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Abstract: A common malignancy that affects women is breast cancer. It is the second leading cause
of cancer-related death among women. Metabolic reprogramming occurs during cancer growth,
invasion, and metastases. Functional magnetic resonance (MR) methods comprising an array of
techniques have shown potential for illustrating physiological and molecular processes changes
before anatomical manifestations on conventional MR imaging. Among these, in vivo proton (1H)
MR spectroscopy (MRS) is widely used for differentiating breast malignancy from benign diseases by
measuring elevated choline-containing compounds. Further, the use of hyperpolarized 13C and 31P
MRS enhanced the understanding of glucose and phospholipid metabolism. The metabolic profiling
of an array of biological specimens (intact tissues, tissue extracts, and various biofluids such as blood,
urine, nipple aspirates, and fine needle aspirates) can also be investigated through in vitro high-
resolution NMR spectroscopy and high-resolution magic angle spectroscopy (HRMAS). Such studies
can provide information on more metabolites than what is seen by in vivo MRS, thus providing
a deeper insight into cancer biology and metabolism. The analysis of a large number of NMR
spectral data sets through multivariate statistical methods classified the tumor sub-types. It showed
enormous potential in the development of new therapeutic approaches. Recently, multiparametric
MRI approaches were found to be helpful in elucidating the pathophysiology of cancer by quantifying
structural, vasculature, diffusion, perfusion, and metabolic abnormalities in vivo. This review focuses
on the applications of NMR, MRS, and MRI methods in understanding breast cancer biology and in
the diagnosis and therapeutic monitoring of breast cancer.

Keywords: breast cancer; biology; metabolism; metabolomics; nuclear magnetic resonance (NMR);
magnetic resonance imaging (MRI); magnetic resonance spectroscopy (MRS); biomarkers;
therapeutic response

1. Introduction

Breast cancer is a significant healthcare challenge and a major reason for cancer-related
mortality among women all over the World [1]. Early detection and therapy contribute to
the survival increase and clinical outcomes of breast cancer patients. Despite significant
advancement directed towards improving diagnostic and therapeutic approaches, early
diagnosis and therapeutic response/resistance remain a clinical challenge. Breast tumors
exhibit considerable heterogeneity, which contributes to varying therapeutic responses. This
heterogeneous nature in terms of hormonal receptor status and human epidermal growth
factor receptor 2 (HER2) amplification is used to guide targeted therapy. A malignant
cell acquires distinct characteristics of unlimited replication potential, angiogenesis, tissue
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invasion, metastases, resistance to apoptosis, and metabolic reprogramming, which support
the formation of a tumor mass and its growth [2]. Thus, a comprehensive understanding
of the underlying biochemical, vascular and functional properties contributing to tumor
growth may help develop better diagnostic/monitoring and therapeutic approaches.

The tools based on the magnetic resonance (MR) phenomenon offer various distinct
features of breast tumors that were explored for effective clinical management during
the last three decades. Multi-parametric MR-based approaches showed the potential
to classify patients according to pathology or their responses to treatment and improve
clinical outcomes. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is
the standard technique for breast imaging which relies on the administration of contrast
agents and reflects the tumor vascularity, morphology, and kinetics of breast lesions [3].
DCE-MRI is established as a screening modality for women with various risk profiles, the
sensitivity ranges (81–100%) [4]. Tumor proliferation requires the generation of new vessels
or angiogenesis for the supply of nutrients to cells. These vessels differ in characteristics
from normal vessels as they have larger diameters, lack contractile properties, and have
more permeability [5]. The characteristics of tumor vessels are measured by perfusion-
weighted imaging (PWI), and it has become a promising tool for characterizing tumor
pathophysiology [6].

Diffusion-weighted imaging (DWI), which measures the motion of water molecules in
tissues, is sensitive to cell density, microstructure, and membrane integrity. For example,
studies documented that malignant breast lesions showed decreased water diffusion,
attributed primarily to the increased cellularity, enabling the differentiation of malignant
and benign breast tumors [7–14]. Furthermore, the viscoelastic properties of tissues can be
quantitated using MR elastography (MRE) [15–17].

The cancer cells also reprogram their metabolic pathways to fulfill the continuous
supply of materials required for the biosynthesis of membranes, genes, and proteins [18].
Magnetic resonance spectroscopy (MRS) is an important tool that is used majorly in three
forms, in vivo, ex vivo, and in vitro, to characterize the metabolic state of malignant, benign,
and normal breast tissues. The potential of using in vitro nuclear magnetic resonance
(NMR)-based metabolic profiling of tissue extracts, cell lines, and biofluids is reported
to identify a large number of small molecules as potential biomarkers for diagnosis and
therapy monitoring [19–31]. Studies also used solid-state MR spectroscopic analysis of
intact biopsied tissues using the high-resolution magic angle spinning (HRMAS) method
to monitor metabolite levels for the diagnosis/prognosis of breast tumors [32–39]. Breast
in vivo MRS studies showed high levels of choline-containing metabolites (tCho), indicating
the rapid proliferation of malignant tumors [40–47]. Recently, hyperpolarized 13C MRI (HP
13C MRI) was also explored to probe the altered tumor metabolism [48].

This review briefly describes the potential of various MRI and MRS methods in
studying breast cancer biology and metabolism and their role in determining biomarkers
for diagnosis and therapeutic monitoring (Figure 1). Table 1 compare the advantages and
limitations of MRS and MRI studies.

Table 1. Comparison of in vitro, ex vivo, and in vivo magnetic resonance spectroscopy (MRS) and
MRI techniques.

Characteristics Magnetic Resonance Spectroscopy Magnetic Resonance
Imaging

In Vitro Ex Vivo In Vivo

Information Biochemical composition
(metabolite detection)

Biochemical composition
(metabolite detection)

Biochemical composition
(metabolite detection)

Anatomic
(structure and morphology),

functional

Sample/Subject Tissue extract, biofluids,
cell lines, aspirates Excised tissues/biopsies Living

humans/organisms Living humans/organisms

Equipment NMR Spectrometer NMR Spectrometer with
accessories for HRMAS Human MRI Scanner Human MRI Scanner
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Table 1. Cont.

Characteristics Magnetic Resonance Spectroscopy Magnetic Resonance
Imaging

In Vitro Ex Vivo In Vivo

Field Strength High field strength
9.4 T–21.1 T

High field strength
9.4 T–18.8 T 1.5 T–7 T 1.5 T–7 T

Nuclei of interest 1H, 13C, 31P, 23Na, 19F 1H, 13C
1H, 31P, 23Na, 19F

13C- hyperpolarized
1H from fat and water

Data 1D/2D spectra 1D/2D spectra SVS 1D, SVS-2D, CSI
(MRSI)

Conventional T1,
T2-weighted, DCE-MRI,

Diffusion-weighted,
Perfusion weighted, MR

Elastography, fMRI

Advantages

High sensitivity and
resolution, detection of a

large number of
metabolites, easy

quantification, easy
experimentation

High sensitivity and
resolution, detection of a

large number of
metabolites, quantification

not that easy, special
experimentation

Organ-specific metabolite
composition, and

longitudinal studies.

Organ-specific structural
and functional studies,

longitudinal studies
possible.

Limitations Tissue excision is invasive Tissue excision is invasive

Low sensitivity and
resolution, detection of a

small number of
metabolites,

Claustrophobia of patients

Claustrophobia of patients,
contrast required in some

studies

Reproducibility Lesser than in vivo Lesser than in vivo High High

Abbreviations Used: 1D—one-dimensional spectrum; 2D—two-dimensional spectrum; HRMAS—high-resolution
magic angle spinning; SVS—single voxel spectroscopy; CSI—chemical shift imaging; DCE-MRI—dynamic
contrast-enhanced MRI.
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2. Breast Cancer Biology: Metabolic Reprogramming

The altered composition of metabolites in disease states such as cancer helps provide
meaningful information on the associated metabolic reprogramming of cancer progression.
The following section briefly presents the importance of altered metabolites in understand-
ing the metabolic reprogramming associated with tumorigenesis in breast cancer.

Glucose (Glc) is the primary energy source in normal cells, which is converted into
pyruvate through the glycolysis pathway. Under normal conditions, pyruvate is converted
to acetyl co-enzyme A which enters into the tricarboxylic acid cycle for further reactions
of energy generation. Nicotinamide adenine dinucleotide (NADH) and flavine adenine
dinucleotide (FADH2) molecules are formed through the tricarboxylic acid cycle oxidized
through oxidative phosphorylation, also known as the electron transport pathway to
produce adenosine triphosphate molecules, which serve as the energy currency of cells.
In anaerobic conditions, pyruvate (Pyr) is dehydrogenated to lactate (Lac) for energy
generation, which is less energy-efficient than oxidative phosphorylation. Most NMR
studies reported higher lactate levels in breast cancers, indicating a higher rate of glycolysis
despite the process being less energy efficient.

Interestingly, even with sufficient oxygen levels, tumor cells have higher rates of
glycolysis than normal cells; this condition is referred to as aerobic glycolysis [49,50]. The
alterations in enzyme regulation mechanisms occur in tumors which supports the higher
rate of glycolysis. Low levels of ATP activate enzyme phosphofructokinase, which leads to
higher levels of fructose 1,6 di-phosphate and consequently a higher level of Pyr [51]. In
addition, an increased concentration of fructose 1,6 di-phosphate is documented in tumors,
leading to the significant activation of pyruvate kinase and enhanced Lac production [51].

Higher rates of glycolysis are an adaptation of the metabolism to facilitate the produc-
tion of the substrates needed for rapid proliferation [52]. For example, ribose-phosphate
produced by the pentose phosphate pathway is required for nucleic acid synthesis. Ad-
ditionally, a higher level of Lac is favorable for tumors, making them resistant against
the immune system and more destructive for the surrounding tissue [53]. Inefficient ATP
production is compensated by an increased rate of Glc uptake in tumors. Haukaas et al.
reported three metabolic clusters of breast cancer that showed differences in protein as well
as in breast cancer-related genes, indicating that the molecular heterogeneity of tumors is
also found to express at the metabolic level [54].

The HRMAS MRS analysis of 228 tumor samples revealed differences in the metabolic
profiles, which could be categorized into three different metabolic clusters (Mc1, Mc2, and
Mc3) based on combining metabolic profiling with gene expression and protein expression
profiles. The Mc1 showed the highest levels of membrane metabolites GPC and PC. Mc2
was characterized with the highest levels of Glc, while Mc3 showed the most elevated
levels of alanine and lactate [54].

Breast cancer also showed abnormalities in choline and lipid metabolism [55] and
significantly higher levels of choline-containing compounds (tCho), especially phospho-
choline (PC), compared to normal tissue/cells [19–47,56–59]. Cell culture studies docu-
mented the association of PC levels with rapid proliferation [60,61]. A correlation between
the PC level and the proliferative state in cell culture was reported; low PC levels were
found in nonproliferative cells [60]. Phospholipids phosphatidylcholine (PtdCho) and
phosphatidylethanolamine (PtdEtn) are major constituents of cell membranes. An under-
standing of the biosynthesis of PtdCho explains the increased levels of these metabolites in
rapidly dividing cells. Glycerophosphocholine (GPC) and PC are important metabolites of
phospholipid metabolism. The biosynthesis of PtdCho takes place via a three-step pathway,
also known as the Kennady Pathway. It is regulated by three enzymes, namely choline
kinase (CK), phosphocholine transferase (PCT), and CTP-cytidyl transferase (CT). The
metabolites PC and phosphoethanolamine (PE) serve as precursors for the synthesis of
PtdCho and PtdEtn. PC is produced by the phosphorylation of Cho, and this reaction
is catalyzed by the enzyme CK. Stimulation factors such as hormones, growth factors,
fetal serum, or tumor promoters induce the activation of the enzyme CK. It increases the



Metabolites 2022, 12, 295 5 of 23

phosphorylation of choline to PC, consequently increasing its level and biosynthesis of
PtdCho [62] (see Figure 2).
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Further, the membrane phospholipids PtdCho and PtdEtn are hydrolyzed by enzyme
phospholipase, and PC, GPC, and PE are produced. Thus these compounds play the role of
a precursor and as a product in the phospholipid metabolism. It is known that increased
membrane turnover requires the rapid synthesis and degradation of phospholipids in
tumor cells. The hydrolysis of PtdCho is mediated by three kinds of phospholipases,
specifically phospholipases, PLA2, PLC, and PLD. The phospholipases play a dual role
in balancing the degradation and the synthesis of phospholipids. Breast cancer cell lines
show elevated expression of PLD compared to normal cell lines [63]. Further, increased
PLC activity and CK activity are also reported in breast cancer cells [64]. Katz-Brull et al.
reported a faster rate of transport of Cho and its phosphorylation in MCF-7 breast cancer
cell lines than that seen in normal epithelial mammary cells [61]. These results were also
supported by a reduction in choline transport in response to TNF therapy in human breast
cancer cells [65]. These studies suggested that both the increased transportation and the
enhanced CK and PLD activities contributed to the increased levels of PC in malignant cells.

The molecular heterogeneity of breast tumors is also manifested as higher tCho levels,
indicating that there may be changes in the phospholipid metabolism in tumors of various
molecular subtypes. An in vivo MRS study by Tozaki and Hoshi showed a correlation of
tCho with ER status, triple-negative (TN) status, and nuclear grade [66]. Choline levels
correlate with the expression of calcium-sensing receptors, suggesting its role in choline
synthesis in breast cancer [67]. Patients with TN status had significantly lower tCho than
those with non-TN and triple positive cases [42]. Recently, we reported the association
of tCho with the Wnt/β-catenin pathway in malignant breast lesions [68]. In malignant
tissues, tCho showed a positive correlation with nuclear and cytosolic expressions of
β-catenin and cyclin D1. Higher cytosolic β-catenin expression was found in PR negative
patients than PR positive [68].

Additionally, breast tumors modulate amino acid metabolism. In tumor cells, glu-
tamate (Glu) and glutamine (Gln) are also utilized as an energy source by entering into
the TCA cycle [69,70]. Glutamate is also used for the synthesis of glutathione, an impor-
tant antioxidant, or its amino group can also be used for the synthesis of nonessential
amino acids such as aspartate, alanine (Ala), glycine (Gly), and serine [69,70]. Glycine
can be synthesized from its precursor serine from 3-phosphoglycerate, an intermediate
of glycolysis. It can also be synthesized by the oxidation of Cho to betaine. Betaine is
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then converted to sarcosine, which is converted to Gly. It is reported that mitochondrial
serine hydroxymethyltransferase 2 (SHMT2) is overexpressed in human tumors. It cat-
alyzes the conversion of serine to Gly [71]. High Gly is found to be associated with poor
prognosis [37,72]. Thus, altered levels of the above amino acids suggests the presence of
adapting metabolic pathways that support tumor growth. Further, elevated levels of the
amino acid taurine (Tau) are found in breast cancer [33,72,73]. Lower Tau levels are seen in
ER- compared to ER+ and in HER2+ compared to negative tumors [73].

3. Breast Biomarkers: NMR Based Metabolomics, Metabolic Fingerprinting

Metabolomics is a holistic study of the chemical fingerprints of metabolites or small
molecules in tissues, biofluids, or organisms [74–78]. These metabolic fingerprints are
related to various metabolic processes and environmental alterations. It comprehensively
quantifies and analyzes exogenous and endogenous metabolites of the metabolome with
high throughput to discover new diagnostic biomarkers of diseases. Many metabolites,
including sugars, amino acids, organic acids, lipids, fatty acids, and numerous other small
molecules, provide holistic information on the metabolic and physiological state, offering
new insight into pathogenesis and treatment strategies [74–78]. Metabolic fingerprinting
using a high-throughput tool such as NMR spectroscopy has become a powerful system
biology approach to discover biomarkers and understand complex disease processes. The
group of Nicholson developed statistical approaches combining NMR methods for the
noninvasive rapid characterization of metabolic fingerprints [74–78]. Garcia-Perez et al. re-
cently described a system for identifying molecules in NMR-based metabolic phenotyping,
including information on sample preparation, spectral acquisition, and statistical modeling.
The multi-platform system proposed to identify signals in the NMR spectra corresponding
to the same molecule using statistical total correlation spectroscopy (STOCSY), subset opti-
mization by reference matching (STORM), and resolution-enhanced (RED)-STORM [74].
Spectral databases listing the metabolites present in biofluids such as urine and blood
are available. NMR offers an array of experiments that can be used according to the na-
ture of the sample. Analyzing the metabolic profile of a biological specimen, elucidating
metabolite structure, and metabolite detection in living tissue are all possible using NMR.
However, different hardware and detection pulse schemes are required for in vivo and
in vitro NMR measurements. For in vitro and ex vivo metabolic fingerprinting, an array
of NMR experiments such as one-dimensional (1D), two-dimensional (2D), and higher
dimensional homo- and hetero-nuclear can be performed for comprehensive metabolic
profiling studies [74,79]. Proton (1H) is the most sensitive and abundant nuclei present, and
hence, it is commonly used for NMR-based metabolomics studies. However, other nuclei
such as 13C, 31P can be used for specific applications. Readers are referred to the literature
for a more detailed description of the various NMR techniques and protocols employed for
metabolomics study [74,79].

3.1. Tumor Tissue, Axillary Nodes: HRMAS and In Vitro MRS Studies

High-resolution magic angle spinning (HRMAS) MRS emerged as a valuable tool
for studying the metabolomics of intact tumor tissues [32–34]. Sitter et al. reported a
correlation of metabolite biomarkers such as Lac, PC, and lipids with the histopathological
grade [33]. Li et al. showed elevated levels of Cho-containing compounds and Tau in cancer
compared to noncancer tissue [80]. Elevated PC was suggested as a potential biomarker
in identifying the resection margin [81]. Gogiashvili et al. reported that considerable
metabolic heterogeneity exists within a tumor [82]. The pure DCIS lesions were differ-
entiated from DCIS with invasive carcinoma using a higher GPC/PC ratio, myo-inositol,
and succinate [83]. The metabolites PC, Cho, and Gly were found at high levels in tumors
with a high signal enhancement ratio and high SUV by PET-CT [84]. Metabolic data were
correlated with the gene expression for refining the sub-classification of breast cancers [85].
MR profiles predicted important prognostic factors such as ER and PR and axillary node
status, benefitting treatment planning [35,36,86,87]. A correlation among gene, protein
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expression, and metabolic profiles documented that breast tumors exhibited three different
metabolic clusters [54]. Additionally, TN cancer had a lower Gln level than triple-positive
breast cancers, documenting increased glutaminolysis in the TN group and suggesting
it as a new therapeutic target [87]. Choi et al. reported that breast cancer patients with
pathologic complete response showed lower tCho and PC/Cr ratio levels than patients
with no complete pathologic response to neoadjuvant chemotherapy [88].

Few studies explored the metabolic profiling of tumor extracts and axillary nodes
using in vitro MRS [19,21,24,89,90]. In an initial study, Gribbestad et al. reported the
metabolic profiling of breast cancer tissue extracts, showing significant differences in the
metabolite levels between involved (cancerous tissue) and noninvolved (normal breast
tissue from surrounding areas) breast tissues [19]. Significantly increased concentrations
of Ala, lysine, glutamic acid, Gln, Lac, acetate, phosphocreatine+creatine, myo-inositol,
Cho, and GPC + PC were reported in cancerous breast tissue compared to non-involved
tissues, suggesting altered metabolism in cancer tissues [21]. Variations in the levels of
PC, PE, and uridine di-phosphate-hexose were related to tumor grade [89]. The potential
of in vitro NMR in breast cancer prognosis was examined by the metabolic status of
metastatic and noninvolved lymph nodes [24,90]. Lac, Ala, GPC + PC, Cho, and uridine-di-
phosphoglucose were significantly higher in nodes with metastases (Figure 3) [24]. Using
a ratio of metabolites [(GPC + PC)/Threonine], as a biomarker, axillary node metastases
were detected with 80% sensitivity, 91% specificity, and 88% accuracy [84].
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Figure 3. (A) 1D 1H NMR spectrum region showing the metabolite resonances from 0.8 to 4.2 ppm
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with permission from Elsevier from Reference [24]).
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3.2. Biofluids

Several studies examined the potential of the 1H NMR-based metabolomics of blood
plasma in understanding disease progression by evaluating the metabolome of early and
late-stage breast cancers [28,29,91,92]. Jobard et al. identified nine statistically significant
metabolites involved in the discrimination of early breast cancer (EBC) and metastatic breast
cancer (MBC): histidine, Glu, phenylalanine acetoacetate, Pyr, glycerol, glycoproteins (N-
acetyl), and mannose [28]. Sixteen metabolites, including lysine, Glu, hydroxybutyrate, Glc,
Lac, and N-acetyl glycoprotein, showed significant differences between EBC and MBC [29].
Similarly, the comparison of the metabolome of the filtered plasma of EBC and MBC
patients reported that Lac showed an inverse correlation with the tumor size in EBC [91].
The potential of the plasma metabolomics approach was also evaluated for detecting micro-
metastatic disease in patients with EBC to improve risk stratification [92,93]. Asiago et al.
reported the same using the metabolic profiling of serum by NMR and GCMS. Eleven
metabolites could be identified as biomarkers for predicting breast cancer recurrence [94].

The use of plasma/sera metabolomics in studying the association of the molecular
basis of metabolic alterations in breast cancer patients was evaluated [95,96]. Patients with
elevated expression of the inositol 1, 4, 5 trisphosphate receptor group showed increased
Lac, Ala, lysine, and lipoprotein content, and decreased Glc and Pyr compared to healthy
subjects [95]. There was an inverse association between HDL phospholipids and the
proliferative index marker (Ki67) in breast cancer patients [96]. The role of serum/plasma
metabolic profiles in predicting the outcome to response was investigated [97]. It was
shown that metabolic profiles might potentially predict the progression of the disease and
overall survival in a subgroup of HER2-positive breast cancer patients on paclitaxel plus
lapatinib therapy [97]. In another study using NMR and liquid chromatography-mass
spectrometry (LC-MS) using serum metabolic profiling, isoleucine, threonine, Gln (by
NMR), and linolenic acid (by LC-MS) were shown as potential biomarkers for response
prediction [98]. Stebbing et al. reported the association of metabolic syndrome with
adverse outcomes in breast cancer patients by examining serum metabolomics using NMR
spectroscopy. High lactate and low alanine combined with high glucose were associated
with the progression of the disease [75].

3.3. Aspirates

Few studies reported the metabolic profile of fine-needle aspiration cytology (FNAC),
fine-needle aspiration biopsy (FNAB), and nipple aspirates samples of breast cancer patients.
The 1H NMR of FNAC samples showed higher Cho in invasive cancer compared to normal
tissues and ductal carcinoma in situ (DCIS) [22]. Metabolic markers such as the Cho to
creatine ratio (Cho/Cr) were reported to differentiate malignant from benign samples with
95% sensitivity and a specificity of 96% [20]. A three-stage statistical classification strategy
was also developed for the diagnosis and prognosis of breast cancer [23]. Several other
metabolites increased, including Cho in FNAC samples of breast cancer compared to benign
aspirates and other breast cytopathology [21]. Using NMR and GC-MS, Tredwell et al.
identified 38 metabolites, including fatty acids, carbohydrates, amino acids, and organic
acids in nipple aspirate. They suggested it can also serve as a source of biomarkers for
assessing breast cancer risk and predicting response [30].

3.4. Cell-Line Models

The metabolomics of cell lines serves as a valuable model for understanding the
molecular mechanism of underlying alterations in breast cancer metabolism and evaluating
new therapeutic targets [26,31,95]. Gowda et al. targeted glutaminase using its inhibitor
BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide) in two breast cancer
cell lines, MDA-MB231 and MCF7 [31]. The metabolic profile revealed the association of
cancer proliferation with Gln addiction. The inhibition of glutaminase altered glycolysis,
Kreb’s cycle, nucleotide, and amino acid metabolism. Metabolic alterations were found
to be higher in MCF7 than in MDA-MB231 cell lines [31]. Singh et al. [95] reported a



Metabolites 2022, 12, 295 9 of 23

significant decrease in Glc uptake in MCF-7, MDA MB-231, and MCF 10 cells by blocking
the inositol 1,4,5 trisphosphate receptor using small interfering RNA (siRNA). The Glc
uptake showed more reduction in MDMBA-231 and MCF 7 than in MCF 10 cells [95].

The NMR of breast cancer cell lines was utilized to understand the influence of the
tumor microenvironment on lipid and Cho metabolism [55,99]. Cao et al. [100] investigated
the effects of silencing two glycerophosphodiesterase genes, GDPD5 and GDPD6, using
siRNA on Cho and lipid metabolism in two breast cancer cell lines, MDA-MB-231 and
MCF-7. They reported a significant increase in GPC levels, while no change in PC and
free Cho levels, silencing both GDPD5 and GDPD6, supported their role as GPC specific
regulators [99].

3.5. Breast Biomarkers: Living Tissue In Vivo 1H, 31P, and Hyperpolarized 13C MRS

In vivo 1H MRS provides a noninvasive measure of metabolites from a localized
region from the human breast. Several studies reported a higher water-to-fat (W-F) ratio
in malignant breast tissues compared to normal tissues and benign lesions, suggesting its
role in monitoring the effect of chemotherapy in breast cancer [100–102]. The association of
water and fat content with the risk factors of breast cancer was also reported [103]. A lower
fat fraction in cancer compared to benign and healthy breast tissues was documented [104].
This parameter showed a 76% sensitivity with a specificity of 74.5% to discriminate cancer
from benign lesions [104]. Differences in fatty compositions were noticed in malignant
and benign lesions and among various molecular subtypes of breast cancer [105]. The use
of the W-F ratio in monitoring the therapeutic response of breast cancer demonstrated a
sensitivity of 71% and an accuracy of 79% [101].

In the water and lipid suppressed MR spectrum, 1.5T showed a tCho resonance at
3.22 ppm (Figure 4), which served as a noninvasive biomarker in discriminating breast
cancer from benign breast diseases [40–47]. A metaanalysis of pooled data including
773 malignant lesions and 452 benign lesions from 19 studies showed the pooled sensitivity
and specificity of MRS as 73% and 88%, respectively [45]. 1H MRS performed at the higher
field, 3T documented increased sensitivity of tCho detection with better resolution [56–58].
Recently Clauser et al. reported that a combination of multiparameters such as a signal-
to- noise ratio of tCho signal, lipid peak (5.34 ppm), and W-F ratio in multiple regions
enhance the diagnostic performance of 1H-MRS [59]. Similarly, Thakur et al. reported that
the combined use of tCho and W-F ratios might help differentiate different tumor subtypes
of cancer and benign lesions and increase the diagnostic usefulness [106]. It was possible
to differentiate the infiltrating ductal carcinoma (IDC) and intralobular carcinoma (ILC)
lesions with similar tCho levels using the W-F ratio [106]. Both W-F ratio and tCho were
demonstrated as a marker of response assessment in patients undergoing neoadjuvant
chemotherapy (NACT) [41,101,102,107–110]. The level of the tCho was found to reduce in
LABC patients responding to chemotherapy [41,107–110].

In addition, several studies used MR spectroscopic imaging (MRSI) to sample the
spectra from multiple voxels and characterize breast cancer heterogeneity with the simulta-
neous evaluation of multiple lesions [12,108]. 31P MRS can also be used to measure PC, and
other membrane metabolites to discriminate malignant from benign lesions and normal
breast tissue [111,112] (see Figure 5). For example, a recent 31P MRS study at 7T showed
associations between relative levels of phosphomonoester (PME) and phosphodiester (PDE)
with metabolic activity as measured by mitotic count [112].

Hyperpolarized (HP) 13C MRS is another emerging clinical tool to probe the aerobic
glycolysis or Warburg effect in breast cancer. HP 13C MRI uses 13C labeled substrates that
increase the MRS signal acquired by more than 10,000-fold [48,113,114]. 13C-labeled Pyr is
the most widely used substrate injected intravenously, and then HP 13C-lactate produced
from it is measured in real-time using 13C MRS [115]. HP 13C-lactate labeling revealed
the disease aggressiveness of the tumor metabolic phenotype in preclinical studies [116].
Gallagher et al. reported that the Lac/Pyr ratio was significantly correlated with tumor
volume, monocarboxylate transporters, and HIF1α expression in breast cancer patients [48].
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In a recent study, Woitek et al. [117] reported the use of HP 13C MRI in the early prediction
of the NACT response and compared it with pharmacokinetic parameters Ktrans and
kep derived from DCE-MRI. Reduction in the 13C-labeled Lac/Pyr ratio by 34% correctly
identified a pathologic responder after one cycle of NACT, while pharmacokinetic modeling
using DCE-MRI incorrectly showed poor response to therapy [117].
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3.6. Breast Biomarkers: Dynamic Contrast-Enhanced MRI (DCE-MRI)

DCE-MRI measures tumor vascularity and blood perfusion, which has significant
potential in investigating the biological characteristics of tumors [3,4,12,118]. It relies on
administering an intravenous gadolinium-based contrast agent [3,4,12,118]. The growth
of cancer requires the generation of new blood vessels for a sufficient supply of nutrients.
These new vessels are leaky, and gadolinium contrast agents can extravasate from them
and accumulate in the tumor stroma. Basic DCE-MRI protocol consists of one pre-contrast
T1-weighted image followed by a sequence of post-contrast T1-weighted images, which
are then used to determine the kinetics of contrast accumulation in a tumor (Figure 6).
Since vessels are leaky in the tumors, it leads to rapid washouts. DCE-MRI enables
the characterization of lesion morphology and contrast kinetics using pharmacokinetic
modeling [3,4,12]. The pharmacokinetic modeling of various parameters such as Ktrans
and Ve allows the measurement of tissue perfusion.
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Figure 6. (A) Representative DCE-MR image of a 56-year-old locally advanced breast cancer patient
suffering from IDC, and (B) the corresponding type III curve obtained from the ROI positioned on
the lesion. (C) shows the ADC map while (D) is the in vivo 1H MR spectrum of the same patient
(Reproduced with permission from Elsevier from Reference [119]).

Breast MRI has become the most sensitive tool for detecting breast cancer. The use
of multiparametric (mpMRI) protocols that combine the information from various MR
techniques can increase the specificity of breast MRI [3,4,12,120]. DCE-MRI is recommended
as a breast cancer screening modality for women with increased risk [3,4]. DCE-MRI
outperforms conventional mammography in early breast cancer detection and provides a
preoperative assessment of lesions [3,4].

Abbreviated MRI protocols were recently introduced to enable their wider use and to
reduce cost. They showed equal performance to extended multiparametric protocols [120,121].
Ultrafast DCE-MRI is another recently developed method that enables high spatial and tem-
poral resolution. Various acceleration methods, such as parallel imaging and compressed
sensing, are used in ultrafast DCE-MRI. Moreover, when used in the very early phase, it
can generate contrast kinetics reflecting inflow effects. In recent years, the utility of ultrafast
DCE-MRI-derived parameters was demonstrated in the characterization of breast cancer
aggressiveness and tumor subtypes [122].
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3.7. Breast Biomarkers: Perfusion-Weighted Imaging

The characteristics of new vessels generated for the proliferation of cancer are different
from normal vessels and are larger in diameter, have more permeability, and lack contractile
properties [5]. Therefore, specific MRI sequences are developed, both contrast-based and
noncontrast, to measure tissue perfusion.

Contrast-based first-pass perfusion imaging provides a measure of blood volume,
which is directly related to tumor microvascular perfusion. Several studies documented
that the tumors had increased blood flow and volume compared to the normal breast
tissue [123–128]. Park et al. [129] investigated the association between MRI perfusion
parameters and clinical and pathologic variables in patients with TN breast cancer. The
pharmacokinetic analysis of DCE-MRI perfusion parameters was based on the extended
Tofts model [130]. The higher values of Ve and peak enhancement at pre-therapy were
associated with worse survival [129].

It was reported that the tumors with higher stroma showed significantly higher
Ve [131]. Several other studies confirmed the correlation between tumor cellularity and
poor prognosis with Ve [132,133]. The patients with an elevated intratumor stroma had a
shorter relapse-free period and overall survival in numerous studies, indicating it as a prog-
nostic factor [134–136], specifically in TN breast cancer patients [134–136]. Liu et al. [137]
investigated the association of perfusion parameters obtained through preoperative DCE-
MRI with Ki-67, HER-2, ER, PR, cytokeratin 5/6 (CK5/6), and epidermal growth factor
receptor (EGFR). The Ki-67 showed a significant positive correlation with the rate constants,
Ktrans, and kep. The value of Ve was significantly different between tumors positive and
negative for CK5/6. HER-2-enriched tumors showed higher kep than luminal A tumors.

The measurement of perfusion parameters without using contrast media was devel-
oped and evaluated [123,124,138]. One such technique is arterial spin labeling (ASL) to
assess tissue perfusion. ASL could be a promising noncontrast-enhanced alternative for
DCE-MRI, providing information on perfusion and vascularity. The advantages of ASL are
that it does not require contrast media and is not sensitive to vessel wall permeability. In
ASL, the magnetic labeling of endogenous blood is used to achieve perfusion contrast [138].
In this technique, two images, a magnetically labeled and a control image, are acquired
alternatingly. An ASL image is obtained by subtracting the label and control images.
On subtraction, static tissue signals cancel out, only labeled blood signal remains. The
commonly used ASL techniques for body and brain applications are pseudo-continuous
ASL (pCASL), [139,140] and flow-sensitive alternating inversion recovery (FAIR) [141,142],
which are spatially selective. In these techniques, blood labeling occurs in the tissue’s
feeding arteries [138], leading to a transit delay between the location of labeling and the
arrival of this blood in the tissue. Another recently developed technique is velocity-selective
ASL, in which blood is labeled based on the velocity of flow instead of the location [143].
The blood above a specific cutoff value of velocity is labeled, and the cutoff can be chosen to
eliminate the transit delay. Velocity-selective ASL was evaluated for its technical feasibility
for bilateral imaging in breast cancer. The study reported that the morphology of the lesions
seen on velocity-selective ASL corresponded to early phase ultrafast DCE images [143].

3.8. Breast Biomarkers: Diffusion-Weighted Imaging (DWI)

DWI is a promising technique that measures the diffusion of water molecules in vivo
and can be used to probe microscopic tissue organization [7–14]. The motion of water
molecules is random in pure water. However, this motion is restricted in tissues due to
hindrances in intracellular and extracellular compartmentalization. Thus, the apparent
diffusion coefficient (ADC) measured using DWI reflects tissue characteristics such as
cellularity, microstructure, and membrane integrity. Multiple studies demonstrated that
malignant breast lesions showed decreased ADC compared to benign lesions and normal
breast parenchyma [7–14]. Decreased ADC in malignant lesions is primarily attributed
to increased cell density due to the uncontrolled proliferation of cancer cells [7–14]. The
advantage of DWI is that it has a short scan time and is a noncontrast technique [12]. In
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addition, the higher accuracy of DWI was reported in a study of asymptomatic women for
detecting malignancy compared to screening mammography [144].

ADC measures discriminated benign and malignant breast lesions and complemented
DCE-MRI for increasing the specificity of breast MRI [7,9,12,14]. A metaanalysis including
964 (349 benign, 615 malignant) breast lesions combined from 13 studies reported that
the pooled sensitivity for detecting the malignancy was 84%, and the specificity was 79%
for DWI [13]. The role of ADC in discriminating malignant and benign lesions and the
association with molecular biomarkers such as ER, PR, and HER2 was investigated [8].
ADC was found to be useful in identifying malignancy in breast cancer patients with
indeterminate DCE curve findings [119]. Further, TN showed significantly higher ADC
than non-triple negative (nTN), ER+, PR+ cancers, indicating ADC association with the
molecular biomarkers [8]. Richard et al. reported that pretreatment tumor ADC values
varied between tumor subtypes and predicted a pathological response in TN tumors in
LABC patients undergoing NACT [145].

Another major application of DWI in breast cancer management is monitoring the
response to therapy [7,9,12,13,111,145,146]. It was reported that patients responding to
chemotherapy and radiotherapy showed increased ADC values. In addition, it was re-
ported that changes in ADC can predict tumor response as early as the first cycle of NACT,
earlier than changes in tumor size detected by conventional MRI [111,146]. We recently
investigated the potential of a multi-parametric MR approach based on the measurement of
tCho, ADC, and tumor volume in predicting the pathological (pR) and clinical response(cR)
to NACT for patients with LABC (Figure 7). After the third cycle of NACT, the MR volume
showed the highest sensitivity (96.2% for cR, and 83.3% for pR) to detect responders while
specificity was highest for ADC (100% for cR, and 76.5% for pR) than the combined use of
all parameters [111].
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and tCho) in pathological responders and nonresponders at Tp0 (A) after Tp1 (B), Tp2 (C), and
Tp3 (D), while (E–H) show the 3-D score plot for clinical response. (Reproduced with permission
from Reference [110]: Sharma, U.; Agarwal, K.; Sah, R.G.; Parshad, R.; Seenu, V.; Mathur, S.; Gupta,
S.D.; Jagannathan, N.R. Can a multi-parametric MR based approach improve the predictive value of
pathological and clinical therapeutic response in breast cancer patients? Front. Oncol. 2018, 8, 319.
doi: 10.3389/fonc.2018.00319).

Advanced approaches such as intravoxel incoherent motion (IVIM) modeling are used
to characterize breast malignancy [147–149]. Besides diffusion, these methods also provide
information on tissue perfusion [147–149]. Additionally, diffusion kurtosis modeling [148,150]
and diffusion tensor imaging (DTI) [151,152] are also being investigated to characterize the
directionality of water diffusion and understand tissue complexity.

3.9. Breast Biomarkers: MR Elastography (MRE)

In breast cancer, the reactive proliferation of connective tissue leads to the accumu-
lation of a dense layer of fibroblasts around malignant epithelial cells [153]. It results in
hardening or change in the stiffness of the breast tissue, which is diagnosed by palpation.
MRE is a noninvasive imaging technique to measure the stiffness or elasticity of tissues
and uses low-frequency vibrations to quantitatively measure the visco-elastic properties of
tissue during malignant transformation [15–17,154]. The stiffness of tumors is related to
tumor development, metastasis, invasion, and resistance to chemoradiotherapy [154].

In MRE, acoustic waves are applied to the tissue (range, 100 to 1000 Hz), and the prop-
agation of these waves is imaged using motion-sensitive MRI sequences. The acquisition
timing can be varied to observe the waves at various time points. The wavelength can be
estimated by processing the wave images, from which the shear modulus value and shear
modulus map can be produced. For example, MRE in healthy volunteers and patients with
breast cancer with 100 Hz shear wave showed that the stiffness of breast cancer tissue was
four times higher than that of normal breast tissue [155]. Similarly, many studies confirmed
that the elasticity of breast cancer was increased compared to normal breast tissue and
benign lesions [156,157]. For example, Balleyguier et al. reported that the sensitivity and
specificity value of MRE for breast cancer diagnosis was 79% and 90%, respectively, in
breast cancer patients with high BIRADS scores [158]. They also reported a higher value of
AUC (0.92) for MRE compared with 0.84 for MRI alone [158]. Similarly, studies reported
an increase in the specificity of MRI on the addition of MRE while maintaining a high
sensitivity [17,159].

3.10. Radiomics

Radiomics is a rapidly evolving field that applies artificial intelligence algorithms
to digitally decode medical images, enabling the comprehensive characterization of tu-
mors [160–162]. The radiomics approach is based on the concept that aims to obtain
quantifiable data from images that are not analyzed conventionally by radiologists [161].
It includes the extraction of quantitative properties or features, including descriptors of
tumor shape, size, intensity, and texture which are then utilized as inputs in machine
learning algorithms providing outputs concerning disease classification and outcome pre-
dictions [161,162]. The radiomics approach is expected to have significant applications in
addressing several clinical challenges such as cancer detection, the assessment of therapy
response, disease recurrence, prognosis, and disease progression. Radiomics is based on
the hypothesis that the extracted quantitative features are the phenotypic manifestation of
underlying genetic and molecular alterations occurring with malignant transformation at
genetic and molecular levels. The radiomics approach is detailed in the literature [160–162].
Several studies investigated the potential of radiomics in differentiating benign breast
lesions from malignant tumors [162]. These studies demonstrated that the addition of
radiomics can improve the diagnostic accuracy of conventional breast imaging [162]. For
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example, an MRI-based radiomics retrospective study on 26 benign and 98 malignant
patients reported that entropy of malignant tumors was significantly higher on DCE-MRI
and ADC maps than benign lesions [163].

Furthermore, the radiomic feature maps (RFM) demonstrated significantly different
RFM curves for malignant and benign lesions using DCE-MRI and DWI, indicating the cor-
relation of radiomics features with the vascularity and heterogeneity of tumors, respectively.
Another study based on DCE-MRI (264 benign lesions and 390 luminal A breast cancers)
extracted 38 quantitative features to differentiate luminal breast cancers from benign breast
lesions [164]. The inclusion of radiomic features led to a significant improvement in the
ability to differentiate between luminal A breast cancers and benign lesions, compared to
size alone [164].

The radiomics approach was also been used to evaluate its prognostic potential in
predicting sentinel lymph node, axillary lymph node, or sentinel lymph node metas-
tases [165,166] in breast cancer patients. A high correlation was documented between
radiomics features extracted from DWI with sentinel lymph node metastases [165]. Re-
cent studies evaluated the radiomics approach to predict the expression of proliferation
marker Ki67 [167,168]. Tagliafico et al. [168] reported a prospective study on 70 women
diagnosed with breast cancer for the potential use of the evaluation of radiomics features in
the prediction of Ki67 expression. An AUC of up to 0.698 was obtained using five features.
A significant correlation between Ki-67 and 34 features was reported.

4. Summary, Outlook, and Future Directions

This review briefly presented the potential of MRI and MRS-based methods in un-
derstanding breast cancer biology and the role of various MR biomarkers in disease diag-
nosis, prediction, screening, therapeutic monitoring, and tumor recurrence. The in vitro
high-resolution NMR studies of tissue extracts, nodes, serum, and blood plasma samples
detected many metabolites in breast cancer patients. Altered levels of several metabolites
including Glc, Lac, membrane metabolites such as tCho, GPC, and amino acids such as Ala,
Glu, Gln, Lys, His, Gly, Ser, and Tau illustrated changes in various metabolic pathways and
regulatory mechanisms. Further, these metabolites were potential candidates to serve as
diagnostic and prognostic biomarkers in breast cancer management.

The metabolic heterogeneity of tumors was also associated with the molecular het-
erogeneity of tumors; however, there is a need for the comprehensive metabolic charac-
terization of the heterogeneity of breast cancer lesions. MRI and MRS are currently being
used as adjunct methodologies to mammography, histology, and other techniques. MRI
offers complementary information on tumor cellularity, perfusion, and stiffness. In recent
years, MRI emerged as an important tool for evaluating the population of women at high
risk. Many studies demonstrated the use of MRI in detecting mammographically occult
cancers. However, breast MRS is still not routinely performed because it is technically
challenging. The sensitivity of MRS is also limited by various technical factors. However,
recent advances in technological developments, such as increasing the design and sensitiv-
ity of breast coils and high-field MR systems, have the potential to improve the accuracy
of breast MRS. Though MRI and MRS techniques revealed a large number of biomarkers
as potential candidates, to date, these are limited to research laboratories due to several
reasons such as technical challenges and higher costs of procedures, nonavailability of
equipment, etc. There is a need to develop these approaches with greater reproducibility so
that these markers can be used to provide personalized health care in clinics.

There is a need to characterize various histological types of breast cancer using MR
approaches for a comprehensive understanding of breast cancer heterogeneity. This can
help to increase the diagnostic ability of these methods. Further, there is a need for easy
and automated acquisition and post-processing algorithms to visualize and quantify tCho
in small-sized tumors. Future research should focus on cutting down the cost of MR
procedures for wider applications. Additionally, there is a need for multi-center studies on
the application of MRI and MRS approaches to integrate them into clinical settings. There
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is also a need to evaluate the potential of NMR spectroscopy of biofluids in women with
hereditary risk. This is a potential area of further research that can help in stratifying women
with high-risk cancer and providing an early indication of the vulnerable population. It is
also essential to perform systematically designed metabolomics studies to discover robust
biomarkers for the diagnosis and the prognosis of the disease. The results of metabolomics
approaches should be translated into developing simplistic methods which could easily be
implemented in clinical settings with affordable cost implications. Recent methods such
as MR elastography require extensive multi-center investigations. Radiomics applications
should be extensively explored, and there is a need to enhance the understanding among
radiologists about the basic concepts, development of standardized and reproducible
algorithms, and data sharing for clinical applications.
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