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Abstract: Therapeutic response is evaluated using the diameter of tumors and quantitative parameters
of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response
to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional
chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy.
Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets
of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well
as immune cells in the tumor microenvironment, which differs among patients according to the
individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole.
On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does
not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering
tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with
quantitative features of multimodal images and deep learning algorithm with reference to pathologic
and genetic data has the potential to improve response assessment for emerging cancer therapy.

Keywords: FDG-PET/CT; cancer stem cell; tumor microenvironment; immunotherapy; therapeutic
evaluation; artificial intelligence; radiomics; theranostics

1. Introduction

Positron emission tomography (PET) has become an indispensable procedure for the initial
assessment and post-therapeutic evaluation in clinical oncology, using dedicated radiopharmaceuticals
targeting cellular metabolism and tumor-specific receptors [1]. PET as a means of molecular-based
imaging is able to characterize biological processes associated with disease progression and therapeutic
response quantitatively at the cellular and molecular levels. The outcome of a therapy cannot be
interpreted properly without a surrogate biomarker to assess the efficacy of every therapeutic modality.

Therapeutic response is objectively evaluable by means of imaging. Conventional response
evaluation criteria use morphological parameters; on the other hand, 2-[18F] fluoro-2-deoxy-d-glucose
(FDG)-PET-based criteria use metabolic parameters. Histological response to anti-cancer therapy
depends on the therapeutic modalities; cancer immunotherapy shows the distinctive phenomenon of
immune-related tumor responses. Emerging observational data of immune-related response patterns
have determined modification of the conventional response criteria. The current approaches to
anti-cancer therapy target the tumor microenvironment as well as anti-tumor immunity.

In this review, we summarize the current understanding of the tumor microenvironment, focusing
on metabolism, cancer stem cells, chemokine receptors, and immune mechanisms, all of which are
targets of therapy. Molecular imaging may have promise to address therapeutic response and toxicity
evaluation to provide useful information for the benefit of novel anti-cancer therapy. PET in the
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assessment of individual therapeutic effectiveness plays a definitive role in personalized therapeutic
strategies within the framework of precision medicine.

2. Glucose Metabolism of Cancer and FDG-PET

It has been appreciated for nearly 100 years that cancer cells are metabolically distinct from other
cells. All cells fundamentally require nutrients to meet metabolic demands for energy generation and
biosynthesis. Metabolic demands of cell proliferation, differentiation, and biosynthesis of proteins,
lipids, and nucleotides are different in tumor cells.

Elevated glucose uptake and cellular metabolism were thought to be the biochemical characteristics
of cancer [2]. FDG-PET could disclose a high glycolytic rate and pyruvate oxidation in the mitochondria,
depending on the cell proliferation. These altered metabolisms, including metabolic switch from
aerobic to anaerobic glycolysis, are known as the Warburg effect [3,4]. The function of the Warburg
effect has been simply understood as a metabolic switch, but a breakthrough to explain the Warburg
effect regarding cancer metabolism in vivo has taken place recently [5–8].

Tumor hypoxia is known to be the most important factor to account for biological aggressiveness
and resistance to chemotherapy and radiotherapy through the expression of multidrug resistance
1 (MDR1) and cell cycle arrest [8,9]. Accelerated proliferation and metabolism of cancer cells lead
to an imbalance in the form of insufficient oxygen supply in relation to oxygen demand in solid
tumors [10,11]. Anti-neoplastic drugs and ionizing radiation have effects on oxygen to generate reactive
oxygen species (ROS) in cancer cells, causing oxidative stress, which results in apoptosis. However,
cancer cells can survive in the hypoxic area, which is usually seen at 100 µm from tumor vessels, because
of the decreased generation of ROS [12]. In the area of hypoxia, a transcription factor, hypoxia-inducible
factor 1 (HIF-1), is activated to induce the expression of various genes responsible for adaption to
hypoxic metabolism from oxidative phosphorylation to glycolytic ATP production, explained by
the Warburg effect, as mentioned above [13,14], invasion and metastases of cancer cells through
the formation of pre-metabolic niche and epithelial–mesenchymal transition (EMT) to escape from
hypoxia [15,16], increased erythropoiesis through upregulation of erythropoietin, and angiogenesis to
reoxygenation of hypoxic area [17]. An α-subunit of HIF-1 (HIF-1α) induces expression of glucose
transporter 1 and glycolytic enzymes to increase glucose uptake and anaerobic glycolysis to compensate
for ATP production [18,19]. FDG-PET can therefore evaluate tumor aggressiveness and resistance
to chemotherapy and radiotherapy by detecting increased glucose metabolism and is a possible
therapeutic marker to monitor responses.

3. Quantitative Parameters for Response Evaluation with PET

The ability to obtain quantitative information with tracer uptake in the tumor would be relevant
for the evaluation of therapy monitoring with PET. Utility of quantitative value depends on the tracer
used for the PET study. Uptake and retention of the tracers are greatly varied depending on the
interaction between biochemical properties of tracers and biological characteristics of cancer cells,
such as avidity, specificity, and intracellular metabolism as well as the specific activity of the tracer.
The widely used PET tracer is FDG. Uptake of FDG depends on the glucose metabolism characterized
by the increased expression of glucose transporters and glycolytic enzymes whose proportions are
excessive to oxidize pyruvate in the tumor.

Initial uptake and time-series changes after therapeutic intervention vary greatly. Standardized
uptake value (SUV) is a normalized measure of radiotracer uptake, defined as the ratio of the
radioactivity concentration in a defined region (MBq/mL) to the injected radioactivity that is corrected
for total body mass (MBq/g). The maximal values of SUV, expressed as SUVmax and SUVpeak,
are used for evaluating tumor aggressiveness and as prognostic markers of the tumor [20–26]. SUV is a
standard measure in FDG-PET which is representative of tumor viability and aggressiveness. Although
controversy about SUVmax has been shown regarding its accuracy and reproducibility, use of SUVmax
or other measurements may depend on the purpose of the study and other clinical situations. SUVmax
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is thought to be a mean value of approximately 3 mm cubic voxel in the region of interest (ROI);
it contains approximately 107 cells [27]. SUVmax is then an averaged value of the tracer uptake in
sufficient numbers of cancer cells and other cells in the most metabolically aggressive part of the
potentially heterogeneous tumor.

SUVpeak is determined by averaging the image data within a 12 mm-diameter spheric ROI that
is positioned within the tumor so as to maximize the enclosed average. Therefore, SUVmax is less
susceptible to partial volume effects than other indices. SUV is typically normalized to total body mass;
however, because there is little accumulation of FDG in white adipose tissue (WAT) in the fasting state,
obese participants tend to have higher SUV in the organs except WAT. On the contrary, SUV of the
target tissue in lean patients will be lower than that in heavier patients. Therefore, normalized SUV
using the lean body mass (SUVlean) instead of total body mass (SUV) has been proposed [28].

Total lesion glycolysis (TLG) and metabolic tumor volume (MTV) are more complicated values
that reflect both tracer uptake and the volume of the tumor. They have been recognized as useful
indictors for various tumors; however, these values depend on the tumor volume as well as the selected
threshold value of SUV and are mainly used for evaluating therapeutic response [29–33]. A recent
meta-analysis showed that TLG and MTV were better predictors of treatment outcomes than SUVmax
and SUVmean in lung cancer [34].

4. Therapeutic Monitoring with FDG-PET

Therapeutic response was originally evaluated by the post-therapeutic changes in the
unidimensional longest diameter measured by conventional imaging, such as computed tomography
(CT), that was fundamentally followed by the revised criteria in 2009 (Table 1) [35]. PET/CT-based
response evaluation criteria have been shown to be relevant in cases with patients undergoing
chemotherapy and especially in cases with molecular-targeted therapy. There are currently two sets of
criteria available for response evaluation: the criteria developed by the European Organization for
Research and Treatment of Cancer (EORTC) and PET Response Criteria in Solid Tumors (PERCIST)
(Table 1) [36,37].
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Table 1. Conventional/Immune-Related Tumor Response Evaluation Criteria and 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) Response
Evaluation Criteria.

Conventional and Immune-Related Tumor Response Criteria

Criteria Measurement CR PR PD Confirmation of PD New Lesion

RECIST 1.1
(2009)

Unidimensional
(LD for non-nodal

lesions; LPD for LN)

Disappearance of all
target lesions

<10 mm for any
pathological LN

≥30% reduction ≥20% and ≥5 mm increase,
new lesion, or nontarget PD Not required Defines PD

irRECIST (2013)
Unidimensional

(LD for non-nodal
lesions; LPD for LN)

Disappearance of all
target lesions ≥30% reduction ≥20% and ≥5 mm increase,

new lesion, or nontarget PD

Required on
consecutive studies at

least 4 weeks apart

Does not define PD;
measurements of new lesions

included in the total
tumor burden

iRECIST (2017)
Unidimensional

(LD for non-nodal
lesions; LPD for LN)

Disappearance of all
target lesions ≥30% reduction ≥20% and ≥5 mm increase,

new lesion, or nontarget PD

Required at the next
assessment

4–8 weeks later

Defines unconfirmed PD;
confirms PD if additional new
lesions or size increase (=5 mm

for the sum of new target or
any increase in new nontarget

lesions) are noted on the
next assessment

FDG-PET Response Evaluation Criteria

Criteria Measurement CMR PMR PMD Confirmation of
PMD New Lesion

EORTC (2000) SUVmax
Complete resolution

of FDG uptake in
all lesions

> 25% reduction in
the sum of SUVmax
after more than one
cycle of treatment

> 25% increase in the sum of
SUVmax or appearance of

new lesions
Not required Defines PD

PERCIST (2009) SUVpeak
Complete resolution

of FDG uptake in
all lesions

≥ 30% reduction of
the peak lean body

mass SUV (SULpeak)
and an absolute drop
of 0.8 SULpeak units

> 30% increase in the SULpeak
and an absolute increase of 0.8

SULpeak, or appearance of
new lesions

Not required Defines PD

RECIST: response evaluation criteria in solid tumors; irRECIST: immune-related RECIST; iRECIST: immune RECIST; EORTC: the European Organization for Research and Treatment of
Cancer; PERCIST: PET Response Criteria in Solid Tumors; LD: longest diameter; LPD: longest perpendicular diameter; LN: lymph nodes; SUVmax: maximum standardized uptake value;
SUVpeak: peak standardized uptake value; SULpeak: peak lean body mass standardized uptake value; CR: complete response; PR: partial response; PD: progressive disease; CMR:
complete metabolic response; PMR: partial metabolic response; PMD: progressive metabolic disease.
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Therapeutic response evaluated with FDG-PET varied according to the therapeutic modalities and
drugs. In the case of antineoplastic drug therapy, conventional chemotherapeutic agents, molecular
targeted drugs, and immune checkpoint inhibitors have specific changes in FDG uptake which depend
on the metabolic alteration of glucose after treatments. Metabolic changes occur in advance of volume
reduction in molecular targeted therapy. An initial preliminary study suggested the usefulness of
FDG-PET for the early prediction of gefitinib efficacy for the treatment of non-small cell lung cancer
(NSCLC). The response to gefitinib may be predicted by the 60% metabolic decrease as early as two
days after initiation of the treatment [38]. This knowledge reminded us of the need for relevant
response evaluation methods [39,40].

Immune checkpoint inhibitors have experienced a breakthrough in the treatment outcome in
cancer patients through the ability of the host immune system to eradicate malignant cells with
limited systemic toxicity. Treatments with immune checkpoint inhibitors include antibodies against
the cytotoxic T-lymphocyte associated protein 4 (CTLA-4), the programmed cell death receptor 1
(PD-1), or its ligand (PD-L1). For example, anti-PD-1 antibody is effective for many types of cancer
including NSCLC [41]. Although their efficacy is outstanding even for patients with chemotherapy
resistance, an established biomarker for predicting therapeutic efficacy is still underway, because the
interaction between tumor cells and host immune cells that play various roles in anti-tumor immunity
is complicated. This suggests that FDG-PET may reflect therapeutic efficacy by the immune checkpoint
inhibitors, considering the results of a recent study that indicated that FDG uptake after administration
of nivolumab was an independent prognostic factor, and PD-L1 expression or plasma concentration of
nivolumab was not a predictor of early therapeutic efficacy [42]. FDG-PET is supposed to be useful
for monitoring early response to anti-PD-1 antibody, and several reports in the literature show the
value of monitoring the anti-tumor efficacy of immune-checkpoint inhibitors; however, optimal timing
to evaluate efficacy remains to be addressed [43,44]. Increased clinical use of immune checkpoint
inhibitors determined the necessity of creating appropriate evaluation criteria using FDG-PET.

5. Machine Learning for Imaging Cancer Heterogeneity and Interpretation

Figure 1 shows FDG-PET/CT images of a patient with NSCLC. Two foci of increased nodular
FDG uptake are seen in the upper lobe of the right lung and the upper mediastinum on the left side.
These lesions show SUVmax of 7.2 and 4.8, respectively. Do these images provide the radiologist
with sufficient information for correct interpretation? Radiologists cannot diagnose correctly without
additional information about clinical history, because every radiologist knows that the most common
sites of metastasis of lung cancer are ipsilateral hilar and mediastinal lymph nodes and that metastasis
to the contralateral mediastinal lymph node usually occurs after ipsilateral mediastinal lymph nodes
metastases [45]. Information about past history of left lung cancer with T3N1M0, stage IIIA, for which
left upper lobe segmentectomy and lymph node dissection was performed 2 years before, is a clue
for correct diagnosis. The patient had undergone surgery followed by chemotherapy on the basis
of correct diagnosis. How accurately can FDG-PET images estimate the efficacy of chemotherapy
and prognosis of this patient? Do quantitative parameters help to predict response to chemotherapy
and prognosis?

Considering the heterogeneity of tumor tissue, more sophisticated indexes surpassing SUV and
other parameters as well as diagnostic algorithms are needed to accurately classify the tumor on the
basis of biological malignancy, effectiveness of various types of therapy, and prognosis of patients.
Recent advancements in computer science and artificial intelligence (AI) have shown the possibility
for machine learning systems to take on the practice of radiology, which was previously thought
to be limited to human radiologists. AI including machine learning technologies has the potential
to transform radiological imaging by using the vast amount of clinical data including pathologic
and genetic examinations to automate the integrated diagnostic radiology workflow and diagnosis.
Machine learning algorithms, such as random forests, support vector machines, and artificial neural
networks, have been used for classification of images by training with input data set and knowledge,
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and then the best model is applied for the prediction of pathophysiology. Due to deep learning and
convolutional neural networks (CNN), the capability to learn and master given tasks to perform
computer-aided diagnosis (CAD) has made remarkable advances in clinical radiology in the past
decade [46,47]. Wang et al. have suggested that the performance of CNN from FDG PET/CT images
is comparable to the best classical machine learning and human radiologists and that CNN is more
convenient and objective than the classical methods, because it does not need tumor segmentation,
feature selection, or texture features for classifying mediastinal lymph node metastasis in patients
with NSCLC [46]. They also suggested that the performance of the CNN would be improved by
incorporating diagnostic features like SUV and tumor size [46]. For example, in mediastinal lymph
node metastasis in patients with NSCLC, accurate diagnosis is a challenge, as indicated in Figure 1;
however, lymph node metastasis evaluated by FDG uptake has been reported to be prognostic as
compared with pathological lymph node metastasis [48]. Therefore, diagnosis of lymph node status
during diagnostic work up is of the utmost importance.Biomedicines 2020, 8, x FOR PEER REVIEW 

 
Figure 1. 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) of patients with non-small cell lung cancer. (a) Maximum 
intense projection image shows abnormal FDG uptake in the left upper mediastinum (arrow) and the right lung (arrowhead). (b) PET/CT shows increased FDG uptake in 
the lymph node adjacent to the left subclavian artery at the level of the upper mediastinum (arrow). (c) High FDG uptake is seen in the nodule at the right upper lobe 
(arrow head). 

Figure 1. 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography
(FDG-PET/CT) of patients with non-small cell lung cancer. (a) Maximum intense projection image
shows abnormal FDG uptake in the left upper mediastinum (arrow) and the right lung (arrowhead).
(b) PET/CT shows increased FDG uptake in the lymph node adjacent to the left subclavian artery at the
level of the upper mediastinum (arrow). (c) High FDG uptake is seen in the nodule at the right upper
lobe (arrow head).

Machine learning is already being applied in the practice of radiology, including in the field of
mammography. There have been many papers describing a performance level in lesion detection similar
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to that of experienced radiologists [49–51]. CAD was approved by the Food and Drug Administration
(FDA) and has been used for mammography in radiology practices [52]; however, improvement of the
diagnostic ability has not been satisfactory, and the majority of radiologists have rarely changed their
reports as a result of findings generated by CAD [53–55]. Machine learning has been reported to be
unlikely to replace radiologists but will provide quantitative tools to increase the value of imaging
as a biomarker including therapeutic response evaluation [56]. Recently, radiology professionals
have reminded that AI algorithms must be as safe and effective as the physician by rigorous testing,
longitudinal surveillance, and investigation of oversight mechanisms to ensure generalizability across
patients as well as variable imaging and imaging protocols [57]. However, radiologists cannot disregard
autonomous radiology AI, because AI can tirelessly improve the image reading capacity and may
drastically acquire interpretation capabilities if AI can incorporate available medical information and
contextual integration of data that would typically be identified during physician interpretation in
order to render a medical judgement.

On the basis of considering tumor heterogeneity, texture analysis has been explored, especially in
the field of nuclear medicine [58–61]. The most exciting part of machine learning in medical imaging
would be to extract patterns that are beyond human perception and classification due to the application
of deep learning for diagnostic algorithms [62,63]. Radiologists should seek to work alongside AI in
the future.

6. Radiomics for Diagnosis and Assessment of Current Therapy

Radiomics is a quantitative image analysis method that aims to correlate large-scale imaging
data to clinical and biological endpoints [64]. The radiomics approach combines quantitative imaging
features, called “radiomic features”, about size, shape, intensity, and texture with a machine learning
algorithm to automatically contour the tumor lesion and diagnose qualitatively [58,65,66]. Machine and
deep learning-based models have the potential to improve diagnosis, staging, and response assessment
towards translation for more personalized treatment in oncology. For example, a study on radiomic
features from FDG-PET and contrast enhanced CT features correlated with 18F-FMISO tumor-to-blood
ratio detected the presence of hypoxia in head and neck cancer and provided a potential biomarker
useful to microenvironment-oriented personalized treatment [67]. Associations between radiomic
phenotype and gene expression were found in a variety of cancers [68–71]. In patients with lung
adenocarcinoma, prediction of epidermal growth factor receptor (EGFR) mutation status by CT-based
radiomic features has been reported, and another study revealed that the combination of CT imaging
parameters and clinical features could provide diagnostic benefit to identify anaplastic lymphoma
kinase (ALK), c-ros oncogene 1 (ROS1), and rearranged during transfection (RET) fusions [72,73].
Genotypic information is important in clinical practice for therapeutic decision making, such as using
EGFR-tyrosine kinase inhibitors (TKIs) and crizotinib [74–76]. Because biopsy-based assays provide
limited characterization of the tumor, the harvested samples may not always represent the heterogeneity
of the tumor [77,78]. Many studies have shown the relevant role of a radiomics-based biomarker named
the “radiomic signature” from various imaging modalities for the prediction of therapeutic response and
prognosis after various therapeutic options, such as radiotherapy, chemotherapy, molecular-targeted
therapy, and immunotherapy [76,79–84]. Patient selection on the basis of predicting responsiveness and
toxicity is critical for novel therapeutic modalities, because these therapies are remarkably effective for a
limited cohort, with the main drawbacks being its cost and the possibility of severe toxicities. Therefore,
precise predictors of response to treatment are urgently needed for every treatment. In a retrospective
multicohort study in patients with advanced solid tumors, a radiomic signature of CD8 cells, which is
a characteristic phenotype of immune cells infiltrating the immune-inflamed tumors, was validated to
infer clinical outcomes of patients treated with immunotherapy with anti-PD-1 or anti-programmed
cell death ligand 1 (PD-L1) therapy [85]. Radiomics signatures can help to identify the development of
side effects. A study on radiomics-based assessment showed dose and fraction-dependent radiation in
lung injury after stereotactic body radiotherapy for lung cancer [86]. Radiomic assessment of predicting
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side effects and detecting recurrence has been performed mainly with CT and magnetic resonance
imaging (MRI). Radiomics with FDG-PET and PET with new tracers will be examined for post-therapy
assessment due to the merit of imaging molecular and metabolic mechanisms [87,88].

Although research in the field of radiomics has drastically progressed over the past decade,
the refinement of clinical workflow and decision making through prospective clinical trials and
standardization of diagnostic procedures are required to be used for personalizing the management
of cancer.

7. Cancer Metabolomics as a Target of Therapy and Response Evaluation with PET

The disruption of tissue homeostasis induces critical changes in the cellular metabolism and
function of both stromal and immune cells in the so-called tumor ecosystem. Therefore, cancer
metabolism-targeted chemotherapeutic agents against nucleotide synthesis, such as 5-fluorouracil
and gemcitabine, have been used in the traditional mainstream of cancer therapy. On the other
hand, amino acid metabolism-targeted therapy with l-asparaginase has been performed for acute
lymphoblastic leukemia (ALL), and several clinical trials have been done [89,90]. Cancer cells adapt
metabolism to support tumor growth. Specificity of metabolic preferences was thought to provide
possibilities of imaging tumor, prediction of prognosis, and selection of treatment option; however,
recent studies disclosed that the metabolic phenotype is not unique to cancer cells but instead reflects
the characteristics of proliferating cells, such as those in the immune system [91,92]. The clinical utility
of FDG-PET is a result of its ability to reflect increased glucose consumption in a broad spectrum of
proliferating and biosynthetic cells. Therefore, FDG-PET can detect not only malignant tumors but
also some types of benign tumors, granulomas, inflammatory focuses, and autoimmune diseases.

In order to image specifically the malignant tumors, PET for targeting neoplastic cells has been
evaluated by many kinds of radiopharmaceuticals, such as 18F-labeled amino acids [1,93–95]. One of
the tumor-specific tracers for PET is 3-[18F] fluoro-l-α-methyltyrosine (18F-FAMT) [96]. 18F-FAMT is
transported by l-type amino acid transporter (LAT-1), which is specifically expressed on a variety of
cancer cells [97]. There have been many reports showing the utility of 18F-FAMT PET for evaluating
prognosis and therapeutic response [98–100]. Therefore, inhibition of LAT1 has been considered for a
wide range of anti-cancer therapies [101,102]. Glutamine is another fuel besides glucose that contributes
to core metabolic functions and is primary nitrogen source for DNA replication in cancer cells [103].
Asparagine is biosynthesized with glutamate and nitrogen, and then asparagine itself promotes cell
proliferation as well as cell survival in the absence of glutamine [104]. Therefore, l-asparaginase is used
to reduce the blood asparagine levels and induce apoptosis of ALL cells as mentioned above [89,90,105].
However, the ability of cancer cells to use a panoply of energy sources by autophagic degradation
of macromolecules is a negative factor for starving strategy in cancer therapy [106]. In addition,
cellular metabolism depends on cell lineage, and the environment can significantly affect cellular
metabolism [107,108]. Recent studies have shown the role of mitochondrial function in enabling
therapeutic resistance and suggested mitochondrial inhibition as a promising therapy to overcome
MDR [109–111].

Recent studies disclosed that autophagy is closely related with non-apoptotic cell death, called
autophagic cell death, besides the conventional understanding of its fundamental role as a resistant
mechanism against stress environments including hypoxia, chemotherapy, radiotherapy, as well as
starvation. Regulation of autophagy is considered as a new treatment of malignant tumors.

8. Response Evaluation of Immune Checkpoint Inhibitor Therapy with PET

Although FDG-PET can provide practical information on responses in patients treated with
anti-neoplastic drugs, immunotherapy, and radiotherapy, several limitations for FDG-PET have
been raised to be addressed. FDG is highly accumulated in inflammatory tissues owing to the
increased glycolysis in the infiltrated inflammatory cells. Activated T cells and recruited macrophages
and neutrophils as well as lymphocytes show high uptake of FDG after immunotherapy, resulting
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in false-positive judgement in evaluating effective therapeutic response. The distinctive biologic
mechanisms of immune checkpoint blockade cause unique response phenomena in the tumor after an
initial enlargement called pseudoprogression [112]. Conventional Response Evaluation Criteria in Solid
Tumors (RECIST) defines this as progression at the time of the initial enlargement that is thought to be
owing to the infiltration of T cells and other inflammatory cells into the tumor, rather than proliferation
of tumor cells [112–114]. These observations facilitated the modification of RECIST to accurately define
the current immune-related tumor responses, irRECIST and iRECIST (Table 1) [115,116]. These criteria
have been examined extensively, but the clinical significance of these criteria remains to be validated by
prospective clinical trials, considering the presence of and temporal changes in the pseudoprogression.

A recent study revealed that the uptake of 18F-FAMT was significantly correlated with PD-L1
expression in patients with advanced NSCLC [100]. Moreover, emerging data have suggested
certain utility for immune checkpoint molecule-specific PET that visualizes the key molecules of
immune-checkpoint pathways and cellular immune responses using radiolabeled antibodies against
PD-1, PD-L1, and CTLA-4 [117–119]. Novel PET imaging with engineered antibody-based PD-L1
antagonist conjugated with 64Cu-DOTA- and 68Ga-NOTA-labeled CD8+ T cell-targeted peptide have
demonstrated early uptake in the tumor with favorable tumor-to-background ratios and the uptake
reflecting tumor response to PD-1 inhibitor plus CTLA-4 inhibitor therapy in mouse xenograft models,
respectively, and have seemed to overcome limitation of radioimmunodetection with conventional
antibodies [120–122].

Cancer immunotherapy using immune checkpoint inhibitors has emerged as an effective
therapeutic option for a variety of advanced cancers in the past decade. Because cellular
metabolism is a critical determinant of the viability of cancer cells and responding immune
cells, and the tumor microenvironments characterized by acidic, hypoxic, or depleted critical
nutrients, the microenvironment is regarded as a novel target of cancer therapy [123,124]. Moreover,
immunological reaction differs among patients according to the individual immune function. Since
FDG uptake reflects glucose metabolism of cancer cells and immunologically competent cells in the
tumor microenvironment as well, FDG-PET response evaluation criteria, such as EORTC and PERCIST,
must be revised to conform to the temporal alteration of glucose metabolism after administration of
various anti-cancer drugs.

9. Tumor Microenvironment and Cancer Stem Cells as a Target of Therapy

Failure of conventional anti-cancer therapy is closely related to the heterogeneity of tumors.
A biochemical feature of cancer heterogeneity is considered the microenvironment that consists of
cancer cells, immune cells, fibroblasts, and cancer stem cells (CSCs) [125]. CSCs have been reported as
the cells of origin in cancer and are responsible for maintaining tumor heterogeneity and plasticity,
fueling tumor proliferation and therapy resistance [126,127]. The concept of neoplastic stem cells may
provide explanations for the failure of various anti-cancer therapies [127]. Secondary resistance occurs
against every anti-cancer drug therapy and radiotherapy for cancer to survive, because CSCs have
inhibitory effects on oxidative stress induced by ROS produced by chemotherapy and radiotherapy.
HIF-1 has an important role in maintaining the stem cell phenotype and regulating the differentiation
of CSCs in the hypoxic niche of the tumor microenvironment. CSCs are suggested as a potential source
of resistance to different types of anti-neoplastic drugs. On the basis of HIF-1 dependent biological
mechanisms such as reoxygenation in the peri-necrotic area, the possibility of HIF-1-targeted therapy
has been shown to overcome the resistance to radiotherapy [128].

Metastasis of epithelial tumors is a complex process involving the enhancement of invasive
properties to facilitate extravasation, liberation of circulating tumor cells (CTCs) in the blood,
colonization to the secondary organs, and growth to become overt metastasis [129]. EMT is considered
a principal mechanism of the metastatic cascade, providing tumor cells with the ability to adapt to
different microenvironments in the colonized organs [130]. Therefore, detecting and characterizing
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CTCs helps in guiding early treatment decisions before the detection of overt metastases and assessing
therapeutic efficacy [129,131]. CTCs are also considered as potential therapeutic targets [132].

Traditional anti-cancer drugs act on proliferating neoplastic cells by interfering with cell division
and as molecular drivers for cell growth and tumorigenesis, resulting in the development of resistance in
many tumors. Intrinsic resistance to both cytoreductive and cytostatic drugs has also been reported [133].
Moreover, CSCs have been reported to develop acquired drug resistance and differentiate into
heterogeneous cellularity by producing more malignant subclones [134]. Clinical trials have indicated
that circulating CSCs detected after the effective chemotherapy are associated with an increased risk
of metastases that result in poor prognosis [135]. These findings are in line with the need for new
treatment strategies focusing on the elimination of CSCs through which therapeutic efficiency and
prognosis could be improved [136]. Therefore, considerable effort has been devoted to identifying
biomarkers for CSC-targeted anti-cancer therapy; however, there is no effective therapy to eradicate
CSCs or at least to inhibit their proliferation. Many attempts have been made to cope with CSCs in
the context of the tumor microenvironment. For example, recent studies have shown that autophagy
inhibitor leads to reduce tumor growth and invasion [137,138]. Inhibition of fatty acid and glutamine
metabolism in vitro has been shown to reduce spheroid formation and stemness gene signature with
radiation sensitization, respectively [104,139].

CSCs are thought to be responsible for proliferation and therapeutic limitation in many malignant
tumors. Therefore, noninvasive imaging to visualize CSCs is required for diagnosis and monitoring
after therapy. Initial studies with hypoxia imaging revealed that hypoxia-seeking agents such
as 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM) could evaluate CD133+ cells in
hypovascular regions of murine lung and colon cancer models [140,141]. A recent study using
S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) as the 64Cu chelator
labeled with AC133 monoclonal antibody (64Cu-NOTA-AC133 mAb) for PET and AC133 mAb-based
near-infrared fluorescence molecular tomography has indicated CSC monitoring through imaging
CD133 expression of stem and progenitor cells in many types of malignant tumors of human
origin [142,143]. In this study, the authors show that differences in PET radioactivity correlate with
histopathological differences in the cellularity. Noninvasive PET imaging seems preferable to monitor
CSCs in tumors after CSC-targeted anti-cancer therapy. However, there is no clinical PET procedure
capable of high-sensitivity monitoring of CSCs.

10. Biochemical Properties of C-X-C Chemokine Receptor Type 4 and Cancer Immunotherapy

Chemokines and their receptors were originally identified as mediators of the inflammatory
process; however, accumulated evidence clarified that they have a crucial role in tumor initiation
and progression as the key factors linking cancer cells and stromal cells in the microenvironment
for tumor growth and metastasis [144]. A previous study showed that expression of cytokine C-X-C
chemokine ligand 12 (CXCL12), known as stromal-derived factor 1 (SDF-1), was the most significant
biomarker predictive of survival on the basis of multiple microarray analyses measuring the expression
of ~17,000 genes and 341 miRNAs across 2129 ovarian cancer samples [145]. CXCL12 can activate
various signal pathways of cancer cells to promote proliferation, infiltration and angiogenesis and
suppress apoptosis [144]. SDF-1/C-X-C chemokine receptor type 4 (CXCR4) is known to increase EMT
to facilitate invasion and metastasis. Thus, CXCL12 and its receptor CXCR4 were thought to represent
a promising therapy targeting the link between cancer cells and stromal cells [144].

Recently, the function of CXCR4 in the cancer immune cycle has been extensively addressed.
CXCR4 plays a major role in immunological processes. The CXCR12/CXCR4 axis has influence on
intratumor immune cell subsets and anti-tumor immune response. In the cancer microenvironment,
EMT induces differentiation of tumor-associated macrophages (TAM) and regulatory T cells (Treg)
through mesenchymal stem cells and cancer-associated fibroblasts. TAM and Treg are then induced to
secrete transforming growth factor-β (TGF-β) and interleukin 10 and facilitate PD-L1 expression in
dendritic cells as well as PD-1 and CTLA-4 expression in CD8+ T cells, called cytotoxic T lymphocytes
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(CTL), to become exhausted CD8+ T cells. TAM also promote angiogenesis, invasion, and intravasation,
and, at the metastatic site, extravasation of tumor cells and persistent growth, and it also suppresses
cytotoxic T cell responses [146]. In this context, TAMs and Treg are potential anti-tumor targets that
impair activation, survival, and expansion of tumors. T cells function through the production of
immunosuppressive cytokines, such as TGF-β, CTLA-4, and interleukin 10 [147].

CXCR4 is known to accelerate T cell proliferation and secretion of interferon γ, which facilitates
PD-L1 expression in cancer cells and TAMs and also PD-1 expression in CTLs and natural killer
cells [148,149]. Inhibition of CXCR4 suppresses Treg infiltration into the tumor and increases the
anti-tumor immune response. Recent in vivo preclinical studies indicated that the combination of
small molecule CXCR4 antagonists and anti-PD-1 antibodies significantly enhanced anti-tumor effects
compared with single-agent administration in syngeneic murine models of ovarian cancer, colon cancer,
and melanoma [150,151]. These effects were based on the prevention of immunosuppression in the
tumor microenvironment characterized by the enhanced effector T cell and decreased Treg. The latter
study with a human melanoma xenograft also indicated the possible inhibition of cancer cell-intrinsic
PD-1 and T cell-independent responses, providing relevant information regarding combination therapy
for enhancing anti-tumor immunity [151].

11. CXCR4-Directed Imaging and Anti-Cancer Therapy with α Particle Radiation

CXCR4 antagonist plerixafor has been approved as a stem cell mobilization agent for peripheral
stem cell collection for the autologous peripheral stem cell transplantation [152], and 68Ga-pentixafor
has been used for CXCR4-directed PET imaging in patients with hematologic neoplasms and malignant
solid tumors [153,154]. CXCR4 is one of the most prevalent chemokine receptors ubiquitously
expressed in cancer cells. Since CXCR4 is known to be expressed in various CSCs and is associated
with tumorigenicity, angiogenesis, invasion, and chemoresistance [144], CXCR4-directed therapies
have been exploited using either alternative small-molecule CXCR4 antagonists [155], CXCL12
inhibitors [156], or anti-CXCR4 antibodies [157]. Radiolabeled compounds targeting CXCR4 have also
been examined with lutetium-177 labeled pentixather, copper-64 labeled plerixafor, and another small
molecule [158–160]. Fluorine-18 labeled pentixafor analog has recently shown high CXCR4 affinity
and favorable tumor-to-normal organ ratios in a murine model of human lymphoma [161]. Emerging
approaches for CXCR4-targeted imaging as above have shown promise in addressing the need for
monitoring future CXCR4-targeted therapy.

Functionalized gold nanoparticles containing reniumu-186 and coupled with anti-CXCR4
antibodies have been developed to actively target CSCs to reverse chemoresistance in an orthotopic
mouse model of glioblastoma [162]. In addition to ordinary radionuclide therapy using β− particles
emission, as mentioned above, targeted α particle therapy (TAT) has great potential for the treatment
of cancer on the basis of specific delivery of high-energy radiation from α-emitting radionuclides to
tumors while minimizing systemic toxic effects. TAT has been regarded to have alternative treatment
options for advanced or refractory cancers [163,164]. The initial results of clinical trials with 213Bi- and
225Ac-labeled compounds were attractive even in cases refractory to β-emitters [165,166]. The high
linear energy transfer (~100 keV/µm) of α particles, in comparison with β− particles, requires fewer
radiation tracks to induce DNA double strand breaks. The short path-length of α particle within a few
cell diameters confines its cytotoxic effect to the target tissue and the surrounding short range of the
tumor microenvironment while limiting its toxic effects to non-neoplastic tissues. Moreover, the effect
of oxygenation on cytotoxicity is minimal; thus, effective cell death can be expected even in the areas
of hypoxia.

Among α particle emitting radionuclides for TAT, astatine-211 is promising because it can be
produced using cyclotron by the bombardment of an α particle beam, and the procedures of separation
and purification from the target has been established. Astatine-211 emits α particles by a 100%
probability with a half-life of 7.21 h. There are a few clinical applications of astatine-211 which have
been reported for the therapy of malignant neoplasms [167,168]. Since the escape of stem cells from
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anti-cancer therapy is considered a major cause of treatment failure and relapse, CXCR4-directed
therapy with preserved anti-tumor immunity in the tumor microenvironment would be potentially
effective. For this reason, we have explored stem-cell-targeted radioimmunotherapy with α particles
in AML [169].

12. Response Evaluation of Novel Therapeutics with Molecular Imaging

Malignant cells survive in a complex balance in the immune system. Both CTLA-4 and PD-1
suppress T cell activities. Therefore, agents that block CTLA-4, PD-1, and PD-L1 are able to
produce an anti-tumor response through immune activation. Inhibition of CXCR4 exaggerates
the anti-tumor immune response and CXCR4-targeted therapy is a possible therapeutic option to
eradicate CSCs. Recent studies have indicated that dual blockade of PD-1–PD-L1 and CXCL-12–CXCR4
pathways reduces specific cellular and functional elements within the immunosuppressive tumor
microenvironment and augments tumor-specific cell-mediated immune responses. The complexity of
these interactions and heterogeneity of immune cells in the tumor microenvironment are challenges
in the development and the evaluation of the therapeutic efficacy of new immune therapies in vivo.
Imaging of immune cells that are major players in anti-cancer therapy is challenging because many
subtypes of cells exist and play different roles in the tumor microenvironment.

Non-invasive evaluation procedures for therapy outcomes, such as biomarkers and molecular
imaging, are expected to represent precise strategies of cancer therapy. FDG-PET can play an important
role in fulfilling this purpose, as mentioned earlier [38,42,100]. Uptake of FDG reflects the viability
of cancer cells and all other players of the immune system in the microenvironment. No uptake of
FDG means complete remission of the tumor; however, increased uptake does not always indicate
progression of the tumor, because of the pseudoprogression phenomenon and increased anaerobic
glycolysis in the therapy-induced hypoxia, as mentioned above [18,38,114]. Cancer cell-specific
imaging has the potential to evaluate quantitatively the residual cancer cells that had been able to
evade anti-cancer agent of immune response. However, phenotypic changes due to genetic alteration,
such as therapy resistant mutation and de novo mutation after therapy, may decrease specificity to
the specific imaging agent. Metabolism-based PET tracers other than FDG can be used to evaluate
therapeutic efficacy [98,99]. However, metabolic diversity and instability, especially those acquired on
the progression course or after therapy, of cancer cells would be sources of inaccuracy in evaluating
the response.

Prediction and evaluation of therapeutic efficacy would be possible with a tumor-specific PET
tracer. Prostate-specific membrane antigen (PSMA) ligand labeled with gallium-68 (68Ga-PSMA) is a
PET tracer used to determine the eligibility for PSMA-targeted radionuclide therapy with 177Lu-PSMA
or 235Ac-PSMA (Table 2). Peptide receptor radionuclide therapy for neuroendocrine carcinoma with
90Y- and 177Lu-dodecane-tetraacetic acid-Tyr3-octreotate (DOTA-TATE) is another radionuclide therapy
performed successfully for solid tumors. 68Ga-DOTA-TATE is a diagnostic counterpart of therapeutics.
These examples are representative theranostics in nuclear medicine practice that will be followed by
the future radionuclide therapy. A major role of specific imaging in the theranostics is to confirm the
indication of therapy. Another role would be dosimetry analysis to determine the therapeutic dose by
calculating absorbed doses in the tumor for efficacy and target organs for toxicity. It may be possible
for PET imaging with specific tracers to evaluate therapeutic efficacy by measuring the amount of
target molecules; however, the expression of the target molecules may change after the therapy—then,
accurate response evaluation would be difficult with these target-specific PET studies.

Considering the present availability and required standardization, FDG-PET may be favorable for
response evaluation in solid tumors. Since there is a variety of therapeutics that have effects on both
cancer cells and the immune system, individualized evaluation criteria based on therapeutic agents and
clinicopathologic information may be appropriate. Clinicopathologic data include therapeutic regimen
and time from administration, immune function status, temporal changes in size and attenuation of
tumor on CT, and pathological parameters, such as proliferation, invasion, differentiation, vascularity,
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and interstitial findings. These data as well as image features and quantitative indices like SUV and
MTV of PET are subjected to artificial intelligence (AI) for radiomics analysis. Other available data
such as MRI and contrast enhancement are welcome by AI for more detailed analyses.

Table 2. Representative Pair of Radiopharmaceuticals for Theranostics.

Radiopharmaceutical
for Therapy Radiation Half-Life Radiopharmaceutical

for Diagnosis
177Lu-DOTA-TATE Beta ray (β− particle) 78 h 68Ga-DOTA-TATE
213Bi-DOTA-TOC Alpha ray (He2+ particle) 0.76 h 68Ga-DOTA-TOC

177Lu-PSMA Beta ray (β− particle) 78 h 68Ga-PSMA
225Ac-PSMA Alpha ray (He2+ particle) 10 d 68Ga-PSMA

DOTA-TATE: dodecane-tetraacetic acid-Tyr3-octreotate; DOTA-TOC: dodecane-tetraacetic acid-D-Phe1-Tyr3-octreotide;
PSMA: prostate-specific membrane antigen.

Modalities used in the clinical setting include PET and single photon emission computed
tomography, as well as MRI and ultrasonography. Optical imaging, such as fluorescence and
bioluminescence imaging, plays an important role in preclinical settings; however, penetration of these
signals is too shallow to detect labeled immune cells in clinical situations, and currently used contrast
materials, such as gadolinium based agents, super paramagnetic iron oxide, and perfluorocarbon
labeled with fluorine-19, for MRI are non-specific for immune cells. Therefore, nuclear medicine
imaging is a possible procedure to elucidate anti-cancer immune responses [170,171]. Cell tracking of
particular cell subsets would be done by radiolabeling in vitro prior to re-administration or by injecting
a radiopharmaceutical that binds to a specific membrane antigen in vivo [172,173]. There have been
many radiopharmaceuticals for cell tracking; however, none of these have been successfully used in
clinical practice so far (Table 3).

Table 3. Potential Radiopharmaceuticals to Image Immune Cells and Cell Tracking.

Target Radiolabeling Agent Application/Mechanism References

T lymphocytes
111In-oxine, 89Zr-oxine Tumor infiltration

[171,174,175]18F-FDG Cytokine production
SPIO

NK cells

111In-oxine, 89Zr-oxine Tumor infiltration
[171,176,177]18F-FDG, 11C-methyl iodide NK cell homing

SPIO

Macrophages
111In-oxine, 89Zr-nanoparticles Tumor infiltration

[171,178–182]18F-FDG Tumor-associated macrophages
SPIO, 19F-perfluorocarbon

Interleukin-2 Iodine-123, Technetium-99 m,
Fluorine-18 Interleukin-2 receptors on T cells [183]

Anti-CD8 cys-diabody Zirconium-89, Copper-64 CD8+ T cells [184–186]
Anti-CD8 mAb

PK11195 Carbon-11 Tumor-associated macrophages,
Translocator protein [187]

Anti-TCR mAb Copper-64 Tumor infiltration of T cells [188]

Anti-CD56 mAb Technetium-99 m NK cells [189]
18F-FDG: 2-[18F] fluoro-2-deoxy-d-glucose; SPIO: super paramagnetic iron oxide; TCR: T cell receptor; mAb:
monoclonal antibody.

13. Conclusions

Quantitative parameters of FDG-PET, such as SUV and TLG, have been used to evaluate therapeutic
responses. Metabolic changes and temporal enlargement due to immune cell infiltration seen after
immune checkpoint inhibitors, anti-PD-1, and anti-PD-L1 antibodies facilitate the modification of
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FDG-PET response evaluation criteria as well as conventional RECIST. Dynamic interaction between
cancer and immune cells, CSCs, and metabolism of cancer cells in the tumor microenvironment are
promising targets to eradicate cancer. Accumulation of FDG reflects glucose metabolism of both cancer
cells and immunologically competent cells in the tumor. Considering inter- and intra-patient tumor
heterogeneity, immunological reaction to the therapy differs among patients according to the individual
immune function and tumor heterogeneity. This limits the use of current response evaluation criteria
and the revised ones may not be relevant enough for use in the clinical setting. Then, imaging of
immune cells tracking may be crucial but is still a challenge, due to the fact that radiopharmaceuticals
or MRI probes which are highly specific for biomarkers expressed in different immune cells are not
likely to be determined. A radiomics approach which combines quantitative image features and deep
learning algorithms has the potential to improve response assessment on the basis of elucidating
pathologic mechanisms in more personalized treatments in the era of precision nuclear medicine.
Multimodal imaging to highlight new therapeutic biomarkers in the complexed tumor response may
be required to improve the management of cancer patients.
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