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Abstract: Antibiotics are being less effective, which leads to high mortality in patients with infections
and a high cost for the recovery of health, and the projections that are had for the future are not very
encouraging which has led to consider antimicrobial resistance as a global health problem and to be
the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance
and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades.
A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria
constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a
key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large
numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers,
and their design is mainly focused on introducing the temporal and spatial release of the payload
of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are
not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug
potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers
and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision
between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible
mechanisms that occur between them.

Keywords: nanoparticles; antimicrobial resistance; bacteria; resistance mechanism

1. Introduction

The application of scientific knowledge to manipulate and control matter predom-
inantly in the nanoscale to make use of size and structure dependent properties, and
phenomena distinct from those associated with individual atoms or molecules, or extrapo-
lation from larger sizes of the same material [1], which consist of the ability to synthesize,
manipulate, and modify materials below 100 nanometers [2–5], has postulated as nanotech-
nology a fundamental discipline in scientific and technological advances in different areas,
such as medicine and the pharmaceutical industry, to provide solutions for various existing
problems in these areas.

It is considered that a nanostructured material must have dimensions within 1 to
100 nm [5,6]. However, in medicine, these values can range up to 200 nm in diameter [7].
Among these materials, the use of nanoparticles (NPs) stands out metallic, bimetallic, metal
oxide, and magnetic [8–10].

The use of metallic and metal oxide NPs has been increasing due to the chemical and
physical intrinsic properties acquired by NPs synthesized [11]. Depending on their applica-
tion, the optical, catalytic, and electrical behavior, mechanical and chemical stability [12,13],
as well as morphology and particle size, can be controlled [14], which makes them suitable
for the pharmaceutical industry.
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Metallic NPs allow the possibility of interacting at biomolecular levels [15]. This im-
proves detection, treatment, and monitoring of pathologies, through the specific targeting
of cells and tissues. In addition, it helps with the administration of drugs, evaluation of
diseases, and treatment of degenerative conditions [16], which makes them promising
materials for directing chemotherapeutic drugs.

The pharmaceutical and medical industry was presented with one of the biggest
problems worldwide since 2015, when the World Health Organization (WHO) declared the
increase of antimicrobial resistance by pathogenic bacteria as a priority to study. The WHO
published in 2017 a list of pathogens with the highest risk worldwide (Table 1) [17]. These
bacteria are resistant to antibiotics and have been classified based on various criteria, such
as mortality and resistance prevalence, among others, classifying them as critical, high, and
medium priority [18].

Table 1. The official list of pathogen bacteria with declared priority by the WHO. Adapted with
permission from WHO (permission 387722) [17].

Priority Pathogenic Bacteria Antibiotics for Which There is Resistance

Critical

Acinetobacter baumannii
CarbapenemPseudomonas aeruginosa

Enterobacteriaceae
Mycobacteria Carbapenem and 3rd generation cephalosporins

Mycobacterium tuberculosis 3rd generation cephalosporins

High

Enterococcus faecium Vancomycin and methicillin
Staphylococcus aureus

Helicobacter pylori Vancomycin
Campylobacter Clarithromycin

Salmonella spp. Fluoroquinolones
Neisseria gonorrhoeae 3rd generation fluoroquinolone

Medium
Streptococcus pneumoniae

Haemophilus influenza Non-sensible to penicillin
Shigella spp. Ampicillin and fluroquinolones

Antimicrobials are organic small molecules (they vary in size at angstrom level)
that prevent the development of pathogenic microorganisms, which are generally used
in bacteria. Antimicrobial agents can be divided into three groups according to their
characteristics: disinfectants, antiseptics, and those for clinical-therapeutic use [19]; the
latter are known as antibiotics capable of reducing and controlling the presence of bacteria
that have invaded the patient’s body.

Before the use of antibiotics, the mortality rate caused by pathogenic bacteria was
high [18]. However, at the end of the 19th century and the beginning of the 20th century,
antibiotics began to be studied. This led to the discovery of penicillin, using it clinically
in 1930, together with sulfamide. These antibiotics were effective against Gram-positive
and Gram-negative bacteria [20]. Unfortunately, the capacity of these antibiotics to treat
infectious diseases caused by bacteria has not been enough, and this represents a danger
for the population [21].

Excessive and uncontrolled use of antibiotics have generated resistance to antimicro-
bials by bacteria, as well as the spread of resistant bacteria in hospitals, and have become
some of the most important problems in recent years [22].

In the United States alone, according to the Centers for Disease Control and Prevention
(CDC), the first report on threats by antimicrobial resistance was published in 2013. This
report mentions that, in the U.S., at least 2 million people contract an infection by bacteria
resistant to antibiotics, and at least 23,000 people died because of this [23]. However, in
2019, an increase to 2.8 million infected patients by resistant bacteria was reported, of
which more than 35,000 people died every year. Thus, producing an economic impact of
more than 4.6 billion dollars annually in the United States alone [24].

On the other hand, in the publication of projections made by the Organization for
Economic Co-operation and Development (OECD), it is predicted that, by 2030, the increase
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in deaths caused by resistant bacteria will increase up to 60% in less developed countries,
while the increase is approximately 5 to 20% in more developed countries [25].

In this work, we discuss some articles on metal and metal oxide nanoparticles having
been used as a means of transportation of antibiotics to reduce antimicrobial resistance
and also to analyze the various inhibition mechanisms. In summary, the NP size, mor-
phology, and surface functionalization of the antibiotic, type of resistance mechanism, and
nanoparticle toxicity are analyzed.

2. Methodology

This review was done to answer the following questions: what are synthetic antibi-
otics, and what is their classification? What is antimicrobial resistance, and why does it
develop? What are the mechanisms of resistance of bacteria to antibiotics? What are the
mechanisms of action of inorganic nanoparticles against antimicrobial resistance? What
are the mechanisms of action of inorganic nanoparticles against antimicrobial resistance?
In addition, how has the use of inorganic nanoparticles against antimicrobial resistance
influenced the development of antimicrobial resistance? Which nanoparticles are being
used to combat antimicrobial resistance? What are the mechanisms of action of inorganic
nanoparticles against resistance? How has the use of inorganic nanoparticles functionalized
with antibiotics influenced resistance?

We started to study articles from different official databases, such as Elsevier, Sci-
enceDirect, PubMed, Google Scholar, Scopus, and SciFinder, to identify relevant papers
according to the topic.

To describe the current situation and discuss research on inorganic nanoparticles
functionalized with synthetic antibiotics, we chose to search for articles between the years
2015–2021. While, for basic information articles, such as what are antimicrobials and the
types of resistance presented by bacteria, information was obtained from research, books,
and review articles from 2005–2021.

The keywords used throughout the literature search were: nanoparticles, gold nanopar-
ticles, silver nanoparticles, copper oxide nanoparticles, titanium oxide nanoparticles, zinc
oxide nanoparticles, antimicrobial mechanism nanoparticles, ROS generation, antimi-
crobial resistance, bacteria, antibiotics, chromosomal mutation, biochemical mechanisms,
pathogens, antibiotic mechanisms of action, World Health Organization, biofilm generation,
and bacterial cell membrane inhibition.

A total of 300 to 400 articles were read, of which only 246 are cited because they were
those that provided relevant, basic information or contributed something of importance to
the review.

3. Antibiotics

Antibiotics are antimicrobial drugs capable of reducing and controlling the presence
of bacteria that have invaded the tissues of a subject. Antibiotics are grouped into classes
according to their chemical structure, effect, spectrum, and action mechanism [26–29].

3.1. By Chemical Structure

According to their chemical structure, the antibiotics can be grouped as β-lactam
antibiotics, macrolides, aminoglycosides, and tetracycline antibiotics [30].

3.2. By Effect

This group corresponds to those that caused the death of the most sensitive microor-
ganism, in the bacteria growth phase (bactericidal) or those that inhibit bacterial growth
(bacteriostatic) [31].

3.3. By Spectrum

This classification is divided into three branches: the broad spectrum, the limited
spectrum, and the narrow spectrum. When talking about broad spectrum antibiotics, it
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emphasizes that the drug acts on a wide range of bacteria which can be Gram-positive and
Gram-negative. Limited spectrum antibiotics are those acting only against Gram-positive
or Gram-negative cocci, as well as Gram-positive bacilli and spirochetes, as is the case with
penicillin. Lastly, narrow spectrum antibiotics, which attack only a very small sector of
bacteria [32].

3.4. By the Mechanism of Action

The classification of antibiotics according to their mechanism is divided into four
main ones which consist of inhibiting cell wall synthesis, protein synthesis, nucleic acid
synthesis, and antimetabolites.

According to Murray et al. [32], in Medical Microbiology, antibiotics for inhibiting cell
wall synthesis are the penicillins, cephalosporins, carbapenems, and cephamycins, since
they bind to penicillin-binding proteins (PBP) and enzymes responsible for peptidoglycan
synthesis. On the other hand, vancomycin, such as the other antibiotics, usually damages
the cell wall; however, the mechanism of vancomycin is to inhibit the cross-linking of the
peptidoglycan layers, such as cycloserine, thus causing cell death. Bacitracin is responsible
for inhibiting the cytoplasmic membrane of the bacterium, as well as the movement of
peptidoglycan precursors. Antibiotics of the polymyxin family often damage the bacterial
membrane [27].

In the case of inhibiting protein synthesis, in Murray et al. [32], drugs, such as amino-
glycosides, are used because they are responsible for the premature release of peptide
chains from the 30S ribosome. Likewise, tetracyclines damage proteins by preventing
polypeptide elongation in the 30S ribosome. Antibiotics of the macrolide, ketolide, clin-
damycin, oxazolidinone, and streptogramins groups are responsible for preventing protein
synthesis and polypeptide elongation on the 50S ribosome.

The groups of quinoline, rifampicin, rifabutin, and metronidazole are antibiotics that
usually impair nucleic acid synthesis, i.e., their mechanism of action is given by binding
the DNA gyrase subunit, preventing transcription by binding DNA dependent RNA
polymerase [32].

Finally, according to Murray et al. [32], antibiotics of the sulfonamide, dapsone, and
trimethoprim families are responsible for damaging the metabolic pathways of bacteria, as
they tend to inhibit dihydropteroate synthase and dihydrofolate reductase, which triggers
the folic acid synthesis disruptions.

4. Antimicrobial Resistance

Antimicrobial resistance (AMR) is a natural phenomenon of bacteria [33] that develops
thanks to its intrinsic evolutionary nature, as well as its easy and rapid adaptability to
various environments [34]. However, the abuse and excessive use of antibiotics has given
bacteria the ability to create greater resistance to antimicrobials [35–42], which translates
into the lack of ability of antibiotics to inhibit the growth of pathogens [43]. This has alerted
public health organizations worldwide and has led to major regulated and controlled
antibiotic administration measures, to improve treatments in patients [44,45].

Resistance levels can vary greatly according to the groups of bacteria. Susceptibility
and resistance are generally measured as a function of the minimum inhibitory concen-
tration (MIC), which is the minimum concentration of the drug that will inhibit bacteria
growth [46]. Susceptibility is a range of the average MICs for any given drug in the same
bacterial species. If the average MIC for a species is in the resistant part of the range,
such species are considered to have intrinsic resistance to that drug. Bacteria can also
acquire resistance genes from other related organisms, and the level of resistance will vary
according to the species and the genes acquired [47,48].

When referring to intrinsic resistance, it means that bacteria can be naturally resistant
to some antibiotics [49], and this is due to the particular characteristics of each bacterium,
which depend on its structure and function [50]. That is when the composition and
chemical structure of the antibiotic is unable to penetrate or react with the structure of
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the bacterial membrane. An example of this type of resistance is Pseudomonas aeruginosa
because it has a membrane with low permeability, and this makes it naturally resistant to
most antimicrobials [51–54].

On the other hand, bacteria can also acquire various AMR mechanisms either by gene
transfer mechanisms or by biochemical mechanisms [55]. Among the genetic mechanisms
are the chromosomal and extra chromosomal mutation [56], which is called acquired
resistance [57]. This type of AMR is due to the evolutionary pressure that bacteria de-
velop against the attack of antibiotics, changing their genome through genomic mutation
or by cellular selection. This exchange of genes is carried out through transformation,
transduction, or conjugation [32].

Mutations develop after excessive exposure to antibiotics, which provides pathogens
with strong resistance mechanisms and, therefore, greater virulence, which complicates
drug treatment against bacterial infections and can result in a greater complication [48].

The biochemical mechanisms of AMR can occur due to the modification of the antibi-
otic bacterial target, but the enzymes that modify antibiotics are only capable of affecting
certain antimicrobials [55,58]. The enzymatic inactivation of antimicrobial drugs is when
there are mutations in genes that can encode porin proteins around the bacterial membrane
to slow down the action of antibiotics. Another biochemical mechanism is the flow pump
system that can expel antimicrobial drugs without being damaged and the reduction of
intracellular concentrations because of the decrease in permeability and flow [59,60].

AMR can be caused not only by chromosomal or extrachromosomal mutations but
also by cross-transfer. This means that a bacterium resistant to one antibiotic or a family
of antibiotics, in particular, when encountering another antibiotic or another group of
antibiotics with a similar chemical structure, will likely recognize such structure and create
this immunity to this new family of antimicrobials [61–63].

4.1. Mechanisms of AMR Gene Transfer

Two types of AMR gene transfer exist: chromosome mutation and extra chromosomal mutation.

4.1.1. Chromosome Mutation

This type of resistance occurs when changes are produced in the genomic sequence of
bacteria, specifically in the main chromosome, and it is presented by vertical transmission,
i.e., they are transmitted through offspring [62]. This type of mutation appears sponta-
neously and is irreversible, resulting in changes in the bacterial chromosome due to various
factors that can be chemical and physical or both, which leads to changes in the bacterial
cell [53] that modifies the permeability and drug target to prevent the effect of antibiotics
on bacteria.

The chromosomal mutation depends on whether there are changes in the suitability or
virulence of the pathogen and whether these genetically modified microorganisms prevail
or arise more frequently; consequently, they would begin to replicate and would continue
to cause pathologies [60].

4.1.2. Extra Chromosomal Mutation

Extra chromosomal resistance is when transmission of genetic material occurs through
plasmids, transposons, and integrons [64], which are extra chromosomal material. This
type of resistance is also known as horizontal genetic transmission mutation [58,65–68].

According to the National Human Genome Research Institute (NHGRI), plasmids are
small circular DNA biomolecules that contain small groups of genes, which are generally
associated with genes resistant to antibiotics [69]. These molecules can be separated
from the chromosome and can be replicated independently of the chromosome; likewise,
plasmids can be transferred between different bacterial cells [70–72]. Plasmids are generally
responsible for developing enzymes that inactivate antibiotics [62,73,74].

On the other hand, transposons are sequences present in the genome that show a high
recombination and mobility capacity, which means that they can be easily integrated into



Int. J. Mol. Sci. 2021, 22, 12890 6 of 29

the bacterial genome [75]. These can be transferred from one plasmid to another, or from a
plasmid to a chromosome, and vice versa [76]. However, unlike plasmids, transposons are
not capable of self-replicate [47]. The transposition process is catalyzed by an enzyme called
transposase which is encoded by the genetic element itself; for example, in Gram-negative
bacteria, various transposable elements will play a crucial role in the dispersal of resistance,
and some will also contribute to the mobilization of integrons [61].

Through these transposons, the AMR genes may be transferred from one bacterium to
another. An important characteristic of these is that they present extra genes that encode
at least one function that changes the phenotype of the recipient cell in a predictable way,
such as AMRs [77].

In the case of integrons able to encode cassettes of AMR genes specialized in capturing
and expressing genes that encode the integrase enzyme [78], such integrons are responsible
for recognizing the exogenous gene and integrating it at points of the integron [79]. These
integrons also present sites specific for recombination where they can integrate genes and
the promoter to express the integrated sequences [52,80–83].

What these genomic mutation methods have in common are the mechanisms of
AMR gene transfer which are presented as transformation, conjugation, and transduction
(Figure 1).

Transformation.
The transformation occurs when the bacterium can capture the exogenous from the

DNA and manages to incorporate it into its genome through recombination. This process
takes place in some bacteria that are from the same species; therefore, the DNA has a certain
resemblance and homology [84].

Conjugation.
The mechanism of genetic transfer between two bacteria employing pili is known as

conjugation; generally, by this mechanism, resistant plasmids are transferred [85].
Transduction.
Transduction occurs when a virus is capable of infecting bacteria, where said virus

can transfer genetic material. The best-known strains to which this type of mechanism is
attributed are Staphylococcus spp. [86].

4.2. Biochemical Mechanisms of AMR

The bacteria have four AMR biochemical mechanisms which are focused on inactivat-
ing the antibiotic and protecting its structure.

4.2.1. Inactivation of the Antibiotic

This mechanism can use enzymatic inactivation, which is responsible for modifying
existing cellular enzymes that react with the antibiotic [87], thus avoiding cell damage [88].
An example is β-lactamase enzymes, which can hydrolyze the most common antibiotics,
such as penicillins and cephalosporins. Likewise, bacteria can inactivate antibiotics through
the transfer of acetyl, phosphoryl, and adenyl chemical groups into the antimicrobial
drug, with acetylation being one of the mechanisms best known for the inactivation of
aminoglycosides and chloramphenicol, among other groups of antibiotics [89].

4.2.2. Antibiotic Excretion

Another way to avoid cellular damage caused by antibiotics is the excretion of an-
timicrobial drugs through the activation of outlet pumps [90], which are proteins that can
eliminate or get rid of a wide variety of antibiotics and compounds from the periplasm
to the outside of the cell [91]. They are outlet pumps responsible for eliminating all toxic
substances for bacteria, preventing their death. Five main families of pumps have been
observed, which are classified according to their structure and the available energy source
(Figure 2) [62,92].
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The ABC Family handles ATP-binding cassettes, through the transport of amino acids,
drugs, ions, polysaccharides, proteins, and glucose [93–95].

The MATE Family or of extrusion of toxic compounds through Na+ used as an energy
source. This type of pump can eliminate efflux cationic dyes, fluoroquinolone antibiotics,
and some aminoglycosides [96–98].

The SMR Family is a group of small resistance to multiple antibiotics, which uses the
energy of the H+ protons, and, because these have hydrophobic nature, these can expel
lipophilic cations [99,100].

The MFS Family are facilitator superfamily pumps that can dispose of antibiotics
through the transport of anions, metabolites, and glucose [101–103].
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The RND Family is given by resistance nodulation cell division, as these can catalyze
the flow of substrates through the substrate/H+ anti-port mechanism. This type of pump
can not only get rid of antibiotics but other antimicrobials, such as detergents, heavy metals,
solvents, etc., that compromise the life of the bacteria [104,105].
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4.2.3. Permeability of the Outer Membrane

This mechanism is given by generating changes in the lipid bilayer regardless of
whether the permeability of the membrane is altered by changes in the porins, i.e., nothing
can be absorbed, resulting in the entry of small molecules, such as antibiotics, to be limited.
Likewise, some bacteria have managed to generate biofilms that enter into this resistance
mechanism [106], where they manage to create through the same colony a kind of shell that
protects them through different biomolecules to prevent the antibiotic from penetrating the
membrane [18,107,108]. These biofilms are made up of lipids, polysaccharides, proteins,
and extracellular DNA, which are responsible for interacting with antimicrobial agents,
whether antibiotics or nanoparticles, modifying surface charge, size, concentration, and
particle shape in the case of NPs, while, in the case of antibiotics, these are capable of
modifying the chemical structure [109–111].

4.2.4. Target Modification

This type of mechanism is characterized by modifying or generating changes in the
structures of antibiotics in specific places or in the target, which causes the inactivation
of the drug. This mechanism takes place when the bacteria can alter the site where the
antibiotic binds with it to deactivate the main function of the antimicrobial [112].

5. Nanotechnology Applied to Antimicrobial Resistance

Nanotechnology currently plays a key role in scientific and technological advances in
medicine and the pharmaceutical industry, this concerns the use of materials controlling
their size and shape [2]. In these senses, the nanoparticles (NPs) are particulate materials
on a nanometric scale that allow modifying both the physical and chemical properties of
materials, as well as their morphology and size, which ranges from 1 to 100 nm [113–115].
The smaller and more spherical the NPs are, the greater the surface-volume ratio is achieved,
which helps to enhance the chemical and biological activities of the NPs [116,117].
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The NPs which have been used for different applications [118,119], such as drug
administration, photo ablation therapy, biological imaging, applications in biosensors,
and even as an alternative to reduce antimicrobial resistance, have stood out with great
relevance [120–122].

These applications include the use of NPs as antimicrobial components on advanced
materials for medical devices as catheters walls, valves, stents, and a surface that could
be found inside or outside the body or could be designed for in vivo therapies. The
development of advanced materials includes the use of Fe3O4 functionalized with chitosan
and lysozyme to produce a coating for producing biofilm-resistance surfaces [123]. The
NPs designed for in vitro applications include their use as a drug administration; in these
applications, the NPs can load with different molecules as an essential oil, such as the
ZnONPs have been loaded with Citronella essential oil [124] or Oxide-Silica Core-Shell with
essential oil [125], both with antimicrobial activity. In addition, Fe2O3NPs have been used
as carrier paclitaxel and β-cyclodextrin [126] or PdNPs capping with polyvinylpyrrolidone
load with quercetin [114], and Silica Core-Shell Au [127] for Cancer Therapy.

NPs can be classified as metallic, metal oxide, bimetallic, and magnetic [8,128,129]. It
has been demonstrated that this type of particle can obtain antimicrobial properties so that,
when increasing the surface area of the particles, a greater contact area with microorganisms
is generated [15,130–132], thus enhancing its antimicrobial activity.

As well as acting as antibacterial agents that can cause alterations in the bacterial mem-
brane, metallic, bimetallic, and metal oxide NPs usually produce reactive oxygen species
(ROS) by releasing metallic ions that alter the cellular components of bacteria [133,134],
and the smaller nanoparticles are the damage created by them will be greater because they
tend to be better absorbed on the bacterial surface. This is because, in some cases, the NPs
have a positive surface charge that facilitates the union with the negative charge on the
surface of bacteria [129,135,136]. Likewise, the photodynamic and photothermic effects of
NPs generate a greater impact as antimicrobial agents (Figure 3), which is directly related
to the release of metallic ions and ROS [6].
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5.1. Nanoparticles Antimicrobial Effects

There are six main antimicrobial effects of nanoparticles: (1) Interaction with cell wall
and membrane, (2) Generation of ROS, (3) Penetration of the cell membrane, (4) Inhibition
of protein synthesis and DNA damage, (5) Damage to metabolic pathways, and (6) Biofilm
inhibition (Figure 3) [137–140].

5.1.1. Interaction with the Cell Wall and Membrane

Cell membrane and cell wall are one of the main resistance barriers that bacteria have,
which are constituted by several molecules that help the adsorption of nanoparticles.

In the case of Gram-positive bacteria, the main component is teichoic acid, which
causes the NPs to be distributed along the phosphate molecule chain, thus preventing their
aggregation [141]. However, the fact that Gram-positive bacteria have a thick peptidoglycan
wall and pores allows the penetration of smaller molecules that can cause damage to the
cell wall, as well as the death of the bacteria [142].

On the other hand, in Gram-negative bacteria, this is the opposite, since having a
higher concentration of lipopolysaccharides, lipoproteins, and phospholipids allows the
bacteria to have a negatively charged cell wall and, thus, be able to attract NPs with greater
intensity. However, these bacteria are the most prone to generate a barrier that prevents
the penetration of small molecules [143,144].

5.1.2. Generation of ROS

The main mechanism by which nanoparticles can damage bacteria is through oxidative
stress caused by ROS because, under normal conditions, bacteria can maintain a balance in
the generation of ROS. However, when in contact with some NP, this balance is affected.
This causes an excess of ROS that will inevitably in an alteration of the oxide-reduction
state of molecules that will favor cellular oxidation.

Main Types of ROS:
There are four main types of ROS: radial hydroxyl (·OH), singlet oxygen (O2), su-

peroxide radical (O2·−), and hydrogen peroxide (H2O2) [145,146]. For both H2O2 and
O2·−, there have been reports that these come from the stress of short-term reactions and
are reduced by antioxidants, such as catalases. Therefore, when it comes to physiological
damage, it can be attributed largely to oxidative stress caused by O2 [147].

5.1.3. Penetration of the Cell Membrane

Once the nanoparticles manage to penetrate the cell wall, they tend to release ions
and generate ROS by diffusion. In the case of the release of metal ions, one of the main
mechanisms that have been observed is the affinity of the ions to bind to the negatively
charged functional groups of the cell membrane, such as phosphate and carboxyl groups.
This phenomenon is known as adsorption [141,148–150].

5.1.4. Inhibition of Protein Synthesis and DNA Damage

Another of the most reported mechanisms attributed to metal nanoparticles is DNA
damage and inhibition of protein synthesis. These usually cause a breakdown in the ribo-
somal subunit proteins, enzymes, and other proteins synthesized in the membranes of the
bacterial cell. Likewise, a degradation, compression, and fragmentation of bacterial DNA
have been observed, resulting in a reduction of the physiological activity of genes [151,152].

This was demonstrated in a study by Su et al. [153] using ZnONPs against E. coli
DNA. They found that concentrations and the greatest damage caused by the NPs were
found in 10 areas of the bacterial genome, as well as gene expression, ribosome composi-
tion, molecular structure-activity, and RNA modification, were altered in the presence of
the NPs.

Similarly, Nagy et al. [154] used silver NPs to cause DNA damage by positively reg-
ulating various antioxidant genes, metal depletion, ATPase pumps, and genes encoding
metal transport in S. aureus and E. coli. In this study, they concluded that silver nanoparti-
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cles have an antibacterial mechanism that causes a depletion of the antioxidant capacity
of bacteria.

5.1.5. Damage to Metabolic Pathways

Metabolic pathways of bacteria are not isolated and are integrated in a complex way in
the activity of the cells since their main role is to maintain the growth and reproduction of
bacteria. However, it has been observed that, when nanostructures enter the bacterial cell,
alterations in metabolism occur, causing damage to the cell membrane, inducing oxidative
stress and, finally, the death of the bacteria [155,156]. It has also been proposed that NPs can
regulate and damage the metabolic processes directly of the target proteins of the bacteria,
which is why they can affect the adhesion of bacteria and the formation of biofilms [155].

5.1.6. Biofilm Inhibition

One of the main mechanisms that nanoparticles present when interacting with biofilms
generated by bacteria is the interaction with EPS, which will allow the access of any
chemical molecule agentive to the bacteria and, thus, cause damage to the cell [157,158]. It
has also been reported that NPs in contact with bacteria can affect the bacterial adhesion
rate causing damage to biofilms, which is attributed to metabolic inhibition processes by
releasing metal ions; however, the specific mechanisms cannot yet be fully explained.

5.2. Interaction between Antibiotics, Nanoparticles and Bacteria

The inorganic nanoparticles most used to inhibit the growth of bacteria due to their
antimicrobial properties are those made of gold (Au), silver (Ag), silicon (Si), iron (Fe),
silver oxide (Ag2O), copper oxide (CuO), titanium oxide (TiO2), zinc oxide (ZnO), and
magnesium oxide (MgO) [2,8,119]. However, not all of the NPs are usually used for
medical applications because they could have toxicity [138,139,159]. In addition, they can
be accumulated on different organisms [160,161] and tissues [162]. Such is the case of
apatite NPs in lipids that surround the site where the NPs was collocated. As well, the NPs
were preferentially taken up by macrophages [163]. The mice exposition to AuNPs showed
an increase in the Au accumulation after 6 h and liver and spleen accumulation of it [164].

The use of NPs together with antibiotics have been proved to act in a synergic
way [124,165], reduce the dose used of antibiotic and NPs, achieve a high local concentra-
tion [166] or inclusive reverse the antibiotic resistance [165,167].

As with antibiotics, NPs also have various mechanisms of action against bacteria
because they can alter the metabolic activity of pathogens. It has been observed that
NPs act when they are in contact with the bacterial cell walls, and, because of this, the
following interactions have been proposed to explain how the contact between the NP
and the bacteria is: electrostatic attraction, by ligand-receptor interactions, hydrophobic
reactions, and Vander Waals forces [168–171].

Likewise, there are metallic ions that are released through the metal oxides that are to
be absorbed in the membranes of the bacteria, allowing them to interact with the functional
groups of biomolecules, such as proteins and nucleic acids. This will trigger direct changes
in the structures of bacteria, as well as the overproduction of enzymes, which will generate
physiological disturbances [172–174].

It has been observed that bacteria produce an extracellular matrix that is responsible
for nanoparticles agglomeration. This generates bacterial resistance to nanoparticles with
a size larger than 10 nm [175,176]. Regarding nanoparticles smaller than 10 nm, bacteria
have been mutating their genes, achieving to make changes in the regulation of reduction
of porins, which prevents NPs from entering the cells.

Such was the case of P. putida which was able to change the composition of unsaturated
fatty acids found in the membrane, generating a less permeable membrane [177].

The same happens when bacteria are attacked through the surface charge of both
the nanostructure and the bacterial membrane because bacteria are capable of regulating
and modifying the electrical charge of their surface, which will cause the nanoparticles
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to be repelled [178,179]. According to Niño-Martínez et al. [157], this phenomenon is
supported by the envelope stress response (ESR) mechanism present in Gram-positive
and Gram-negative bacteria. This one is responsible for monitoring biogenesis, as well as
protecting the integrity of the bacterial envelope.

Unlike antibiotics, NPs have dimensions smaller than 100 nm, resulting in novel
physicochemical properties which can have greater interaction with cells due to a higher
volume-to-surface ratio, making them versatile for strategic adjuvants. The mechanisms of
action of antibiotics are usually relatively basic and simple, resulting in genomic mutation
of bacteria to resist their mechanisms. However, NPs alone often have complex mechanisms
that act simultaneously to prevent the generating genomic mutations of bacteria and inhibit
their growth.

NPs used as transport media, loaded or functionalized with antibiotics, can enhance
the mechanisms of action of the drug. This is because the particle size >100 nm is so small
that the bacterial phagocytes can easily phagocytose them, in addition to the fact that the
morphology of the particle itself allows greater flexibility to penetrate the cell and cause
endocytosis, allowing the drug to be released intracellularly [180].

Another advantage of NPs as an antibiotic adjuvant is that they function as protectors,
which means that the NPs can increase the serum levels of the drugs and, in this way, can
protect from the enzymatic action of the target [181].

Likewise, by having an NP functionalized with an antibiotic, a more controlled and
potent administration of the drug can be obtained, activating the effect of the NP through
controlled stimuli of light, pH, photothermal, and magnetic, among others, which, unlike
the antibiotic, would only need to be exceeded in doses and repeatedly to achieve the same
effect [182,183].

The efficiency of antibiotics gets lower as time passes, and additionally, the human
body can only absorb 50% of the antibiotic, while the other 50% is excreted in the urine [184],
which further lowers its efficiency. It has been reported in the literature how complicated it
is to stimulate the absorption of antibiotics in high doses due to the toxicity that the drug
can present in the organism, as well as the development of side effects in the patient [185].

Such was the case of the research proposed by Qi et al. [185], where they explain that
vancomycin has a strong mechanism of action against Gram-positive bacteria; however,
the level of toxicity it has in the organism is high, causing side effects in kidneys and ears.
Therefore, they proposed the synthesis of mesoporous silica nanoparticles functionalized
with vancomycin with which they were able to inhibit the cell growth of Gram-positive
pathogens selectively in macrophage-like cells.

For this reason, the targeting of antibiotic-functionalized nanoparticles employing
an active targeting, which can be magnetic or by temperature, has been used. Table 2
shows some studies reported by different researchers, in which a greater inhibition of multi-
resistant bacteria is reported when using metal nanoparticles functionalized with antibiotics.

In the next sections, a compilation of works with different compositions of NPs for
inhibition of bacteria are analyzed.

5.2.1. Silver Nanoparticles

Silver nanoparticles (AgNPs) have become one of the most studied protagonists for
the inhibition of bacteria due to their high antibacterial properties in concentrations that are
not cytotoxic for humans, and they have become strong candidates to replace antibiotics
for clinical use against bacterial resistance.

The mechanisms of action of AgNPs as antimicrobial agents depend on physico-
chemical properties [186], that is, on their morphology, size, whether they are linked or
functionalized with any biomolecule or metal [177,187]. However, it has been reported
that one of the main mechanisms of AgNPs is their binding to the cell wall and membrane,
damaging biomolecules and structures found within the cell, as well as oxidative stress
causing the release of silver ions [188–191].
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The use of silver as an antimicrobial agent dates back to 1852 when it was used by
Dr. J. Marion Sims for the treatment of vesicovaginal fistulas. In 2007, Pal et al. [192]
studied the antimicrobial effects of silver by varying particle size, obtaining results that
show that, by decreasing the particle size, it was possible to increase the surface area, which
would result in a greater affinity when interacting with the biomolecules in bacterial cells.
They observed that the morphology of the particle had a great influence to enhance the
antimicrobial activity, thus concluding that the triangle-shaped nanoparticles generated a
greater cell death compared to the ones with a spherical shape or nano-rods.

This was also confirmed by Nanda et al. [193] as they conducted a study about the
biosynthesis of AgNPs with Staphylococcus aureus and its antimicrobial activity against
Methicillin-Resistant S. aureus (MRSA) and Methicillin-Resistant Staphylococcus epidermis
(MRSE), including Methicillin-Resistant Streptococcus pyogenes, Salmonella typhi, and Kleb-
siella pneumoniae. They reported AgNPs of approximately 160 to 180 nm and of irregular
shape, which was characterized by the AFM technique. In the toxicity trials, for the in-
hibition of the bacteria they used a concentration of 20 µL (0.002 mg) of AgNPs, bacteria
Gram-positive was the affected bacteria. Was observed a diameter reduction of the bacterial
cultures to 18 mm for MRSE, 17.5 mm for MRSA, and 16 mm for S. pyogenes. They con-
cluded that the susceptibility for Gram-positive bacteria, and especially for MRSA bacteria,
is because of the inhibition of the synthesis of the bacterial cell wall.

In 2010, Lara et al. [194] conducted a very similar study in which they sought to inhibit
the growth of the pathogens S. pyogenes resistant to erythromycin, E. coli 0157:H7 resistant
to ampicillin, and P. aeruginosa resistant to multiple antibiotics, using a concentration of
6.25, 12.5, 25, and 50 mM of AgNPs of 100 nm. They reported the inhibition of 99.7%
of S. pyogenes, 95.7% for E. coli, and P. aeruginosa 92.8%, concluding that the higher the
concentration, the greater the death of bacteria, and also confirming that time is not an
important factor for AgNPs to cause bacterial inhibition. However, they decided to carry
out studies to see if bacteria could become resistant to the AgNPs functionalized with
antibiotics, leaving the bacteria exposed to the AgNPs for 3 weeks. They reported that
MRSA could grow at a concentration of nanoparticles of 100 mM, S. aureus at 200 mM,
and, finally, for P. aeruginosa and E. coli, they achieved to generate resistance at the con-
centration of 75 mM. These results show that lipopolysaccharides could trap and block
positive charges of silver nanoparticles and make Gram-negative bacteria less vulnerable to
nanoparticles. However, it has also been proposed that AgNPs adhere to the surface of the
cell membrane, thus altering their function, penetrating the cells, and releasing silver ions
that cause oxidative stress through ROS. On the other hand, resistance to AgNPs implies
changes in the inhibited cell target, so, if there is a change in proteins or in how antibiotics
are directed, the bacterial sensitivity to the antibiotic used can be modified.

In 2018, Panáček et al. [179] demonstrated the resistance of the Gram-negative strains
E. coli and P. aeruginosa to AgNPs after repeated exposures. They determined the minimum
inhibitory concentrations (MIC) of AgNPs at 432 mg/L. Their results focus on bacteria
repeatedly exposed to sub-inhibitory concentrations of AgNPs, where pathogens were
able to rapidly develop AMR. They state that said resistance is due to the production of
flagellin, which is an adhesive protein of the bacterial flagellum that causes the aggregation
of AgNPs, eliminating its antimicrobial effect against Gram-negative bacteria.

Ashraf et al. [195], in their study of bacterial extracellular proteins interacting with
silver ions for the production of AgNPs encapsulated in proteins, found the potential that
the E. cloacae protein has within the synthesis of AgNPs. It assists in the elimination of the
risk of toxic agents, and this could have a great impact on medical applications, since it
generates greater biocompatibility. In this study, they carried out various nanoparticle’s
synthesis by chemical and biological methods, where they obtained nanoparticles with
a size approximate of 58 nm, to which they exposed various Gram-positive and Gram-
negative strains, proposing the mechanism of interaction between the extracellular protein
and the silver ions that are released to cause cell death. However, they emphasize the need
for more research to confirm their hypothesis.
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The discovery of antibacterial and catalytic activities of AgNPs that are biosynthesized
with Convolvulus fruticosus (CF-AgNPs) to inhibit the growth of pathogens resistant to
multiple drugs was studied by Shirzadi-Ahodashti et al. [196]. They obtained nanoparticles
of 45 nm with spherical morphology. AgNPs have been exposed to the strains S. aureus,
E. faecalis, A. baumannii, E. coli, P. mirabilis, K. pneumoniae, and P. aeruginosa, using a MIC
of 0.1 µg/mL for S. aureus, A. baumannii, and E. faecalis, which had a greater inhibitory
response compared to the exposure of the reference antibiotic ciprofloxacin, while E. coli
showed the same inhibitory activity for both the antibiotic and AgNPs. Finally, K. pneu-
moniae and P. mirabilis showed a lower sensitivity to CF-AgNPs with MIC. The authors
report various mechanisms of action of nanoparticles, such as the release of lipopolysaccha-
rides, electrostatic interactions, and alterations in the permeability of the cell membrane.
However, they specifically describe that a binding and penetration of CF-AgNPs into the
bacterial membrane was observed through the destruction of the cell wall; likewise, some
reactions occurred with the thiol groups (-SH) of proteins, and, finally, DNA replication
was prevented, causing bacterial death.

5.2.2. Zinc Oxide Nanoparticles

Zinc oxide nanoparticles (ZnONPs) have been of interest to researchers because they
are inorganic semiconductors, which can be easily absorbed by organisms in regulated
concentrations [197]. It has caused the fact that the research of ZnONPs focuses on en-
vironmental, biological, cosmetic [198], and renewable energy applications [199], such
as catalysts [200], biosensors, and even microbial enzyme inhibition, among many other
applications. Its application in the medicine and pharmaceutical industry is not behind
because, recently, its use as anti-inflammatories, for drug administration, cancer therapy,
and as antimicrobial agents [201] on their own or as a potentiator for antibiotics [202] has
been studied.

As in other metal or metal oxide nanoparticles, ZnONPs have mechanisms of action
against bacteria. However, their exact mechanism remains difficult to confirm. For this
reason, various authors have supported the interactions caused by ROS, since inducing
oxidative stress in cells interrupts the synthesis of biomolecules, such as lipids, proteins,
and even DNA, resulting in bacterial death [173,203]. In addition, it has been proposed
that particle size, as well as the morphology they present, can cause less or more damage,
depending on what is intended, since these can enter the cells and damage the integrity
of bacteria by attacking the membrane [202,204]. Finally, there is a discussion about the
possibility that Zn+2 ions can delay the growth of bacteria by binding with the receptors
located in the membranes [205–207].

In 2010, Banoee et al. [208] conducted a study of ZnONPs where they improved the
antibacterial activity of the antibiotic ciprofloxacin in S. aureus and E. coli bacteria. The
authors report nanoparticles of 10 and 45 nm in diameter with a concentration of 500 µg
and obtained an increase in the zone of inhibition by 27% for S. aureus and by 22% for
E. coli. They concluded that ZnONPs are powerful adjuvants for antimicrobial inhibition
when working together with antibiotics because the mechanism of action of antimicrobials
is potentiated.

Patra et al. [209] carried out the study of ZnONPs with a size of 18 to 20 nm and with
a semispherical morphology, which was functionalized with the antibiotics ciprofloxacin
(CIP), whose ligands were verified by the FTIR spectroscopic technique. Inhibition of
S. aureus, Klebsiella sp., and E. coli was given with a MIC of 10 µg/mL of ZnONPs-CIP,
obtaining favorable results for bacterial death compared to the trial carried out of the
pathogens with the antibiotic. The authors reported that the combination between the
nanoparticle improve the antibiotic activity, causing damage to the bacterium cell mem-
brane, which allowed ciprofloxacin to enter into the cell, causing ROS and, thus, interrupt-
ing cell division.

The biocompatibility of ZnONPs has been demonstrated, Zhong et al. [210] incorpo-
rated ZnONPs into carboxy methyl chitosan (CMCS) by spray drying. They demonstrated
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that both ZnONPs and CMCS-ZnO microspheres of sizes from 1 to 6 µm in diameter had
the same antimicrobial activity, which was dose dependent. The activity against E. coli
showed that the ZnONPs alone have better activity with the smallest NPs (10 nm). These
NPs exhibit an 87% of inhibition with 125 µg/mL while the ZnONPs with a size of 30 nm,
while ZnONPs with a size of 10 nm showed a 97% of inhibition with 62.5 µg/mL. The use
of CMCS-ZnO microsphere showed an increase of concentration for the E. coli inhibition
until 2 µg/mL. The explanation for this is that the CMCS-covered ZnONPs turned out to
have a better interaction when binding to the cell membrane through the –NH2 group of the
CS group, thus, improving the permeability of the membrane and making the cytoplasm
capable of filtering the nanostructure causing cell death.

The ZnONPs antimicrobial mechanism is based on their ability to damage the integrity
of the cell membrane, slow down the replication of AMR genes in bacteria, prevent the
formation of biofilms, and decrease the hydrophobicity of the cell surface. Likewise, the
antibacterial action of these nanoparticles depends significantly on their size, since it is a
crucial factor due to the ease of entry of small particles through the pores on the surface of
the bacterial cell. These pores on the surface of the bacterial cell are in the nano-size range.
Furthermore, the ZnONPs exhibited anticancer activity compared to normal cells. Two
mechanisms based on ROS production, ZnONPs toxicity and induction of apoptosis, were
predicted [211–214].

5.2.3. Gold Nanoparticles

AuNPs arrived at the pharmaceutical and medical industry due to their intrinsic
properties because they can be synthesized in different sizes and morphologies. In addition,
the reduction from Au+3 to Au0 facilitates their functionalization with ligands, such as
aptamers, polymers, drugs, and genetic material, among others [215–217]. In addition,
the chemical inertness of gold allows good in vitro and in vivo biocompatibility [218], so
there has been a proposal to functionalize AuNPs surfaces with antibiotics to increase
antibacterial efficacy against resistant pathogens [219].

In 2016, a new approach was reported using gold nanoparticles functionalized with
chitosan streptomycin (CANP). These ligands were characterized by various techniques,
such as UV-Vis, SEM, TEM, and DLS. The 35 nm size spherical nanoparticles were stud-
ied to avoid the formation of biofilms in microorganisms, such as Listeria monocytogenes,
S. aureus, E. coli, P. aeruginosa, and Salmonella typhimurium, obtaining favorable results for
research, by inhibiting the survival of bacteria up to 95%, whose mechanism of action by
the nanostructure was focused on cell wall damage [220].

Kalita et al. [167] demonstrated the increase in the bactericidal activity of the beta-
lactam broad spectrum drug against Methicillin-Resistant Staphylococcus aureus (MRSA). In
this research, they functionalized gold nanoparticles with amoxicillin (Amox) through the
electrostatic interaction of the attraction forces regulated by the protonated amino and the
thioether group. The AuNPs-Amox complexes were tested in in vitro and in vivo trials,
where they revealed a potent anti-MRSA activity, improving the survival rate of clinical
patients. They reported that the use of the nanostructure could assist the antibiotic in
penetrating inside the cell. In addition, it inhibits the cell wall synthesis.

Hu et al. [221], proposed biofilms based on gold nanoparticles for photothermal
ablation treatment to fight the resistance of Methicillin-Resistant Staphylococcus aureus.
The AuNPs were 14 nm in diameter with a mixed charge of hybrid ions, which adapt
to the surface of any biomolecule, and were functionalized with 10-mercaptodecyl and
electrolytic 11-mercaptoundecanoic acid. The obtained favorable in vivo results, in which
healthy tissues did not show damage by AuNPs due to NIR light irradiation, showing
damage and inhibition of the spread of bacteria.

Due to generalized multidrug resistance caused by antibiotic abuse, Xie et al. [222]
proposed the use of 2 nm diameter gold nanoparticle (AuNP) to fight multi-resistant
bacteria (MDR), coating AuNP with quaternary ammonium (QA) as a solution to MDR
Gram-positive bacteria, including Methicillin-Resistant Staphylococcus aureus (MRSA) and
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Vancomycin-Resistant Enterococci (VRE) in vivo assays. They present results where QA-
AuNP kills bacteria through combined physicochemical mechanisms without causing
damage to surrounding tissues in the living organism.

In 2019, a study in which there was an evaluation of the antibacterial activity of
gold nanoparticles of 10 nm in diameter, functionalized with gentamicin and amikacin
in Acinetobacter baumannii strains from patients with severe burn infections, was reported.
They obtained results of 94.5% in the bacterial inhibition of AuNp with amikacin, while
AuNPs functionalized with gentamicin had an antimicrobial effect 50% superior to the use
of gentamicin alone. They concluded that the combination of amikacin and gentamicin
with AuNPs has a very significant antibacterial efficacy against A. baumannii [223].

Khan et al. [224] used gold nanoparticles bound to chitosan oligosaccharide (COS-
AuNPs) to inhibit the formation of Pseudomonas aeruginosa biofilms, where they obtained
favorable results for the eradication of biofilms and were able to reduce bacterial hemolysis
and different virulence factors produced by P. aeruginosa. They concluded that the hybrid
COS-AuNPs nanoformulation could act as a potential agent to exhibit inhibitory properties
against pathogenesis derived from biofilm formation as a result of a resistance mechanism
of P. aeruginosa.

In more recent studies, Riaz et al. [225] reported the effects of gold nanoparticles
coated with flavonoids (FauNP) with spherical shape and 23 nm in diameter in mice,
against the resistance of Enterococcus faecalis, which mainly colonize tissues in the liver and
the kidneys. They obtained significant results in the reduction in bacterial counts in vivo
and in vitro in organs compared to free flavonoids.

Chavan et al. [166] synthesized 25 nm AuNPs coated with ampicillin (AuNPs-Amp)
and evaluated their interaction with Escherichia coli bacterial cells. The results showed
a successful accumulation of AuNPs-Amp on the surface of the bacterial cell, forming
pores in the bacterial membrane. They evaluated membrane damage by atomic force
and fluorescent microscopy, and functionalized particles showed promising antimicrobial
activity against resistance to ampicillin in E. coli bacteria resistant to ampicillin with an
increase of 95%.

5.2.4. TiO2 Nanoparticles

Another clear example of materials that have been of interest to researchers is titanium
oxide nanoparticles (TiO2NPs), due to their chemical and physical stability, as well as their
strong corrosion resistance. These nanoparticles have low toxicity at low concentrations
without altering their antimicrobial activity, which has makes them even more interest-
ing. In general, TiO2NPs are reported in conjunction with other types of antimicrobial
nanoparticles. Such is the case in the study carried out by Stoyanova et al. [226], where
they prepared TiO2-ZnO nanocompounds to study their bactericidal properties in E. coli
strains. Another similar case was that of Menazea et al. [227], where they studied a ZnO
compound spiked with TiO2 to evaluate its antimicrobial effect against resistant strains
E. coli, P. aeruginosa, S. aureus, and B. subtilis, obtaining results of an increase in inhibition
when ZnO NPs were spiked with TiO2 compared to when they were each separately.

Sunscreen with TiO2/Zn2 and TiO2/Ag has been developed to inhibition of UV radia-
tion and bacteria protection. Nanocomposite showed a correlation between concentration
and inhibition efficiency. The most effective concentration to inhibit in 60–70% of E. coli
and S. aureus bacteria was 100 mg/mL [228].

It has been proven that the interaction between the phospholipid presented in the
bacteria membrane and TiO2 nanoparticles. This interaction has a direct relationship with
the superficial charge and the pH. With acid pH, the nanoparticles have a positive charge
that allowed the interaction with the membrane cell. In addition, UV irradiation has a
greater effect on membrane stabilization, triggering oxidative stress [229].

TiO2 photoactivity has been increased with sodium nitrite, increasing nanoparticle
ability to inhibit MRSA Staphylococcus aureus and kill E. coli. The reported mechanisms
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to inhibit these bacteria were the production of nitrogen reactive species as peroxynitrite,
tyrosine nitration [230].

5.2.5. Other Nanoparticles

The antimicrobial activity presented by magnetic iron, manganese, and magnesium
nanoparticles has aroused the interest of researchers in recent years due to the dam-
aging effect they have on bacteria by interfering with their respiratory and metabolic
processes [40,211,231,232]. Likewise, Davarpanah et al. [233] mention in their study that
the release of metal ions, the destruction of the cell membrane and wall, and the generation
of ROS, as well as the internalization of nanoparticles in bacteria, are the mechanisms most
representative of inhibiting the growth of pathogens.

In 2019, Madubuonu et al. [234] used magnetic nanoparticles to inhibit the growth
of Gram-positive bacteria mainly, they said nanostructures were synthesized by the sol-
gel method with sizes of approximately 71–90 nm. In this investigation they tested the
cytotoxicity of the nanoparticles with a concentration of 256 to 2040 µg/mL approximately
in E. coli, Shigella, P. aeruginosa, S. aureus, and Salmonella typhi, obtaining favorable inhibition
results with Gram-positive bacteria, while, in Gram-negative bacteria, they failed to inhibit
the growth, attributing it to the natural resistance of the bacteria by having a double
lipid membrane.

On the other hand, cobalt oxide nanoparticles have been studied in the last three years
after discovering their antibacterial properties [211,235]. In 2019, Dogra et al. [236] evalu-
ated cobalt hydroxide and oxide nanostructures synthesized by the microemulsion method,
obtaining favorable results for the antimicrobial property against the multi-resistant bac-
terium S. aureus, reporting that said bacterium presented a cellular contraction, rupture of
the cell wall, and membrane, as well as a change in the morphology of the microorganism.

Table 2. Recent studies on metallic nanoparticles against pathogenic bacteria resistance.

Elemental
Composition

Size and
Morpho

Concentration
(µg/mL) Bacteria Antibiotic Inhibit Mechanims Author

AgNPs 10 nm 2.5 P. aeruginosa N/A ~90%

AgNPs can enter
cells and inhibits

enzymatic
systems in the

respiratory chain,
thereby altering

their DNA
synthesis

Salomoni
et al.

(2017) [4]

AgNPs 35 ± 15 nm
Spheroide

0.35
0.5
0.05

8

E. coli
S.

typhimurium
S. aureus
B. subtilis

Chloramphenicol 50% The combination
of the AgNPs +

antibiotic
produced
membrane

damage

Vazquez-
Muñoz et al.
(2019) [237]0.05

0.1
16

0.12

Kanamycin 95%
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Table 2. Cont.

Elemental
Composition

Size and
Morpho

Concentration
(µg/mL) Bacteria Antibiotic Inhibit Mechanims Author

AgNPs ~26 nm
Spheras

1 + 5 E
1 + 10 AMP

1 + 30 C
1 + 30 KF
1 + 2 DA
1 +30 TE

1 + 10 GEN
1 + 30 AMC
1 + 10 CFP
1 + 30 CXM

S. aureus
MRSA
E. coli

P. aeruginosa
A. actino-

mycetemcomi-
tans

Erythromycin
(E)

Ampicillin
(AMP)

Chloramphenicol
(C)

Cephalothin
(KF)

Clindamycin
(DA)

Tetracycline
(TE)

Gentamycin
(GEN)

Amoxycillin
(AMC)

Cefpodoxime
(CFP)

Cefuroxime
(CXM)

~80%

ROS generation
and mechanism

of action of
antibiotic

Ipe et al.
(2020) [238]

AgNPs 8–21 nm
Spherical

15.62
15.62

7.8
31.25

S. epidermis
S.

haemolyticus

Ciprofloxacin
Methicillin

Gentamycin
Rifampicin

0.25 mm
0.06 mm
0.12 mm

1 mm

ROS generation
and

enhancement

Thomas et al.
(2020) [239]

Mesoporous
silica

50–100 nm
Spherical

426
170 A. baumannii Cefepime

Meropenem
11 mm
11 mm

Antibiotic
mechanims

Najafi et al.
(2021) [240]

AuNPs 33 ± 14 nm
2/4
1/2
1/2

E. coli
S. aureus

S. epidermis
Amoxicillin

31 mm
30 mm
19 mm

The combination
of antibiotic and
NPs increase the
concentration of
antibiotic at the

site of bacterium-
antibiotic

interaction; in
additionthe
multivalent

presentation of
amoxicillin

blockade of the
bacterial efflux

pump

Kalita et al.
(2016) [167]

AuNPs 35 nm
200 nm

0.72
0.73

Klebsiella
pneumaniae

A. baumannii

Impinem
Meropenem

72 mm
I/35 &
48 mm
I/200

73 mm
M/35 &
46 mm
M/200

The NPs
improve the

mechanism of
action of
antibiotic

Shaker et al.
(2017) [241]

AuNPs 8 ± 2 nm 0.15
1.5

S aureus
MRSA Amoxicillin 85%

ROS generation
by the

antibiotic effect

Silvero et al.
(2018) [242]

AuNPs 30 ± 20 nm
Irregular 1.5 P aeruginosa Amoxicillin 60–70% Biofilm damage Rocca et al.

(2020) [243]

AuNPs 5 nm 1.18
0.23 E. coli Colistin -

6.8% fold N/A Fuller et al.
(2020) [244]
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Table 2. Cont.

Elemental
Composition

Size and
Morpho

Concentration
(µg/mL) Bacteria Antibiotic Inhibit Mechanims Author

AuNPs 25 nm 62.5 P. aeruginosa
S. aureus N/A 19 mm

15.8 mm

AuNPs have a
significant

inhibitory effect
on bacteria, to
their ability to
associate with

the bacteria cell
wall and rupture

it, as well as
disrupting
bacterial

metabolism by
interfering with
bacterial DNA

Abdulazeem
et al.

(2021) [245]

TiO2NPs
64 ± 0.14 nm

Irregular
spheres

8–64 P. aeruginosa

Ceftriaxone
Amikacin

Ciprofloxacin
Cefepime

96%
88%
80%

100%

The antibiotic in
combination

with the
nanostructure
increases the

synergistic effect
of an antibiotic
as can inhibit

the cell

Youssef et al.
(2020) [246]

6. Conclusions

The inorganic nanoparticles composed of metals, including silver, magnetic metals,
such as iron and magnesium, cobalt, zinc oxide, titanium dioxide, and gold, have been
shown to possess high antibacterial activity. However, limited information is available on
the in vivo antibacterial efficacy of nanostructures, their ability to inhibit pathogenic strains,
and mechanisms of action. In general, metal nanoparticles have some advantages, such as
a large surface area and multimodal applications. However, there are obstacles of toxicity,
instability, and storage which prevent its replication and the limitation of information.

It has been proposed that, once NPs accumulate in the metabolic pathway and cross
the bacterial membrane, they can interact with lysosomes, DNA, enzymes, and ribosomes,
which triggers oxidative stress, changes in membrane permeability, cell electrolyte imbal-
ances, heterologous alterations, protein inactivation, inhibition of resistant enzymes, and
decoding of genomic expression.

The NPs’ toxicity depends on both the NPs and bacterial characteristics. Differences
between experimental conditions make it difficult to compare results. However, NPs can
interrupt the AMR and make the cells more sensitive to the antibiotic, generating a new
use of the ancient antibiotic with improved characteristics.

Finally, nanoparticles not only improve the therapeutic activity of antimicrobials but
also restrict the stimulation of resistance generated by bacteria. Thus, there is a need for
developing simultaneous strategies to deactivate beta-lactamase, deactivating enzymes,
efflux pumps, as well as generate damage to cell wall, and membrane, protein and DNA
damage, change in cell permeability, and generation of ROS.
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