (a) Schematic and structure of graphene and metal nanowire hybrid films produced by a
continuous roll-to-roll process. (b) The durability of graphene and metal nanowire hybrid transparent
electrodes. Changes in sheet resistance of pure AgNW films and the graphene/AgNW hybrid films
exposed in air at room temperature for 2 months. (c) SEM image of the graphene/AgNW hybrid film
and pure AgNW films exposed in air for two months, revealing that AgNWs without the protection
of graphene were oxidized to break. (d) Changes in sheet resistance of pure AgNW films and the
graphene/AgNW hybrid films under the attack of aqueous Na2S (4 wt.%). (Inset) Morphologies
of AgNWs with or without the graphene coverage attacked for 30 s, respectively. Scale bar: 1 µm.
(e) Variations in sheet resistance of pure AgNW films and graphene/AgNW hybrid films as a function
of the number of cycles of repeated peeling by 3M Scotch tape. (f) Variations in sheet resistance
versus bending radius for the hybrid transparent plastic electrodes and ITO films on 150 µm thick PET.
(g) Variations in sheet resistance of the hybrid transparent plastic electrodes and ITO films on PET as
a function of the number of cycles of repeated bending to a radius of 20 mm. Reproduced with the
permission of Reference [54]. Copyright 2015, American Chemical Society.



Micromachines 2019, 10, 13 14 of 27

3.3. Hybridization of Graphene Oxide with Metal Nanostructure

Hybrid structures of metal nanowires and GO (or rGO) for the production of high-performance
transparent electrodes have developed since the low-cost and large-scalable solution process has made
it possible to deposit GO (or rGO) film on a plastic substrate. Typically, hybrid TCEs of silver or copper
nanowires and GO (or rGO) have been prepared by coating GO (or rGO) onto the silver nanowire film
using the dip, spin, and spray coating method [86].

As mentioned above, the issue of the long-term stability of metal nanowire film makes it difficult to
use in practical TCEs. However, GO (or rGO)-coated silver nanowire films exhibited highly enhanced
long-term stability due to the excellent gas barrier properties of the GO (or rGO) passivation layer on
metal nanowire film [78,127–129]. Ahn et al. reported that the sheet resistance of silver nanowire/rGO
film was slightly increased, by less than 50%, even at 70 ◦C and 70% relative humidity (RH) for
eight days, while the silver nanowire film showed increased sheet resistance, more than 300% [126].
Additionally, it has been shown that hydrophilic GO nanosheet can be used as a novel adhesive
overcoating layer on hydrophilic silver nanowire/PET film that tightly holds the silver nanowires and
reduces the sheet resistance in Figure 9 [128,130]. This GO/silver nanowire hybrid TCE also exhibited
excellent bendability, showing an almost constant sheet resistance through over 10,000 bending cycles
with a ~2 mm curvature radius.
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Figure 9. (a) Schematic illustration of the fabrication of a GO-AgNW network on a glass substrate
at room temperature. (b) Optical photograph of a AgNW network bar-coated on a drawdown
machine. SEM images of (c) GO-soldered AgNW junctions (indicated by red arrows) and (d) typical
high-temperature fused AgNW junctions. (e) Measured sheet resistance of a GO-AgNW network as a
function of the soaking time in a GO solution. (f) Transmittance spectra of GO-AgNW networks with
three different AgNW densities (D1, D2, and D3). Reproduced with the permission of Reference [130].
Copyright 2014, American Chemical Society.

It has also been reported that a high-quality copper/rGO core/shell nanowire could be obtained
by wrapping the GOover the surface of the copper nanowire and subsequent mild thermal annealing.
These ultrathin core-shell nanowires produced high-performance TCEs with excellent optical and
electrical properties, that is, with a sheet resistance of ~28 Ω·sq−1 and a haze of ~2% at a transmittance
of ~90%, as reported by Duo et al. [131]. It has also been demonstrated that a film composed of
rGO assembled onto copper nanowire film has improved electrical conductivity, oxidation resistance,
substrate adhesion, and stability in harsh environments [132]. In particular, an electrochromic device
employing the rGO/copper nanowire hybrid TCEs showed reversible coloration/bleaching properties,
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which cannot be obtained using pure copper nanowire TCEs, since these nanowires form copper
hexacyanoferrate compounds during the electrochemical bleaching process, while the rGO protects
the copper nanowire from reacting with the harsh solution used for the deposition of electrochromic
material [133].

3.4. Hybridization of Graphene with Conducting Polymer

PEDOT:PSS/graphene composite has been fabricated using various methods to give improved
performance in chemical and electrical properties [31,58–60,134].

Jo et al. produced a stable aqueous suspension of rGO nanosheet through the chemical reduction
of GO in the presence of PEDOT:PSS [59]. The resultant rGO/PEDOT:PSS suspension yielded a
hybrid TCE film with a high conductivity of 2.3 Ω·sq−1 with a transmission of 80%. An easy, low cost
mass production of PEDOT:PSS/graphene composite has also been developed through the in situ
polymerization of PEDOT in the presence of rGO and high-molecular PSS [31]. Since the rGO was used,
no additional reduction processes of graphene were required. Liu et al. employed electrochemically
exfoliated graphene to prepare the hybrid ink of PEDOT:PSS and graphene, since the electrochemical
exfoliation of graphite produces high-quality graphene at a bulk scale (Figure 10) [58]. In order to
disperse exfoliated graphene at higher concentrations, PH1000 (Heraeus Clevious, USA) was selected
as a surfactant due to its conjugated aromatic chains that can strongly anchor onto the graphene surface
via π–π interactions. Subsequently, the TCE films were prepared by the spray-coating method, and
their sheet resistance was measured to be 500 Ω·sq−1 at a transmission of 80% after applying 100 cycles
of spray-coating.Micromachines 2018, 9, x FOR PEER REVIEW  16 of 27 
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Figure 10. (a) Digital image of EG/PH1000 hybrid ink; molecular structures of EG and PH1000.
(b) Schematic illustration of spray-coating an EG/PH1000 hybrid ink onto desired substrates. (c)
Transmittance spectrum of both EG/PH1000 hybrid films and ITO on PET substrates. Inset shows the
optical images of the EG/PH1000 hybrid films on PET substrates with 90% and 80% transmittance,
respectively. (d) SEM image of spray-coated EG/PH1000 hybrid film. Reproduced with the permission
of Reference [58]. Copyright 2015, Wiley-VCH.
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On the other hand, graphene/PEDOT:PSS bilayers have been utilized for the purpose of using
PEDOT:PSS as a new supporting layer for the transfer of CVD graphene film without a removal
process [124]. An important advantage of this approach is that PEDOT:PSS acts as an effective dopant
for CVD graphene film, which exhibits a sheet resistance of 80 ± 4 Ω·sq−1 with excellent stability in
air. This graphene/PEDOT:PSS bilayer exhibited a high transparency, with a transparency decrease of
only 1% being caused by adding a PEDOT:PSS layer.

3.5. Hybridization of Graphene with Oxide

There are not many reports on the fabrication of hybrid metal oxide/graphene TCEs when
compared to hybrids using organic materials or nanomaterials with graphene.

Transparent conductive oxides, such as ITO and aluminum-doped zinc oxide (AZO), are widely
used in electrodes, however the rigidity of these materials has limited their use as flexible electrodes.
There have been attempts to improve the mechanical properties of ITO by fabricating a hybrid electrode
using graphene and ITO [61,62]. Liu et al. demonstrated that the graphene/ITO hybrid electrodes
showed a resistance change (∆R/R0) of 17.78 after 20% tensile strain; meanwhile, the (non-hybrid) ITO
electrode showed a resistance change of 125.91. When the bending radius was 0.1 cm, the resistance
change of the ITO electrode fell to ~115.51, while that of the graphene/ITO hybrid electrode fell to
~11.65. These results showed the benefits of the graphene/ITO hybrid electrode over the ITO electrode
in terms of mechanical flexibility [61]. Another approach for the hybridization of graphene with ITO
was the uniform dispersal of ITO nanoparticles with a size of 25–35 nm on CVD graphene, which is
synthesized by the immersion of graphene into aqueous ITO sol-gel. The ITO nanoparticle-decorated
graphene exhibited a decrease in sheet resistance of about 28.2% relative to that of CVD graphene,
owing to the electron doping of graphene that is induced by the ITO nanoparticles [62].

As shown in Figure 11, a multilayered electrode in which graphene is sandwiched between metal
oxide has been demonstrated to have high electrical stability and optical transparency [69]. Since
the coating of graphene with metal oxide prevents the desorption of chemical dopants, graphene
that is coated with a 60-nm-thick layer of WO3 showed a lower resistance and slower degradation
rate than pristine graphene. Furthermore, the optical transmittance of this WO3-coated graphene
could be enhanced with the addition of a metal oxide layer between the graphene and the glass,
which satisfies the zero reflection condition. As a result, the optimal multilayered structure of TiO2

(62 nm)/graphene (3 layers)/WO3 (60 nm) on glass showed a transmittance of ~90%, which is same as
the highest transmittance of glass/ITO.
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Figure 11. (a) Photographs of ITO, graphene, TiO2/graphene/WO3 of 3–5 graphene layers. The
Finite-Difference Time-Domain (FDTD) simulation. Calculated Poynting vector magnitude of OLEDs
(λ = 520 nm) on (b) 3 layers graphene (G) and (c) TiO2/3 layers graphene/WO3 electrodes by
FDTD method. Reproduced with the permission of Reference [69]. Copyright 2016, American
Chemical Society.



Micromachines 2019, 10, 13 17 of 27

4. Application of Graphene-Based TCEs

The excellent performance of various graphene-based TCEs give graphene a realistic chance of
becoming competitive in the production of transparent and bendable device technologies. In particular,
the combination of high chemical and thermal stability, high stretchability, and low contact resistance
with organic materials offers tremendous advantages for using graphene for TCEs in organic electronic
devices, such as solar cells, OLEDs, touch screens, field effect transistors, sensors, and electrochromic
devices [70,135].

4.1. Solar Cells

A low-cost, exfoliated graphene oxide followed by thermal reduction was first studied for
application as window electrodes in solid-state dye-sensitized solar cell [45]. Eda et al. utilized reduced
and doped GO thin films as the cathode in optovoltaics (OPVs), which were fabricated by spin coating
a layer of PEDOT:PSS on top of a rGO film and subsequently depositing a poly(3-hexylithiophene)
(P3HT) and phenyl-C61-bytyric acid methyl ester (PCBM) nanocomposite layer [136]. Additionally, a
rGO film with 1100ºC thermal annealing has been utilized as an anode in a dye-sensitized solid solar
cell based on spiro-OMeTAD and porous TiO2, however the short-circuit photocurrent density (Isc)
and efficiency of the graphene-based cell was somewhat lower when compared to an fluorine-doped
tin oxide (FTO)-based cell, possibly due to the series resistance of the device, the relatively lower
transmittance of the electrode, and the electronic interfacial change.

Subsequently, an organic solar cell fabricated with TCEs based on CVD graphene with a low sheet
resistance has demonstrated excellent performance with an enhanced power conversion efficiency
(PCE) [33,137]. Since CVD graphene offers high conductivity when compared to rGO, it offers a great
advantage for the fabrication of OPV devices. A multilayer graphene (MLG) film with a relatively
low sheet resistance of 374 Ω·sq−1 at 84.2% transparency was obtained, and the MLG) film-based
solar cell with a P3HT:PCBM blend as the active layer exhibited a PCE of 1.17% [137]. An inverted
structural solar cell with AZO at the bottom as cathodes, molybdenum-oxide/graphene on top as
anode, and P3HT:PCBM as an active layer exhibited a PCE of 2.2%.

Various hybrid TCEs using graphene and a highly conductive material have been employed
as a window electrode in the fabrication of OPVs [49,55,60,127,134]. Lee et al. reported that a CVD
graphene/PEDOT:PSS bilayer could provide the highest PCE of 5.5% and a fill factor (FF) of 0.67,
which is even higher than what is obtainable with the best ITO device (Figure 12) [60]. Additionally,
rGO-coated silver nanowire film with excellent thermal and chemical stabilities has been used for
the anode layers in bulk heterojunction polymer solar cell [127]. Under illumination, this showed an
open-circuit voltage (Voc) of 0.49 V, a short-circuit current density (Jsc) of 6.38 mA·cm−2, and an FF of
32.91, resulting in a PEC of 1.03%. Furthermore, a solution-based nanocomposite that is comprised of
chemically converted graphene and carbon nanotubes has been used as a platform for the fabrication
of P3HT:PCBM photovoltaic (PV) devices. After spin-coating a mixture of graphene and CNT, a thin
buffer layer of PEDOT:PSS and P3HT:PCBM with a 1:1 weight ratio was coated on glass [49]. Finally,
the Al and Ca were evaporated as the reflective cathode. For these PV devices, a PCE of 0.85% was
measured under an illumination of AM 1.5 G and the values of Jsc, Voc, and FF were 3.47 mA·cm−2,
0.583 V, and 42.1%, respectively. These relatively low values of Jsc and FF, which are detrimental to PCE,
were likely due to poor contact at the interface between the graphene/CNT composite and polymer.
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Figure 12. (a) Schematic illustrating the structure and corresponding energy-level diagram of the
fabricated conventional structure perovskite solar cells (PSC). For some of the devices, an additional
PEDOT:PSS layer (AI 4083, 30 nm) was used with the doping transfer-graphene (DT-GR)/P electrode.
(b) The current density-voltage (J–V) characteristics of the best inverted structure PSCs with the
conventional transfer (CT)-GR (red line) and the DT-GR/P (blue line) electrodes. The inset represents
the device structure of the inverted PSCs. Reproduced with the permission of Reference [60]. Copyright
2014, Wiley-VCH.

4.2. Organic Light-Emitting Diodes (OLEDs)

At first, a basic OLED structure of anode/PEDOT:PSS/N,N′-di-1-naphthyl-N,N′-diphenyl-1,1′-
biphenyl-4,4′diamine (NPD)/tris(8-hydroxyquinoline) aluminum (Alq3)/LiF/Al was adopted to
investigate the performance when a graphene film was used as the transparent electrode [26]. The
graphene electrodes were deposited on quartz slides by spin-coating water-based dispersion of
functionalized graphene and reduced by high-temperature vacuum annealing; the sheet resistance
of the electrodes was ~800 Ω·sq−1 at a transmittance of 82% at 550 nm. An OLED with graphene
anode exhibited a turn-on voltage of 4.5 V and it reached a luminance of 300 cd·m−2 at 11.7 V, which
is slightly higher than the values for ITO. A sky-blue phosphorescent OLED with multilayered CVD
graphene anode, consisting of graphene (2–3 nm)/1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC)
(30 nm)/ 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN)(10 nm)/TAPC(30 nm)/HAT-CN
(10 nm)/TAPC(30nm)/4,40,400-tri(N-carbazolyl)triphenylamine:iridium(III)bis[(4,6-difluorophenyl)–
pyridinato-N,C20] picolinate (TCTA:FIrpic)(5 nm)/2,6-bis[30-(N-carbazole)phenyl] pyridine:iridium
(III) bis[(4,6-difluorophenyl)-pyridinato-N,C20] picolinate (DCzPPy:FIrpic) (5 nm)/1,3-bis(3,5-dipyrid-
3-yl-phenyl)benzene(BmPyPB) (40 nm)/lithium fluoride (LiF) (1 nm)/aluminum (Al) (100 nm), showed
an electron quantum efficiency (EQE) of 15.6% and a power efficiency (PE) of 24.1 lm/W, comparable
to the EQE of 18.5% and PE of 28.5 lm/W obtained with an ITO-based OLED [34].

Flexible OLEDs that were fabricated with graphene-based anode shown in Figure 13 have also
been demonstrated in several recent reports [70,130,137,138]. A hybrid graphene/silver nanowire/
polymer electrode prepared on PET provided not only stable resistance against air exposure, but also
superior flexibility with the bending cycles [138]. The optimal OLED device based on a hybrid
graphene/silver nanowire/polymer electrode presented the best performance due to its higher
conductivity and light transmittance [130]. A GO-soldered silver nanowire network was also provided
as an anode of the fully stretchable polymer light-emitting diode (PLED) with the help of GO solder,
which improves the stretchability of the silver nanowire network.
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of Reference [139]. Copyright 2016, Nature Publishing Group.

4.3. Electrochromic Devices

Electrochromic devices are widely used in display devices, including smart windows and mirrors,
for improving indoor energy efficiency or personal visual comfort.

Recently, rigid electrochromic devices have advanced, and they now offer flexibility, stretchability,
and foldability for deformable devices (Figure 14) [119,133,140,141]. Polat et al. demonstrated a
flexible electrochromic device using multilayer graphene, which offers key requirements for practical
application, that is, high-contrast optical modulation over a broad spectrum and good electrical
conductivity and mechanical flexibility [141]. They showed that the optical transmittance of MLG
can be controlled by electrostatic doping via the reversible intercalation of charges into the graphene
layers, making it possible to fabricate reflective/transmissive multipixel electrochromic devices.
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Figure 14. (a) Exploded-view illustration of the graphene electrochromic device. The device is formed
by attaching two graphene coated polyvinyl chloride (PVC) substrates face to face and imposing
ionic liquid in the gap separating the graphene electrodes. (b,c), Photographs of the devices under
applied bias voltages of 0 V and 5 V, respectively. Reproduced with the permission of Reference [140].
Copyright 2014, Nature Publishing Group.

Smart windows that are based on electrochromic devices were demonstrated by Kim et al.,
who investigated the electrochemical and electrical characteristics of the PEDOT:PSS polymer-based
electrochromic devices s of the different number of graphene layers used as electrodes [142]. The four-
layered graphene electrode showed the best electrochemical behaviors, with a fast optical change
response of less than 1 s from the dark to the transparent state and 500 ms from the transparent to the
dark state and a low bias of ± 2.5 V for the maximum contrast ratio.
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4.4. Transparent Heaters

High performance, transparent, and flexible heaters have been fabricated using graphene-based
electrothermal films that are suitable for automobile defogging or deicing systems and heatable smart
windows, as shown in Figure 15 [128,143,144]. A multiple-stacked CVD graphene film on PET, being
interlayer-doped with AuCl3-CH3NO2 and HNO3 to obtain a low sheet resistance, was provided
for flexible heaters, and it was mechanically stable after bending 1000 times with 1.1% strain [142].
Additionally, GO film spin-coated on quartz or polyimide (PI) has also exhibited high transparency
and good heating effects.
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Figure 15. (a) A schematic structure of a transparent, flexible graphene heater combined with a plastic
substrate and Cu electrodes. (b) An optical image of the assembled graphene-based heater showing its
outstanding flexibility. (c) An infrared picture of the assembled graphene-based heater while applying
an input voltage under bending condition. Reproduced with the permission of Reference [143].
Copyright 2011, American Chemical Society.

A new strategy of reduced large-size graphene oxide (rLGO)/silver nanowirehybrid film has
been reported to design high-performance transparent film heaters. The thin rLGO provided a
protective effect for the silver nanowire network against oxidation as well as the low sheet resistance
of rLGO [128].

5. Summary and Conclusions

New TCE materials, including carbon nanotubes, metal grids and nanowires, conductive
polymers, and recently graphene, have appeared over the past decades in many fields of application.

In particular, these new materials offer prospective advantages of flexibility, bendability, and even
stretchability, enabling them to be applied as TCEs in wearable optoelectronic devices and displays.
Among them, graphene has attracted special attention due to its superior electrical conductivity and
optical transmission when compared to other TCE materials. Additionally, the excellent moisture
barrier and mechanical flexibility of graphene allows it to be hybridized with other TCE materials to
further improve the properties of TCE films.
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In the past decades, a number of methods for synthesizing high-quality graphene at low cost have
been extensively studied, and the development of a large-area synthesis and transfer method using a
roll-to-roll process has been a viable step in the practical application of graphene TCEs. Despite the
tremendous advances in the graphene synthesis process and quality improvement, TCE films that are
based on graphene still have issues that need to be improved, such as poor adhesion to substrates,
low abrasion, and poor electrical conductivity as compared to conventional ITO.
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