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Abstract: Gyeji-tang (GJT), a traditional herbal formula composed of five herbal medicines, is
commonly used to treat the common cold, exogenous febrile disease, fever and headaches in Korea,
China and Japan. Although various pharmacological activities of GJT have been reported in several
studies, the effect of GJT water extract (GJTWE) on airway inflammation has not yet been investigated.
This study aimed to evaluate the effects of GJTWE on airway inflammation-related factors using
human bronchial epithelial BEAS-2B cells, and to identify the phytochemicals in GJTWE by ultra-
performance liquid chromatography-diode array detector-tandem mass spectrometry (UPLC-DAD-
MS/MS) analysis. GJTWE significantly decreased the production of chemokines, including eotaxin-3,
eotaxin-1, regulated on activation normal T-cell expressed and secreted (RANTES), and matrix
metalloproteinase-9, and the expression of the adhesion molecules, intercellular adhesion molecule-1
and vascular cell adhesion molecule-1, in interleukin-4 + tumor necrosis factor-α (IT)-stimulated
BEAS-2B cells. In the UPLC-DAD-MS/MS analysis, 21 phytochemicals, including six flavonoids, two
chalcones, five terpenoids, six phenolics, one phenylpropanoid and one coumarin, were identified
in GJTWE. The findings suggested that GJTWE might exhibit anti-inflammatory effects on airway
inflammation by regulating the expression of inflammatory response-related factors in IT-stimulated
BEAS-2B cells; further studies are required to determine the bioactive compounds involved in the
inhibition of airway inflammation.

Keywords: Gyeji-tang; airway inflammation; BEAS-2B cells; eotaxins; RANTES; matrix metalloproteinase-9;
UPLC-DAD-MS/MS

1. Introduction

Airway inflammation is an important factor in the pathogenesis of obstructive airway
diseases, such as asthma and chronic obstructive pulmonary disease [1]. The inflammatory
response of the airway epithelium, mediated by the increased expression of chemokines,
cytokines, inflammatory enzymes, and adhesion molecules, involves the recruitment,
activation, and infiltration of inflammatory cells, along with the tissue remodeling of
airways [1,2]. The bronchial epithelium plays a central role in regulating the airway
inflammatory response [3]. The human bronchial epithelial BEAS-2B cells stimulated
by interleukin (IL)-4, tumor necrosis factor (TNF)-α, or lipopolysaccharide have been
reported to secrete chemokines and cytokines such as eotaxin-1, eotaxin-3, regulated on
activation normal T-cells expressed and secreted (RANTES), and IL-8, which contribute
to airway inflammation [4–6]. In addition, BEAS-2B cells treated with IL-4 and TNF-α
increase the expression of matrix metalloproteinase (MMP)-9, an important proteolytic
enzyme that induces bronchial remodeling in asthma [4]. Tissue remodeling in the airways
may cause airway hyperresponsiveness, and may reduce the reversibility of the airflow
obstruction in asthma [5]. The accumulation of leukocytes in the inflamed sites of the
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airways is a hallmark of asthma, and the infiltration of inflammatory cells occurs through
the expression of adhesive molecules that regulate the adhesion of leukocytes and epithelial
cells [7]. The expression of adhesion molecules, intercellular adhesion molecule-1 (ICAM-1)
and vascular cell adhesion molecule-1 (VCAM-1) has been reported to be induced by
cytokines in human bronchial epithelial cells [8]. Therefore, suppressing the production,
expression, and activation of cytokines, chemokines, inflammatory enzymes, and adhesion
molecules in bronchial epithelial cells may help relieve airway inflammation.

Gyeji-tang (GJT), alternatively called Gui-Zhi-Tang in China and Keishi-to in Japan, is
one of the traditional herbal formulae in Shang-Han-Lun, and has been widely used to treat
the common cold, exogenous febrile disease, fever, headache, and inflammation [9–11].
GJT is comprised of five herbs: Cinnamomum cassia Blume (twig), Paeonia lactiflora Pall.
(root), Glycyrrhiza uralensis Fisch. (root and rhizome), Zingiber officinale Rosc. (rhizome),
and Ziziphus jujuba Mill. (fruit). The pharmacological effects of GJT had been reported
previously. It exhibits antipyretic effects by attenuating bradykinin-induced prostaglandin
E2 (PGE2) release from rabbit astrocytes [11], anti-inflammatory effects by blocking extracel-
lular signal-regulated kinase (ERK) and nuclear factor kappa-B (NF-κB) signaling pathways
in lipopolysaccharide-stimulated RAW 264.7 cells [12], and immunosuppressive effects by
inhibiting IL-2 production in murine spleen cells [13]. In addition, animal studies have
demonstrated the administration of GJT to ameliorate impairments in sociability, spatial
attention, and fear memory deficits by restoring neuronal functions [14], and that it is effec-
tive in chronic pancreatitis caused by pancreatic ischemia [15]. Despite the various reported
pharmacological activities of GJT, their effects on airway inflammation have not yet been
investigated. The present study aimed to explore the effects of GJT water extract (GJTWE)
on airway inflammation-related factors, such as eotaxin-3, eotaxin-1, RANTES, MMP-9,
ICAM-1, and VCAM-1, in the human bronchial epithelial BEAS-2B cell line. In addition, the
phytochemicals of GJTWE were identified using ultra-performance liquid chromatography-
diode array detector-tandem mass spectrometry (UPLC-DAD-MS/MS) analysis.

2. Results
2.1. UPLC-DAD-MS/MS Analysis of GJTWE

In order to identify the phytochemicals in GJTWE, UPLC-DAD-MS/MS analysis was
performed. The chromatographic separation of the compounds in GJTWE was achieved
on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 µm, Waters) at 40 ◦C for 20 min, with
mobile phases consisting of 0.1% (v/v) formic acid in water and acetonitrile. Both the
positive and negative ion modes were used to acquire the MS spectra of each compound. In
total, 21 compounds, namely protocatechuic acid, protocatechualdehyde, syringaldehyde,
cinnamaldehyde, and coumarin from C. cassia [16]; albiflorin, paeoniflorin, benzoylpaeoni-
florin, 1,2,3,4,6-O-pentagalloylglucose, and catechin from P. lactiflora [17]; schaftoside,
liquiritin apioside, liquiritin, liquiritigenin, isoliquiritin, isoliquiritigenin, glycyrrhizin, and
glycyrrhetinic acid from G. uralensis [17]; 6-gingerol and 6-shogaol from Z. officinale [18];
and isovitexin from Z. jujuba [19], were identified. The detailed MS data are listed in
Table 1. The retention times, precursor ions, and MS/MS fragments of each compound
were compared to those of the reference standards. Flavonoids and chalcones were more
suitably ionized in the negative ion mode, while most terpenoids, coumarins, and other
phenolic compounds were detected in the positive ion mode. The UV pattern at 250 nm
and the base peak chromatograms in the positive and negative ion modes of GJTWE are
shown in Figure 1a, and the extracted ion chromatograms for each compound are presented
in Figure 1b.
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Table 1. Phytochemicals identified from GJTWE by UPLC-DAD-MS/MS.

No. Rt 1 (min) Calculated
(m/z)

Measured
(m/z) Adduct Error (ppm) Formula MS/MS

(m/z) Identifications

1 4.32 153.0193 153.0187 [M−H]− −3.9699 C7H6O4
153.0176,
109.0276

Protocatechuic acid
[16]

2 5.09 139.0390 139.0389 [M + H]+ −0.5419 C7H6O3

139.0388,
121.0285,
111.0443,
93.0340

Protocatechualdehyde
[16]

3 5.16 289.0718 289.0710 [M−H]− 3.5430 C15H14O6

289.0709,
245.0809,
203.0701,
179.0491,
165.0176,
137.0228

Catechin [17]

4 5.93 563.1406 563.1392 [M−H]− −2.5017 C26H28O14

563.1381,
473.1062,
443.0975,
383.0745,
353.0655

Schaftoside [17]

5 6.04 481.1704 481.1698 [M + H]+ −1.3305 C23H28O11

179.0700,
151.0752,
133.0648

Albiflorin [17]

6 6.28 525.1614 525.1634 [M +
HCO2]− 3.8676 C23H28O11

327.1074,
165.0541,
121.0277

Paeoniflorin [17]

7 6.67 433.1129 433.1126 [M + H]+ −0.7161 C21H20O10

433.1061,
415.1018,
397.0916,
379.0807,
351.0856,
313.0702

Isovitexin [19]

8 6.73 549.1614 549.1637 [M−H]− 4.2543 C26H30O13

549.1605,
417.1173,
255.0652,
135.0069,
119.0487

Liquiritin apioside
[17]

9 6.85 183.0652 183.0652 [M + H]+ −0.1077 C9H10O4
183.0652,
123.0442 Syringaldehyde [16]

10 6.87 417.1191 417.1182 [M−H]− −2.2678 C21H22O9

417.1183,
255.0653,
135.0070,
119.0483

Liquiritin [17]

11 7.01 939.1109 939.1087 [M−H]− −2.3388 C41H32O26

769.0862,
617.0756,
447.0557,
295.0450,
169.0126

1,2,3,4,6-O-
Pentagalloylglucose

[17]

12 8.65 417.1191 417.1183 [M−H]− 4.0974 C21H22O9

417.1176,
255.0652,
135.0070,
119.0481

Isoliquiritin [17]

13 8.80 147.0441 147.0439 [M + H]+ −0.9875 C9H6O2

147.0439,
103.0547,
91.0548,
77.0394,
65.0394

Coumarin [16]

14 9.28 255.0663 255.0656 [M−H]− −2.7953 C15H12O4

255.0651,
135.0069,
119.0483

Liquiritigenin [17]
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Table 1. Cont.

No. Rt 1 (min) Calculated
(m/z)

Measured
(m/z) Adduct Error (ppm) Formula MS/MS

(m/z) Identifications

15 10.84 629.1876 629.1862 [M +
HCO2]− −2.1643 C30H32O12

431.1359,
165.0540,
121.0276

Benzoylpaeoniflorin
[17]

16 11.14 133.0648 133.0648 [M + H]+ −0.0089 C9H8O

133.0647,
115.0544,
105.0702,
103.0546,
91.0548,
79.0550,
77.0394,
55.0188

Cinnamaldehyde [16]

17 12.02 255.0663 255.0671 [M−H]− 3.1272 C15H12O4

255.0652,
153.0180,
135.0069,
119.0483

Isoliquiritigenin [17]

18 13.18 821.3965 821.3999 [M−H]− 4.1300 C42H62O16

821.3943,
351.0556,
193.0343

Glycyrrhizin [17]

19 14.52 317.1723 317.1720 [M + Na] + −0.9535 C17H26O4
317.1690,
299.1064 6-Gingerol [18]

20 17.68 277.1798 277.1809 [M + H]+ 4.0361 C17H24O3

277.2159,
259.2050,
137.0596

6-Shogaol [18]

21 19.02 471.3469 471.3463 [M + H]+ −1.2879 C30H46O4

471.3464,
407.3315,
317.2107,
189.1635

Glycyrrhetinic acid
[17]

1 Rt: retention time (min).
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Figure 1. UPLC-DAD-MS/MS chromatograms of GJTWE. UV and base peak chromatograms (a) and extracted ion
chromatograms in the positive and negative ion modes (b) of the identified phytochemicals. 1: protocatechuic acid;
2: protocatechualdehyde; 3: catechin; 4: schaftoside; 5: albiflorin; 6: paeoniflorin; 7: isovitexin; 8: liquiritin apioside;
9: syringaldehyde; 10: liquiritin; 11: 1;2;3;4;6-O-pentagalloylglucose; 12: isoliquiritin; 13: coumarin; 14: liquiritigenin;
15: benzoylpaeoniflorin; 16: cinnamaldehyde; 17: isoliquiritigenin; 18: glycyrrhizin; 19: 6-gingerol; 20: 6-shogaol; 21:
glycyrrhetinic acid.



Plants 2021, 10, 951 5 of 13

2.2. Cytotoxicity of GJTWE in BEAS-2B Cells

In order to determine the cytotoxicity of the test materials in BEAS-2B cells, the latter
were exposed to various concentrations of GJTWE for 24 h. The cell viability was measured
subsequently using a cell counting kit (CCK)-8 assay. GJTWE did not produce any signifi-
cant cytotoxic effect at any concentration. Non-toxic concentrations (≤500 µg/mL) of the
test materials were used for the subsequent experiments (Figure 2).
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Figure 2. Cytotoxic effects of GJTWE in BEAS-2B cells. BEAS-2B cells were seeded into 96-well plates
and treated with various concentrations (31.25, 62.5, 125, 250, and 500 µg/mL) of GJTWE for 24 h.
The cell viability was assessed using a CCK-8 kit. The values are expressed as the mean ± SEM.

2.3. Effect of GJTWE on Chemokine Oroduction

The effects of GJTWE on eotaxin-3, eotaxin-1, and RANTES production were assessed
in IT-stimulated BEAS-2B cells. The production of eotaxin-3, eotaxin-1, and RANTES
was significantly increased upon IL-4 + TNF-α (IT) stimulation compared to that in the
vehicle-treated cells (p < 0.01). However, GJTWE significantly decreased the production
of chemokines, such as eotaxin-3, eotaxin-1, and RANTES, in a dose-dependent manner
(p < 0.05, p < 0.01, Figure 3a–c).
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Figure 3. Effects of GJTWE on the production of chemokines in BEAS-2B cells. The cells were pretreated with GJTWE
(125, 250, and 500µg/mL) and then co-stimulated with IL-4 + TNF-α (IT, 50 ng/mL) for 48 h. The levels of h-eotaxin-3 (a),
h-eotaxin-1 (b), and h-RANTES (c) released into the culture medium were assessed using commercially available ELISA
kits. The values are expressed as the mean ± SEM. ## p < 0.01 versus vehicle-treated cells and * p < 0.05 or ** p < 0.01 versus
IT-treated cells.
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2.4. Effect of GJTWE on MMP-9 Activity

In order to identify the regulator of inflammatory processes, we determined the
activities of MMP-9 and MMP-2 in IT-stimulated BEAS-2B cells. As shown in Figure 4a,
MMP-9 activity was remarkably increased by the IT treatment. However, GJTWE greatly
reduced the MMP-9 activity in a dose-dependent manner. The relative ratio of MMP-
9/MMP-2 was significantly increased in the IT-treated cells compared to that in the vehicle-
treated cells (p < 0.01). In contrast, GJTWE significantly decreased the relative ratio of
MMP-9/MMP-2 compared to that in the IT-treated cells (p < 0.01, Figure 4b).
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Figure 4. Effects of GJTWE on the activity of MMP-9 in BEAS-2B cells. The cells were pretreated
with GJTWE (125, 250, and 500µg/mL) and then co-stimulated with IL-4 + TNF-α (IT, 50 ng/mL) for
48 h. The cell supernatants were loaded for gelatin zymography. Representative photographs of the
MMP-9 activity (a) and MMP-9/MMP-2 band intensities (b) are shown. The values are expressed as
the mean ± SEM. ## p < 0.01 versus vehicle-treated cells and ** p < 0.01 versus IT-treated cells.

2.5. Effect of GJTWE on the Expression of Adhesion Molecules

In order to identify the indicators of inflammatory responses, we determined the
ICAM-1 and VCAM-1 expression in the IT-stimulated BEAS-2B cells. As shown in
Figure 5a,b, the ICAM-1 and VCAM-1 expression was remarkably increased by the IT
treatment. However, GJTWE dramatically decreased the ICAM-1 and VCAM-1 expression
in a dose-dependent manner. The relative ratios of ICAM-1/glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and VCAM-1/GAPDH were significantly increased in the IT-
treated cells compared to the vehicle-treated cells (p < 0.01). In contrast, GJTWE significantly
reduced the relative ratios of ICAM-1/GAPDH and VCAM-1/GAPDH compared to that
in the IT-treated cells (p < 0.01, Figure 5c,d).
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3. Discussion

The human bronchial epithelial cell line, BEAS-2B, has been previously used to ex-
amine cytokine- or endotoxin-associated airway inflammation, which may induce allergic
asthma [20,21]. Chemokines from bronchial epithelial cells have also been reported to
contribute to chronic airway inflammation by recruiting inflammatory cells [22]. Eotaxins
are members of the CC chemokine family, which are potent attractants of eosinophils and
might contribute to airway inflammation. Eotaxins represent a group of chemokines con-
sisting of three sets of subtypes: eotaxin-1 (CC chemokine ligand [CCL]-11) [23], eotaxin-2
(CCL24) [24], and eotaxin-3 (CCL26) [25]. Most importantly, eotaxin-3 is a more effective
chemoattractant than eotaxin-1 and eotaxin-2 for eosinophils in patients with asthma [26].
RANTES (CCL5) is a chemotactic and activating factor for eosinophils, and a candidate
mediator in asthma. It is able to attract several types of inflammatory cells, including
eosinophils, monocytes, and T helper (Th) cells, to the site of inflammation [27]. Our
current findings demonstrated that GJTWE could significantly reduce the increased pro-
duction of CC chemokines, including eotaxin-3, eotaxin-1, and RANTES, in IT-stimulated
BEAS-2B cells.

MMPs are enzymes that degrade the extracellular matrix and basement membrane,
and regulate the infiltration of inflammatory cells; consequently, they participate in tissue
remodeling [28]. MMP-9 and MMP-2, members of the gelatinase family of MMPs, are
recognized to play important roles in the turnover and degradation of extracellular matrix
proteins during cellular recruitment in inflammation [29]. Whereas MMP-2 is constitutively
expressed in many cell types, MMP-9 is strongly induced in airway epithelial cells by
inflammatory cytokines, particularly TNF-α [30,31]. Thus, the relative expression levels of
MMP-9 were normalized to those of MMP-2. Our current findings indicate that GJTWE
significantly decreases the MMP-9 activity in IT-stimulated BEAS-2B cells.
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The upregulation of adhesion molecules on the surface of respiratory epithelial cells
is an important factor in the development of asthma. The infiltration of inflammatory
cells mostly results from the enhanced adhesion of leukocytes to epithelial cells via the
expression of adhesion molecules [32]. Members of the immunoglobulin superfamily
of endothelial adhesion molecules, ICAM-1 and VCAM-1, play an important role in in-
flammatory cell infiltration into inflamed airways [33]. The current results demonstrated
that treatment with GJTWE significantly suppresses the increased expression of adhesion
molecules, including ICAM-1 and VCAM-1, in IT-stimulated BEAS-2B cells. Taken together,
the findings demonstrated that the administration of GJTWE has anti-inflammatory activity,
at least via the downregulation of CC chemokine expression and MMP-9 activity, resulting
in the reduced expression of adhesion molecules in IT-stimulated BEAS-2B cells.

GJT is composed of five herbal medicines, and the effects of the individual herbs on
airway inflammation-related diseases, such as asthma and bronchitis, has been reported
earlier. C. cassia protects airway epithelia from human respiratory syncytial virus [34].
P. lactiflora was shown to improve allergic asthma in a mouse model by inhibiting Ca2+

influx-dependent mast cell degranulation [35]. G. uralensis was reported to reduce the
airway responsiveness in patients with asthma [36], and Z. officinale ameliorated allergic
airway inflammation by suppressing the Th2-mediated immune response [37]. Z. jujuba
also exhibits potent anti-asthmatic activity [38].

The main ingredients of GJT include phenylpropanoids (e.g., cinnamaldehyde and
cinnamic acid), terpenoids (e.g., albiflorin, paeoniflorin, benzoylpaeoniflorin, and gly-
cyrrhizin), flavonoids (e.g., liquiritin, liquiritigenin, and liquiritin apioside), chalcones
(e.g., isoliquiritin and isoliquiritigenin), and phenolic compounds (e.g., 6-gingerol and
6-shogaol) [10,11]. In this study, UPLC-DAD-MS/MS analysis was performed in order
to confirm the phytochemicals of GJTWE, and 21 compounds—including six flavonoids
(catechin, schaftoside, isovitexin, liquiritin apioside, liquiritin, and liquiritigenin), two
chalcones (isoliquiritin and isoliquiritigenin), five terpenoids (albiflorin, paeoniflorin, ben-
zoylpaeoniflorin, glycyrrhizin, and glycyrrhetinic acid), six phenolics (protocatechuic
acid, protocatechualdehyde, syringaldehyde, 1,2,3,4,6-O-pentagalloylglucose, 6-gingerol,
and 6-shogaol), one phenylpropanoid (cinnamaldehyde), and one coumarin (coumarin)—
were identified.

Several studies have previously reported the effects of various compounds contained
in the herbal composition of GJT on airway inflammation-related diseases. Paeoniflorin is
known to exhibit anti-asthmatic effects by inhibiting the abnormal proliferation and migra-
tion of airway smooth muscle cells, and by modulating the Th1/Th2 equilibrium [39,40].
Glycyrrhizin has been reported to reduce airway inflammation in vivo [41], and to amelio-
rate the progression of asthma and long-term chronic histopathological changes in the lungs
of a mouse model of asthma [42,43]. In addition, jujuboside B, 6-shogaol and 6-gingerol
exhibited potent anti-asthmatic effects in a murine asthma model by regulating an exag-
gerated inflammatory response, improving airway hyperresponsiveness, and suppressing
airway inflammation [38,44,45]. The previous studies and our current data collectively
suggest that the anti-inflammatory activity of GJTWE in IT-stimulated BEAS-2B cells may
be due to a synergistic effect between several of the compounds of GJTWE. Further investi-
gations are needed to clarify their mechanisms of action by identifying the phytochemicals
and their contribution to the efficacy of GJTWE through quantitative analysis in detail.

In conclusion, GJTWE inhibited the production of chemokines, such as eotaxin-3,
eotaxin-1 and RANTES, and reduced the MMP-9 activity and expression of adhesion
molecules ICAM-1 and VCAM-1 in IT-stimulated BEAS-2B cells. Therefore, our results
revealed that GJTWE might exhibit anti-inflammatory effects on airway inflammation by
suppressing the expression of inflammatory response-related factors. Moreover, 21 phy-
tochemicals were confirmed in GJTWE by UPLC-DAD-MS/MS analysis. Further studies
would be required to determine the bioactive compounds that inhibit airway inflammation.
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4. Materials and Methods
4.1. Materials and Reagents

The GJTWE was provided by the Herbal Medicine Research Division, Korea Institute
of Oriental Medicine (Daejeon, South Korea). The detailed extraction method of GJTWE
was described in a previous paper [12]. The 21 reference standards (purity > 95%) used to
identify the phytochemicals in GJTWE were purchased from TargetMol (Boston, MA, USA),
with the exception of liquiritin apioside, albiflorin, and protocatechuic acid (ChemFaces,
Wuhan, China). LC-MS-grade water, acetonitrile, methanol, and formic acid were obtained
from Thermo Fisher Scientific (Waltham, MA, USA).

4.2. Cell Culture

The human bronchial epithelial cell line BEAS-2B was obtained from the American
Type Culture Collection (ATCC; Rockville, MD, USA). The cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco Inc., New York, NY, USA) supplemented with
10% heat-inactivated fetal bovine serum (FBS; Gibco Inc.), penicillin (100 U/mL, Gibco
Inc.), and streptomycin (100 µg/mL, Gibco Inc.) at 37 ◦C in an atmosphere of 5% CO2/95%
air under saturating humidity.

4.3. Cytotoxicity Assay

The cell viability was assessed using a cell CCK-8 assay (Dojindo, Kumamoto, Japan)
according to the manufacturer’s instructions. BEAS-2B cells (6 × 103 cells/well) were incu-
bated in 96-well plates with various concentrations (31.25, 62.5, 125, 250, and 500 µg/mL)
of GJTWE for 24 h. CCK-8 reagent was added to each well and incubated for 4 h. The
absorbance was measured at 450 nm using a Benchmark Plus microplate reader (Bio-Rad
Laboratories, Hercules, CA, USA). The percentage of cell viability was calculated using the
following formula: cell viability (%) = (mean absorbance in the test sample wells/mean
absorbance in the vehicle-treated control wells) × 100.

4.4. Cell Stimulation

BEAS-2B cells (5 × 105 cells/well) were cultured in 6-well plates in a medium contain-
ing 10% FBS. After having reached confluence, the cells were washed and incubated with
1 mL serum-free medium containing 50 ng/mL IT (R&D Systems Inc., Minneapolis, MN,
USA) to produce eotaxin-3, eotaxin-1, RANTES, MMPs, and adhesion molecules for 48 h.

4.5. Measurement of Chemokine Production

Culture supernatants were used to measure the production of eotaxin-3, eotaxin-
1, and RANTES using an enzyme-linked immunosorbent assay (ELISA) protocol from
R&D Systems Inc. (Minneapolis, MN, USA), according to the manufacturer’s instructions
(Catalog No. DY278, DY320 and DY346). The absorbance was measured at 450 nm using a
Benchmark Plus microplate reader (Bio-Rad Laboratories, Hercules, CA, USA).

4.6. Measurement of MMP-9 Activity

The MMP-9 activity was measured by gelatin zymography. The cell supernatant was
mixed with 5× non-reducing sample buffer (Fermentas Inc., Pittsburg, PA, USA) before
being loaded onto a 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis setup
(SDS-PAGE; Bio-Rad Laboratories, Hercules, CA, USA) containing 1% gelatin as an MMP
substrate. The samples were subjected to electrophoresis at 80 V for 2 h. Following the
electrophoresis, the gels were washed twice in 2.5% Triton X-100 (Sigma-Aldrich, St. Louis,
MO, USA) for 1 h to remove the SDS, and then incubated for 16 h at 37 ◦C in developing
buffer (1 M Tris-HCl, pH 7.5, 10 mM CaCl2). Following incubation, the gels were stained
with Coomassie Brilliant Blue G (Sigma-Aldrich, St. Louis, MO, USA) for 35 min, de-stained
in 25% methanol and 8% acetic acid solution for 20 min, and finally rinsed twice with
de-staining solution in order to visualize the digested bands in the gelatin matrix. The
gelatinase activity was manifested as white bands on a blue background, representing
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areas of proteolysis of the substrate protein. The relative expression levels of the MMP-9
were normalized to those of MMP-2. Images of the gels were collected, and the average of
the band intensities was measured using the commercially available ChemiDocTM XRS+

imaging system (Bio-Rad Laboratories, Hercules, CA, USA).

4.7. Measurement of the Adhesion Molecule Expression

The total ribonucleic acid (RNA) was isolated using a TRIzol reagent according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). One microgram of total RNA
was converted to complementary deoxyribonucleic acid (cDNA) using an iScript cDNA
synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA) containing oligo-dT primers, and
diethyl pyrocarbonate-treated water was added to make a final volume of 20 µL; it was
incubated at 42 ◦C for 30 min thereafter. The polymerase chain reaction (PCR)-based
amplification used gene-specific primers for ICAM-1 (forward, 5′-AGG CCT TAT TCC TCC
CTT CC-3′; reverse, 5′-TCA CTG CAG GAA ACT GGA GC-3′), VCAM-1 (forward, 5′-CAT
TGA CTT GCA GCA CCA CA′; reverse, 5′-TCC AGC CTG TCA AAT GGG TA-3′), and
GAPDH (forward, 5′-GTG ATG GCA TGG ACT GTG GT-3′; reverse, 5′-AAG GGT CAT
CAT CTC TGC CC-3′). The reverse transcription (RT)-PCR reaction mixture was comprised
of 1 µL cDNA and 1.56 µL γTaq PCR master mix (ELPIS biotech, Daejeon, Republic of
Korea), which contained 1.5 mM MgCl2, 0.1 M of each forward and reverse primer, and
7.44 µL water in a final volume of 10 µL. The PCR reaction was comprised of 22 cycles
of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 1 min, and extension at 72 ◦C for
1 min 30 s for ICAM-1; 29 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for
1 min, and extension at 72 ◦C for 1 min 30 s for VCAM-1; and 25 cycles of denaturation
at 94 ◦C for 30 s, annealing at 52 ◦C for 1 min, and extension at 72 ◦C for 1 min 30 s for
GAPDH. Each reaction was performed in a Bio-Rad MyCycler™ Thermal Cycler (Bio-Rad
Laboratories). The relative ratio of ICAM-1 and VCAM-1 expression was adjusted based
on the expression of GAPDH as a control. This assay was performed in triplicate. The
amplified products were separated on a 1.5% agarose gel and visualized using loading
STAR staining (Dynebio, Seongnam, Korea). The images were captured and analyzed
using the ChemiDocTM XRS+ imaging system (Bio-Rad Laboratories, Hercules, CA, USA).

4.8. UPLC-DAD-MS-MS Analysis of GJTWE

GJTWE was dissolved in methanol up to a concentration of 20 mg/mL and filtered
using a syringe filter (0.2-µm pore size). The standards were prepared in methanol at a final
concentration of 10 µg/mL for the UPLC-DAD-MS/MS analysis. The 21 phytochemicals
in GJTWE were analyzed using a Dionex UltiMate 3000 system equipped with a Thermo
Q-Exactive mass spectrometer according to the previously reported methods [46]. An
Acquity BEH C18 column (100 × 2.1 mm, 1.7 µm, Waters Corp., Milford, MA, USA),
maintained at 40 ◦C, was used to separate the compounds in GJT. The mobile phases
consisted of 0.1% (v/v) formic acid in water (A) and acetonitrile (B). Gradient elution was
performed with a flow rate of 0.25 mL/min, as follows: 0–1 min, 3% B; 1–2 min, 3–15% B;
2–13 min, 15–50% B; 13–20 min, 50–100% B; 20–23 min, 100% B; and 23.5–27.5 min, 3% B.
The injection volume was 3 µL for analysis. The MS analysis was conducted with an
electrospray ionization source in both positive and negative ionization modes using a
Q-Exactive mass spectrometer. The MS spectra were acquired in full MS-ddMS2 mode.
The optimized MS/MS conditions were as follows: ion spray voltage, 3.8 kV; capillary
temperature, 320 ◦C; sheath gas pressure, 40 arbitrary units (au); auxiliary gas pressure,
10 au; S-lens RF level, 60; resolution, 70000 (full MS) and 17500 (ddMS2); scan range,
100–1500 m/z; and normalized collision energy, 25 eV. All of the data were acquired and
processed using Xcalibur v.3.0 and TraceFinder v.3.2 software (Thermo Fisher Scientific,
Bremen, Germany).
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4.9. Statistical Analyses

All of the data are presented as the mean ± standard error of the mean (SEM). The
statistical significance was determined using analysis of variance (ANOVA) followed by
Dunnett’s multiple comparisons test. Statistical significance was set at p < 0.05 or < 0.01.
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