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Abstract: Background: the co-production of carbapenemases and mcr-genes represents a worrisome
event in the treatment of Enterobacteriaceae infections. The aim of the study was to characterize
the genomic features of two clinical Enterobacter cloacae complex (ECC) isolates, co-producing VIM
and MCR enzymes, in Italy. Methods: species identification and antibiotic susceptibility profiling
were performed using MALDI-TOF and broth microdilution methods, respectively. Transferability
of the blaVIM- and mcr- type genes was verified through conjugation experiment. Extracted DNA
was sequenced using long reads sequencing technology on the Sequel I platform (PacBio). Results:
the first isolate showed clinical resistance against ertapenem yet was colistin susceptible (EUCAST
2020 breakpoints). The mcr-9.2 gene was harbored on a conjugative IncHI2 plasmid, while the
blaVIM-1 determinant was harbored on a conjugative IncN plasmid. The second isolate, resistant
to both carbapenems and colistin, harbored: mcr-9 gene and its two component regulatory genes
for increased expression on the chromosome, mcr-4.3 on non-conjugative (yet co-transferable) ColE
plasmid, and blaVIM-1 on a non-conjugative IncA plasmid. Conclusions: to our knowledge, this is the
first report of co-production of VIM and MCR in ECC isolates in Italy.

Keywords: colistin resistance; mcr-4.3; mcr-9; blaVIM-1; Enterobacter cloacae complex

1. Introduction

The ECC (Enterobacter cloacae complex) is composed of six species including E. cloa-
cae and subspp, E. kobei, E. nimipressuralis, E. ludwigii, E. asburiae and E. hormaechei [1].
Carbapenem resistant E. cloacae complex (CREC) prevalence has increased significantly
during recent years [2]. While colistin is considered as the last resort antibiotic for treat-
ing infections due to multi-drug resistant strains, increased reports of plasmid mediated
mcr genes coding for colistin resistance in Enterobacterales represent a challenging and
alarming situation [3]. Until now, ten variants of the mcr gene, mcr-1-mcr-10, have been
identified [4]. The mcr-4.3 was reported for the first time in Singapore in 2014 on a ColE10
plasmid from a clinical E. cloacae isolate [5], and MCR-9 was initially described in 2010 in
USA, in a clinical Salmonella enterica isolate [6]. On the other hand, among carbapenemase
producers, the first detection of metallo-β-lactamase VIM-1 enzyme, was reported in a
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Pseudomonas aeruginosa strain isolated in 1997, in Italy [7]. Up until 30 September 2020,
73 blaVIM variants were overall reported in the National Database of Antibiotic Resistant
Organisms (https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/).

In Italy, several reports of VIM-producing Enterobacterales strains [8–10] have been de-
scribed, with surveillance studies highlighting a minor spread, preceded by KPC, NDM and
OXA-48 producers [11–13]. Moreover, reports show the prevalence of MCR-1 producers in
clinical Italian settings [14,15] and sporadic reports of MCR-4 producing Salmonella enterica
and E. coli strains [16,17]. Nevertheless, no reports of VIM and MCR co-production have
yet been reported.

Here we report the first two Italian clinical cases, involving ECC isolates co-producing:
VIM-1 and MCR-9 in the first case and VIM-1, MCR-9 and MCR-4.3 in the second one.

2. Materials and Methods
2.1. Case Presentation, Antimicrobial Susceptibility Test and Molecular Investigations

The first strain, Enterobacter cloacae (ENCL_3849), was isolated from a 91 years old
female patient admitted to “Istituto Geriatico Milanese” on the 2nd of March 2017 in Milan,
Italy. The patient suffered from chronic health complications such as Type II diabetes
mellitus, hypothyroidism, sever bilateral gonarthrosis and a risk of falls. From March until
the end of June two courses of ceftriaxone were given. On the 7th of July, the blood culture
was positive for a multidrug resistant (MDR) Enterobacter cloacae. The blood culture was
repeated on the 13th and was still positive. On the 16th, the patient suffered from hyper-
pyrexia and hypotension and was treated with piperacillin. The patient was discharged on
the 8th of August. The second strain, Enterobacter kobei (ENCB_IB2020), was isolated from a
rectal swab (for routine screening purposes) of a 56 years old male patient on the 14th of
December 2019 in Modena, Italy.

The species identification was confirmed through matrix-assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-TOF MS) using MALDI Biotyper soft-
ware (Brucker Daltonics, Bremen, Germany). Carbapenemase production was confirmed by
meropenem hydrolysis assay [13], while antimicrobial susceptibility profiles were obtained
by Microscan AutoScan-4 (Beckman-Coulter) and interpreted in accordance with EUCAST
2020 clinical breakpoints v.10.0 (https://www.eucast.org/fileadmin/src/media/PDFs/EU
CAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf). Colistin MICs were con-
firmed through broth-microdilution. Production of class B, D, and A carbapenemases was
evaluated using disk combination synergy tests with meropenem and EDTA, temocillin
and phenylboronic acid, as inhibitors [17–19], respectively. The presence of carbapenemase
genes and mcr genes were confirmed by polymerase chain reaction (PCR) as described
elsewhere [4,20].

2.2. Conjugation/Transformation Assay

The ability of the plasmids harboring the mcr genes and the blaVIM-1 gene to conjugate
was tested through conjugation experiments. The conjugation was performed in Mueller
Hilton (MH) broth (OXOID, Hampshire, UK) using E. coli A15rAzi as the recipient.

Transconjugants for ENCL_3849 were selected on MH agar (OXOID, Hampshire, UK)
plates supplemented with sodium azide (150 mg/L) (Sigma-Aldrich, St. Louis, MO, USA)
and ampicillin (1000 mg/L) (Sigma-Aldrich, St. Louis, MO, USA). For ENCB_IB2020,
transconjugants were selected on MH agar plates supplemented with sodium azide
(150 mg/L), meropenem (2 mg/L) (Sigma-Aldrich, St. Louis, MO, USA) and colistin
(2 mg/L) (Sigma-Aldrich, St. Louis, MO, USA). The presence of blaVIM-1, and mcr-like
genes in the transconjugants was confirmed through PCR. MICs for transconjugants were
performed using the broth-microdilution method. Isolates that failed to transfer the mcr
genes of interest through conjugation were subjected to transformation; plasmids were
extracted using Qiagen Maxi kit (Qiagen, Hilden, Germany) and the competent E. coli
DH5α cells were used as the recipient. Transformants were selected on MH agar (OXOID,
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Hampshire, UK) with 2 mg/L colistin. Transformants were confirmed to be MCR producers
through PCR.

2.3. Whole-Genome Sequencing (WGS)

For genomic characterization, genomic DNA was extracted using NucleoSpin Micro-
bial DNA kit (Macherey-Nagel, Duren, Germany) and sheared using the Hydropore-long
on Megaruptor 2 (Diagenode). Microbial multiplexing library preparation was performed
without size selection according to the manufacturer’s instructions. The multiplexed library
was sequenced using long reads sequencing technology using the Sequel I platform (Pacific
Biosciences, Menlo Park, CA, USA) for a 10 h movie run.

2.4. Whole-Genome-Sequencing-Data Analysis

Assembly was performed using the “Microbial Assembly” pipeline offered by the
SMRT Link v9.0. with the default settings (minimum seed coverage of 30×). In-silico multi-
locus sequence typing of the strains (MLST) and of the plasmids when applicable (pMLST)
was performed; antibiotic resistant genes, plasmid replicons and integrons were detected
upon uploading the assemblies to PubMLST (https://pubmlst.org/organisms/enterobact
er-cloacae), Plasmid MLST [21], ResFinder 4.1 and CARD [22,23], PlasmidFinder 2.1 [24]
and INTEGRALL [25] respectively. BRIG v.0.95 was used to produce figures of compar-
ison of the circular plasmids’ sequences. Genome annotation was done using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP). Species identification of the isolates
were confirmed with the NCBI database upon submitting the sequences to GenBank.

3. Results
3.1. Isolates Susceptibility Profiles

Both strains showed resistance against ampicillin, cefotaxime, ceftazidime, and
piperacillin-tazobactam. Moreover, ENCB_IB2020 showed clinical resistance to carbapen-
ems and colistin while ENCL_3849 was susceptible to colistin and resistant to ertapenem.
The minimum inhibitory concentrations (MICs) of two strains are shown in Table 1.

Table 1. Antibiotic susceptibility profiles of the E. cloacae 3849 (ENCL_3849) and its transconjugant E. coli A15*3849 and
ENCB_IB2020 carrying blaVIM-1 and mcr genes.

Isolate AMP AMS ATM CTX TET CAZ COL TZP ETP MEM GEN TOB TGC SXT PIP

E. cloacae 3849 >128 >128 >16 >8 >32 >16 0.25 64 >2 0.5 8 >8 0.5 >4 >128

E. coli A15*3849 >128 >128 >16 >8 >32 >16 0.25 64 >2 0.5 8 >8 0.25 >4 >128

E. kobei IB2020 >128 >128 1 >8 2 >16 8 64 >2 16 0.5 4 0.25 0.5 >128

AMP, ampicillin; AMS, ampicillin/sulbactam; ATM, aztreonam; CTX, cefotaxime; TET, tetracycline; CAZ, ceftazidime; COL, colistin;
TZP, piperacillin-tazobactam; ETP, ertapenem; MEM, meropenem; GEN, gentamycin; TOB, tobramycin; TGC, tigecycline; SXT, trimetho-
prim/sulfamethoxazole; PIP, piperacillin.

3.2. Plasmid Transferability

For ENCL_3849, the conjugation experiment was successful and MALDI-TOF species
identification and PCR of blaVIM-1 and mcr-9 on the transconjugants confirmed the re-
sults. Moreover, the transconjugant showed similar antibiotic susceptibility profile as the
donor. The PBRT kit for plasmid typing confirmed the presence of two incompatibility
groups in the transconjugant: IncN and IncHI2. However, the conjugation experiment
in ENCB_IB2020 was not successful. Transformation of the mcr bearing plasmid was
successful at a low frequency, however it was not stable and the plasmid was lost upon
re-streaking.

https://pubmlst.org/organisms/enterobacter-cloacae
https://pubmlst.org/organisms/enterobacter-cloacae
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3.3. Whole-Genome Characterization
3.3.1. ENCL_3849

The E. cloacae strain ENCL_3849 belonged to sequence type ST382. WGS sequence
analysis showed the presence of 6 complete circular contigs; the chromosome (4599410 bp)
harbored genes coding for resistance to fosfomycin (fosA) and β-lactams (blaACT-5). Three
un-typable plasmids p3849I (4667 bp), p3849II (4995 bp) and p3846III (190697 bp) did not
harbor any antibiotic resistance genes.

Moreover, an IncN plasmid (p3846_IncN_VIM-1; 66,249 bp; pMLST ST7) that har-
bored genes for resistance against fluoroquinolones (qnrS1, aac(6′)-lb3), aminoglycosides
(aadA1), trimethoprim (dfrA14), sulphonamides (sul1), phenicol (catB2) and β-lactams
(blaVIM-1) (Table 2). When blasted against the NCBI database, the highest similarity scores
corresponded to an IncN (pOW16C2) plasmid (79% sequence similarity, 100% sequence
coverage; 59,228 bp; acc. KF977034.1) isolated from a Klebsiella pneumoniae strain described
in Switzerland. The blaVIM-1 was found on a novel class 1 integron designated by In1128
composing an array of gene cassettes including blaVIM-1, aacA4′, aphA15, aadA1cb, and
catB2. Nevertheless, p3846_IncN_VIM-1 had two more DNA cassettes coding for: Type II
toxin/antitoxin system (bound with IS26 upstream and a transposase on the other end),
and a set of mer genes (merR-T-P-C-D-E) bound with an IS3 transposase (Figure 1).

Finally, an IncHI2/IncHI2A plasmid (p3846_IncHI2_mcr; 293,138 bp; pMLST ST1) that
harbored genes coding for resistance against fluoroquinolones (qnrA1, aac(6′)-lb3), colistin
(mcr-9.2), aminoglycoside (aadA2b (×2), ant(2′′)-la), trimethoprim (dfrA16), sulphonamide
(sul1(×3)), tetracycline (tet(A)) and β-lactams (blaSHV-12, blaCTX-M-9) (Table 2). The mcr gene
was bound by IS1 and IS5 in opposite orientation (Figure 2). When blasted, p3846_IncHI2_
mcr showed high similarity scores with the plasmid p5098PV_IncHI2 (99.99% sequence
similarity, 100% sequence coverage; 298,499 bp; acc. CP061512) isolated from Mixta calida
in Italy (Figure 3).

Table 2. Whole-genome characterization (WGS) analysis of the two MCR/VIM co-producing isolates from Italy.

ID Species MLST Genetic Element Replicon pMLST Antibiotic Resistance Genes

ENCB_IB2020
(2020/8240) E. kobei ST 54

Chromosome NA NA fosA, mcr-9, blaACT-9

pIB2020_IncA IncA ST 12
aac(6′)-lb-cr, aac(6′)-lb3, qnrS2,

aadA1, sul1 *, arr-3, catB2, catB3,
blaOXA-1, blaVIM-1

pIB2020_ColE_MCR ColE - mcr-4.3

pIB2020_IncFIB IncFIB - -

pIB2020_L NT - -

pIB2020_N NT - -

pIB2020_S NT - -

ENCL_3849 E. cloacae ST 382

Chromosome NA NA fosA, blaACT-5

p3846_IncHI2_mcr IncHI2 ST 1
qnrA1, aac(6′)-lb3, ant(2′’)-la,

mcr-9.2, aadA2b *, sul1 *, dfrA16,
tet(A), blaCTX-M-9, blaSHV-12

p3846_IncN_VIM-1 IncN ST 7 qnrS1, aac(6′)-lb3, aadA1, sul1,
dfrA14, catB2, blaVIM-1

p3846III NT - -

p3849I NT - -

p3849II NT - -

NT: not typable; NA: not applicable; *: multiple copies; - : none
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3.3.2. ENCB_IB2020

The E. kobei strain ENCB_IB2020 belonged to ST54. WGS analysis yielded 7 complete
circular contigs; the chromosome (4,997,888 bp) that harbored genes coding for resistance
against fosfomycin (fosA), colistin (mcr-9) and β-lactams (blaACT-9). The chromosome medi-
ated mcr-9 was bound by an IS5 upstream in the same orientation, and was followed by
the wbuC gene (cupin fold metalloprotein), two component-system regulatory genes (qseC,
qseB) responsible for the expression of colistin resistance [26], followed by a truncated IS481
and an IS26 (Figure 2). Three un-typeable plasmids (pIB2020_S; 2020 bp, pIB2020_N; 6127
bp, pIB2020_L; 150,133 bp) and an IncFIB plasmid (pIB2020_IncFIB; 85,067 bp) did not
harbor any antibiotic resistant genes.

Moreover, a ColE plasmid (pIB2020_ColE_MCR; 12,808 bp) that harbored mcr-4.3
gene coding for colistin resistance was found. The mcr-4.3 gene was bound with an
IS26 upstream in opposite orientation followed by a Type II toxin/antitoxin system
downstream. Moreover, the plasmid harbored mobA and mobX, two genes responsi-
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ble for the plasmid mobility/co-transferability with a conjugative plasmid as reported
elsewhere [27] (Figure 2).

An IncA plasmid (pIB2020_IncA; 165,722 bp; pMLST ST12) harbored genes coding
for resistance against fluoroquinolones (qnrS2, aac(6′)-lb-cr, aac(6′)-lb3), aminoglycosides
(aadA1), sulphonamide (sul1 (2×)), phenicol (catB3, catB2), rifampicin (arr-3) and β-lactams
(blaOXA-1, blaVIM-1) (Table 2). The blaVIM-1 determinant was found on the class 1 integron
In916, composing an array of gene cassettes of blaVIM-1, aacA4′, aphA15, aadA1b, and
catB2. In916 was involved in the dissemination of the blaVIM-1 gene in Italy, as previously
described [28,29]. When blasted, pIB2020_IncA showed high similarity with pGA_VIM and
p550_IncA_VIM_1 (92% and 91% sequence similarity, 100% sequences coverage; 162,608 bp
and 1,820,216 bp; CP058224.1 and MN783743.2 respectively) [11,29]; both isolated from
E. coli strains in Italy (Figure 4). The plasmid pIB2020_IncA was not conjugative; we
hypothesize that the interruption of the traN gene (coding for conjugation protein) by an
IS3 (splitting the gene into two parts) could be the possible reason behind the failure of this
plasmid to conjugate.
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4. Discussion and Conclusion

The reports of VIM and MCR co-production in ECC isolates are increasing, as de-
scribed elsewhere [30–34]. The presence of mcr-9-like genes bound by two insertion se-
quences as in p3849_IncHI2_mcr and as reported in Sadek et al. 2020 and Bitar et al. 2020
will not express colistin resistance and such plasmids can circulate silently until detected.
On the other hand, IB2020 had mcr-9 on the chromosome in this gene’s cassette: mcr-9-
wubC-qseC-qseB-exeA. This gene’s cassette was detected to express colistin resistance as
presented in our IB2020 isolate [32,34]. Our results confirm and highlight some important
aspects: the presence of mcr-9 determinants together with the two-component regula-
tory genes, can increase the gene expression, leading to colistin resistance whether on a
plasmid or on the chromosome. The association of metallo-β-lactamases and increased
colistin resistance largely reduce the numbers of therapeutic options available against
severe Gram-negative infections. In particular, with the new combination strategies ap-
proved by the US Food & Drug Administration (FDA), the only available options against
severe infections are Aztreonam-Avibactam and Cefiderocol, not degraded by metallo-
β-lactamases [35,36]. This is evident from the MICs threat that limited the therapeutic
option in our case to few antibiotics (Table 1). The presence of mcr-4.3 encoding ColE
plasmid and another mcr- gene (mcr-9), is alarming. The ColE plasmid also harbored the
genes necessary for its mobilization/co-transfer, which indicates that this plasmid is able
to co-transfer with a conjugative plasmid, leading to its further dissemination. Moreover,
the IncA and IncN plasmids represent self-conjugative plasmids, with a high tendency
to acquire different antibiotic resistance islands, which may eventually lead to extremely
drug resistant phenotypes and to the spread of different resistance genes in heterogeneous
plasmid environment [36–38].

Finally, to our knowledge, these are the first cases of mcr-4.3, mcr-9, blaVIM-1 and
mcr-9.2 and blaVIM-1 genes in ECC strains isolated from clinical cases, in Italy.
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