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ABSTRACT: In addition to general challenges in drug discovery such as the identification of
lead compounds in time- and cost-effective ways, specific challenges also exist. Particularly, it
is necessary to develop pharmacological inhibitors that effectively discriminate between
closely related molecular targets. DYRK1B kinase is considered a valuable target for cancer-
specific mono- or combination chemotherapy; however, the inhibition of its closely related
DYRK1A kinase is not beneficial. Existing inhibitors target both kinases with essentially the
same efficiency, and the unavailability of the DYRK1B crystal structure makes the discovery of
DYRK1B-specific inhibitors even more challenging. Here, we propose a novel multi-stage
compound discovery pipeline aimed at in silico identification of both potent and selective
small molecules from a large set of initial candidates. The method uses structure-based
docking and ligand-based quantitative structure−activity relationship modeling. This approach
allowed us to identify lead and runner-up small-molecule compounds targeting DYRK1B with
high efficiency and specificity.

■ INTRODUCTION
One of the major goals in drug discovery is shortening the
overall lead compound identification and optimization syn-
thesis cycle. It is critical to force a relatively low number of
iterations and the number of compounds on each iteration to
correctly identify the most potent compounds from patentable
scaffolds experimentally found to contain marginally effective
small molecules for a target of interest. In this context, potency
indicates a quantitative experimental measure of a compound’s
ability to selectively inhibit in vitro either a molecular target or
biological process as well as additional pharmacokinetic
properties such as high solubility, low toxicity, high microsomal
stability, and so forth.
Although the preliminary choice of desired scaffolds limits

the size of the initial compound set, the final number of small
molecules can be in hundreds or more.1 Because the sequential
generation and versatile in vitro evaluation of each small
molecule is time- and cost-consuming, the capability to
accurately narrow down the initial set of compounds for
experimental evaluation is of paramount importance. Thus, a
reliable pipeline that can help to decrease in silico the number
of compounds for synthesis and evaluation would be a great
saver of time and resources. Such a pipeline (i) should be
efficient computationally (the algorithm should be easy to run
within a reasonable time frame) and (ii) should reliably
determine the optimal compound in the fewest number of
iterations with the fewest number of compounds in each
prediction−synthesis−evaluation iteration. When scaffolds
cannot be easily enumerated, the in silico optimization

procedure should be able to suggest structurally similar de
novo compounds, which would be predicted to have higher
potency and good druggability.
The first QSAR iteration (ligand-based modeling) usually

starts in its training set with the compounds that already have
some experimental information on their efficiency. Otherwise,
such initial compounds would also have to be identified in silico
by approximating their potency by binding affinity to the target
and selecting ones with the highest binding affinity. The
selected small initial subset with the highest computed affinity
values is then evaluated in vitro for selective potency (sP);
these experimentally measured potency values would be the
actual values to be modeled on the subsequent QSAR
iteration(s). It is worth noting that the calculated binding
affinities can serve only as very crude surrogate predictors for
experimental compound potencies,2 so one should not expect
high predictive power at this step. However, once the actual
measured potency values enter the QSAR model, higher
predictive power is usually achieved. For all the subsequent
QSAR iterations, the compounds from the screening universe
with the highest predicted potencies are selected for
experimental validation, and after their validation the training
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set for the next iteration is updated with these compounds and
their experimental values. The procedure is stopped when the
algorithm fails to produce higher predicted potency values for
the rest of the screening universe. For validation purposes, one
can still evaluate the rest of the universe to see if the most
potent compounds were indeed selected by such an
optimization procedure.
With these requirements in mind, we designed the QSAR

pipeline, an open-source multi-stage compound discovery
algorithm. The initial screening stage is a structure-based
docking performed on a large set of candidates based on their
selected scaffolds and desired binding properties. The selected
small subset with the highest computed affinity values is
validated in vitro for potency and serves as an input for the first
ligand-based QSAR iteration. The measured sP is a response
(modeled) variable, and fingerprint values for each corre-
sponding compound are the input features (dependent
variables) for the machine learning-based QSAR algorithm.
The optimized QSAR model is applied to predict the potency
of the remaining (not tested in vitro) compounds from the
original compound universe. At every subsequent QSAR
iteration, the small subset of compounds with the highest
potency predicted by the algorithm is selected, experimentally
evaluated, and then added to the training set for the next
iteration.
This procedure has been applied to optimize the dual-

specificity tyrosine phosphorylation-regulated kinase 1B
(DYRK1B) inhibitors, which was challenging due to the
unavailability of the DYRK1B crystal structure and its
structural similarity with DYRK1A kinase.3 DYRK1B is
overexpressed in several cancer types and maintains cellular
quiescence.4 Moreover, DYRK1B can enhance cancer cell
survival by upregulating antioxidant gene expression and
reducing intracellular levels of reactive oxygen species.5,6 It is
well documented that either genetic depletion of DYRK1B or
its pharmacological inhibition leads to the cell cycle re-entry
and apoptosis of DYRK1B-expressing quiescent cancer
cells,7−9 which brings DYRK1B inhibitors in focus of novel
highly potent cancer therapies. At the same time, the inhibition
of the DYRK1A kinase, which has high homology to DYRK1B
in its active site yet different functions and tissue distribution,
bears risks of adverse drug reactions because DYRK1A is

expressed in multiple tissues and is involved in a plethora of
housekeeping cellular processes.10 Here, using the QSAR
pipeline, we identified the lead and two runner-up compounds
in just one docking-based screening, followed by two QSAR
iterations with less than 15 compounds selected on each step,
bringing the total number of experimentally evaluated
compounds to less than 50. To verify the procedure, the
entire initial data set of candidate inhibitors was evaluated in
vitro for DYRK1B/DYRK1A potency and selectivity, and the
results were compared with the predictions from the pipeline.
It turned out that the most potent selective inhibitor (lead)
was correctly identified as well as the two runner-ups.
Moreover, the rest of the compounds from the tested universe
were less potent than the top compounds correctly identified
by our procedure, proving the correct stoppage point.

■ RESULTS
Selecting the Initial Set of DYRK1B Ligands for

Subsequent QSAR Modeling. For the very first iteration,
the goal was to select 10−15 compounds (<10% of the initial
scaffold set containing 164 small molecules) with the highest
selective binding affinities. The exact number of selected
compounds in the batch has been determined based on the
resulting distribution of the binding energies and our medicinal
chemist’s experience and recommendation. Retrospectively,
the sensitivity analysis showed that the final number of tested
compounds and QSAR iterations was quite robust for this
initial selection and had a detrimental effect only if the number
of the initially selected compounds was less than 10. The
binding affinities were produced by PyRx and ICM (Figure
1A,B). A comparison of the computed binding affinities
obtained by PyRx and ICM for each compound showed that
the results for the two methods have been very similar (Figure
1C). Moreover, a steep drop in the histogram of affinities
helped to determine the cutoff point making the compound
selection process easier and to produce the desired sets of 15
(ICM) and 14 (PyRx) compounds.
The subsequent in vitro evaluation revealed that less than

50% of selected compounds produced by either PyRx or ICM
were active. There was not a single meaningfully potent leading
compound in the subset identified by homology modeling/
docking at this step. Such results were quite expected by the

Figure 1. Histogram of the binding affinities for the ligands docked by ICM (panel A) and PyRx (panel B) software to the DYRK-1B homology
model. The sets of compounds with the highest predicted affinities were 15 (for ICM) and 14 (for PyRx), which were separated by vertical bars.
Those sets were selected for the first QSAR iteration. Panel C displays the comparison between the sets of compounds selected by ICM (orange
and green) and PyRx (green and cyan), respectively, as well as the correspondence between binding affinities returned by each method.
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authors because (i) the binding affinities are usually poorly
translated to the actual selective inhibition potencies and (ii)
DYRK1B potencies were obtained by homology modeling,
which introduced an additional source of error. Nevertheless,
these initial compound sets formed good starting points for
QSAR model training. Their 3D structural features helped to
avoid selecting decoys (non-active counterpart compounds) in
the follow-up iterations. It is also worth noting that both ICM
and PyRx starting points, which were somewhat different
(Figure 1C), eventually led to the same number of QSAR
iterations and approximately the same number of finally
selected compounds (44 and 47, respectively) in the last
algorithm iteration.
Iterative Selection of Compounds to Identify the

Lead. The appropriate number of compounds in each iteration
was chosen to be 10−15, which was supposed (i) to be
sufficient to instruct the algorithm on what improves the
desired potency and (ii) to keep the algorithm’s cost-
effectiveness. While the chosen number of compounds was
similar to the earlier iterative QSAR studies,11 the number of
iterations themselves used here was much less compared to the
10 iterations needed to identify the lead compound in the
above-mentioned study. Our approach also agrees with earlier
findings where the set of 10 compounds was found to be the
minimal meaningful input for model refinement.12

Importance of Shape-Based Fingerprints. We found
that excluding shape-based descriptors (fingerprints) from the
set of features would add one more iteration to the overall
optimization cycle, which is undesired. On the contrary, when
fingerprints were included, the resulting percentage of the
ODDT features, that is, the prevalence of the shape-based
descriptors on the first QSAR iteration was 24% (6 out of 25)
and 43% (3 out of 7), respectively. This was much larger than
would be expected under random selection (15 out of 338
resulting in 4%). In summary, the usage of shape-based
descriptors implied fewer cross-validation (CV) iterations,
which improved computational efficiency, and demonstrated
that 3D features were more informative and important because
their selection proportion was much higher than the one for
the non-3D features.
Compound Summaries from Each QSAR Iteration.

From the initial (first) iteration, the 15 compounds with the
highest ICM-predicted binding affinity were selected to seed
the QSAR model (Table 1). The corresponding inhibition
potencies for DYRK1A and DYRK1B of the synthesized
compounds, which were measured in vitro and calculated
according to formula 1 are also provided in Table 1. These
measured potencies were used as the QSAR model training
inputs. There is a discrepancy between the PyRx/ICM-
predicted energies and evaluated in vitro potencies, which
indicates that the initial set of compounds can be selected
either by PyRx or ICM. This, however, does not guarantee the
potent set of initial compounds and can serve only as the
algorithm’s starting point. Overall, the results for the ICM and
PyRx predictions were essentially the same�some compounds
with high binding energies were potent and some were not.
For the second iteration, the fitted “optimal” model potency

predictions from the first iteration out of the entire 164-
compound universe of potential inhibitors are summarized in
Table 2. In the same way, as for the first iteration, the top 15
compounds with the highest predicted potencies were
experimentally evaluated for their actual potencies (Table 2).
The actual potencies from the first and second iterations were

used as the modeled response values in the training set for the
third iteration.
The results of the third (most recent) iteration are

summarized in Table 3. Because the model on the third
iteration did not identify any additional compounds with
higher potency than those already present in the training set
from previous iterations, the resulting model was declared to
be final. To validate such a statement, the rest of the
compounds in the 164-compound universe, which had not
been evaluated during the above-mentioned iterations, were
synthesized and experimentally evaluated to test the predictive
power of the model.
In summary, all “top hits” from the universe, that is,

compounds with the highest actual selective potencies have
been identified correctly during the final iteration. For a visual
illustration, the experimentally confirmed top hits from the
final iteration are presented in Figure 2A−C. One can see that
they all belong to the same 7-azaindole-quinoline scaffold,
containing a carboxylic amide substituent at position five of the
azaindole moiety and substituents at positions 3, 4, and/or
eight of the quinoline. The rest of the initial universe not

Table 1. First iteration Summaries: the Choice of
Compounds with the Highest Predicted Selective Affinitya

ID E(DYRK1B)-E(DYRK1A) measured sP

Compound9163 −1.2 −0.03
Compound9069 0.1 −0.55
Compound8814 0.2 0.3
Compound9160 0.2 −1.44
Compound9630 0.2 −1
Compound9965 0.3 −1.41
Compound9716 0.3 0.4
Compound10731 0.3 −1.18
Compound9402 0.4 −0.75
Compound3702 0.4 0.49
Compound9070 0.4 −2.16
Compound9162 0.4 −0.47
Compound9411 0.4 −0.85

aHere, deltaEnergy is defined as the ligand’s predicted binding affinity
(DYRK1B) minus predicted binding affinity (DYRK1A). Potency is a
sP as defined in formulas 1 and 2. The results are presented for ICM,
while the results for PyRx are similar.

Table 2. Second Iteration Summaries: Selection of
Compounds with the Highest Predicted sPa

ID measured potency predicted potency

Compound9447 0.88 0.88
Compound10289 0.4 0.52
Compound9716 0.4 0.4
Compound9422 −0.59 0.32
Compound8814 0.3 0.3
Compound9445 0.65 0.29
Compound9790 −0.91 0.27
Compound9394 −0.86 0.27
Compound9449 0.6 0.26
Compound3702 0.49 0.26
Compound3421 0 0.21
Compound9397 0.49 0.21

aThe experimentally measured ground truth calculated according to
eqs 1 and 2 is provided in the sP column. The cutoff was made at the
12th compound to make the total number of lab-tested compounds
less than or equal to 25.
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selected by the model for processing in the lab had more than
70% of all considered compounds, which substantially reduced
the synthesis effort and number of experimental validations.
Compounds rejected by the model were indeed found
experimentally to be way less potent than the selected ones
with an average measured sP of −0.1 in comparison to an
average of 0.3 for the compounds selected on the final
iteration.

■ DISCUSSION
Despite the promising results, the proposed pipeline has some
inherited limitations, which are coming from multiple sources
and which are discussed in this section.
Structure-Based Screening Stage and Homology

Modeling Limitations. The usual culprits limiting the
reliability of the in-silico binding scores are as follows: the
forcefield and the scoring function,13 uncertainties resulting
from modeling potential water-mediated interactions14,15 and
of course, the use of a homology model itself, which would
conventionally be more suitable for virtual screening rather
than lead optimization.13,16,17 Homology modeling can have

multiple inherited issues from modeling errors to difficulties in
translating predicted binding affinities to the observed
inhibition concentrations.18 Moreover, the above-mentioned
issues are expected to be more frequent because our modeled
response variable is composed of the two predicted
components (binding affinities from docking calculations for
both DYRK1A and DYRK1B for the initial set and then the
predicted pIC50 values as a combination of individual pIC50
values for both DYRK1A and DYRK1B). Because the
structures of both targets are also very similar, it greatly
influences the accuracy of the resulting “difference” model.19

Feature Selection Potential Biases. Feature selection
can have great influence on the model performance20 while in
general, a comprehensive evaluation of all possible feature
combinations is prohibitively expensive. However, for the
methods that we present in this study (SVR, ensembles of
decision trees, and Gaussian processes), robust heuristics exist
that produce reasonable results in most cases.21 Nevertheless, if
the data set dimensions grow significantly larger than in the
present study, the sampling of feature space can become either
a computational bottleneck or can result in suboptimal model
selection.
Small Sample Size Limitations and Potential for

Overfit. The desire to perform lead optimization in the most
efficient manner, that is, with as few iterations and as few
compounds in each iteration as possible, inevitably leads to a
small training set size and potential for an overfit, given that
the number of features exceeds the number of samples in the
model. Keeping the number of selected features fewer than the
number of samples along with repeated extensive CV of the
resulting models can attenuate this problem to some extent but
cannot make the setup, which will be universally generalizable
to every imaginable lead optimization program. As a
consequence, for the foreseeable future, human input (e.g.,
from a trained medicinal chemist who is an expert in the field
regarding selection of patentable scaffolds and molecular
building blocks) will still be needed.
Use of AlphaFold and Similar AI Approaches at the

First (Structure-Based Screening) Iteration. In light of the
recent AI-based structure prediction developments (e.g.,
AlphaFold22), we envision that our lead optimization pipeline
could indeed benefit in those situations when the target’s
crystal structure is not available and the closest homology
model would have a sequence similarity of 50% or even lower
(esp. when there is large uncertainty in the target’s binding site
region) to fully utilize the predictive and generalization power
of AlphaFold.23 In the present work, however, our target
structure (DYRK1B) had 84% identity with a DYRK1A
template in the N-terminus and the catalytic domain, so we

Table 3. Third (Final) Iteration Summaries: the Resulting
Set Has Only Two Inactive Compounds, While all Potent
Compounds within the Universe of 164 Were Extracteda

ID measured potency predicted potency

Compound9447 0.88 0.88
Compound9445 0.65 0.65
Compound9449 0.6 0.6
Compound9857 0.85 0.55
Compound9799 1 0.49
Compound9397 0.49 0.49
Compound9401 0.65 0.41
Compound10289 0.4 0.4
Compound9716 0.4 0.4
Compound3702 0.49 0.35
Compound8814 0.3 0.3
Compound9446 0.54 0.26
Compound3457 0 0.25
Compound8796 −1.7 0.11
Compound9465 0.88 0.07
Compound9659 0.89 0.04
Compound3421 0 0
Compound9466 0.78 0
Compound9163 −0.03 −0.03
Compound9549 1.06 −0.05
Compound10315 0.78 −0.1

aIf no validation is involved, the total number of tested compounds is
45. The most potent set of 32 is presented.

Figure 2. Experimentally confirmed top hits from the f inal iteration with identifiers are presented for compound #8548 (panel A), for compound
#8658 (panel B), and for compound #8464 (panel C).
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would not expect to gain much benefit in this particular
situation from using a pure AI approach. Note also that the
essence of the presented pipeline here is based upon the QSAR
power on the subsequent ligand-only-based iterations and that
structure-based methods alone in general are more suitable for
screening rather than optimization as mentioned above.

■ CONCLUSIONS
The proposed pipeline has shortened the optimization cycle to
only three iterations on subsets of size <10% each and has
reduced the required number of compounds to synthesize by
70%. The method has addressed both potency and selectivity
and has been successfully illustrated for a challenging
DYRK1A/DYRK1B problem, where DYRK1B crystal struc-
tures were not available and there was a need to refer to
homology modeling. Overall, thorough feature selection and
model optimization has been deemed essential and the
algorithm resulted in a synthesis of new potent and selective
DYRK1B inhibitor compounds in a relatively small number of
iterations. It turned out that our method was able to select the
top hit and the top five most potent compounds in the entire
evaluated universe, proving that it would shorten the lead
optimization effort by more than 300%. The entire proposed
universe of compounds has been evaluated in the lab to
validate the pipeline output. Moreover, the proposed pipeline
is not bounded by the presented universe of compounds used
for current evaluation and can be used to suggest compounds
outside of this set for future hit and lead optimization efforts.

■ EXPERIMENTAL SECTION
Algorithm Inputs: Evaluation of the DYRK1B Inhibitor

Binding Affinities. When the crystal structure of the encoded
protein is known, the evaluation of docking properties and binding
affinities is a straightforward task.24,25 Unfortunately, because the
target protein crystal structure for DYRK1B is unknown,19 the
evaluation of binding affinities also becomes challenging from the
computational chemistry perspective.
The workaround for DYRK1B is to refer to similar and known

crystal structures of DYRK1A target protein and to use a homology
modeling approach to “predict” the DYRK1B target protein
structure.26 The proposed homology modeling approach is plausible
because the resulting binding pockets of DYRK1B and DYRK1A are
(expected) to be very similar.
The homology modeling was performed via ICM.27 The resulting

DYRK1B structure was derived via an ICM homology modeling
protocol with a reference 4yll structure from a protein data bank,28

representing DYRK1A as the starting point. DYRK1A is the closest
sequence to DYRK1B according to the results of a blast search with a
similarity of 85%. DYRK1A (4yll) PDB entry required pre-processing
as the deposited structure has bonds to ligand it was crystallized with,
10-bromo-2-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid
(transferase inhibitor). The ligand was separated from the remaining
target structure, which was further optimized for the next step.
Alignment was made between the DYRK1A sequence (from the
actual PDB 4yll record) and the DYRK1B uniprot Q9Y463
sequence.29 The gaps between amino acids were blocked to prevent
the structure from any insertions and homology modeling with the
full model builder tool was used to construct the DYRK1B molecule
from alignment results (the insert margin value = 2, deletion margin
value = 3).
For docking purposes, PyRx30 and also ICM (for consistency

comparison) were applied for the derived DYRK1B structure, which
resulted from homology modeling. The obtained docking results from
two software suites were subsequently compared for consistency.
PyRx is a convenient user interface, which utilizes AutoDock Vina, as
a docking engine.31 Autodock Vina is an open-source docking engine

software routinely used for docking tasks and benchmark comparisons
for more than a decade.32−35 In the meantime, ICM is a direct
commercial competitor of the free AutoDock software.36

In the ICM docking procedure, we used the standard all-atom
vacuum force field ECEPP/3 with appended terms to account for
solvation free energy and entropic contribution. Ligand conforma-
tional sampling was performed based on the ICM’s default biased
probability Monte Carlo (BPMC) procedure as described in the
literature.37

For AutoDock Vina, we used the standard Vina force-field and
AutoDock4.2 scoring function described and cross-validated in detail
in the literature38 in a standard rigid-receptor setup. All ligands were
treated as flexible.
The docking results defined the optimization pipeline’s starting

point and provided a good input for the first QSAR iteration. In
particular, the small subset (<10% of the initial set) with the highest
predicted binding affinities to DYRK1B and low affinities to DYRK1A
were evaluated in the lab for their selective potencies to inhibit
DYRK1B and DYRK1A, and these experimental measures were
subsequently used as a modeled response on the first QSAR iteration
(with compounds’ fingerprints as predictor values, respectively).
Determination of the Inhibitory Activity In Vitro. The

protocol for the determination of the inhibitory activity in vitro has
been used earlier and the details have been both published19 and
submitted for a patent.39 In brief, the compounds of the present
invention were tested for their inhibitory activity against both
DYRK1A and DYRK1B. Multiple measurements were taken to
increase the precision of measurements. Later, the average (mean)
value of the measurements was taken.
The DYRK-inhibitory activity of the compounds was tested using

the ADP-Glo assay.40 In particular, the procedure for determining the
IC50 values with the ADP-Glo assay in vitro kinase assays consisted of
two sequential parts: (i) kinase reaction performed under optimized
conditions and (ii) detection of ADP as a product of the reaction
using the ADP-Glo system (Promega). The tested compounds listed
in Tables 4 and 5 are dissolved in dimethyl sulfoxide (DMSO), then
transferred to the V-bottom PP plate to perform 9 serial dilutions (in
order to obtain dose−response curves) in 25% DMSO.

The protocol followed the patent.39,41 Two mixes were prepared on
ice, where Mix 1 contained substrate, ATP and reaction buffer while
Mix 2 contained reaction buffer and the kinase. In particular, 15 μL
per well of Mix 1 was transferred to wells of a 96-well plate. Next, 2.5
μL of the pre-diluted tested compound was added to Mix 1, followed
by the addition of 12.5 μL of Mix 2. The total reaction volume was 30
μL per well. The experiment was duplicated twice for each data point
being examined. The estimated dose−response curve for the positive
control was carried out on each assay plate by adding the reference
inhibitory compound staurosporine. In addition to this, three controls
were also included for each test: (i) 30 μL of the reaction mixture
containing the reaction buffer, ATP, kinase, and DMSO without
substrate (quasi-positive control); (ii) 30 μL of the reaction mixture
containing the reaction buffer, substrate, ATP, and DMSO without

Table 4. Optimized Conditions for Measuring DYRK1A In
Vitro Kinase Activity

reagent/condition final concentration

buffer 50 mM Tris, pH
7.5

MgCl2 10 mM
NaCl 25 mM
DTT 0,1 mM
ATP (Km) (ultrapure, from ADP-Glo TM kit) 70 μM
substrate (Km): RRRFRPASPLRGPPK (Lipopharm) 3 μM
enzyme�DYRK1A (Carna Bioscience) catalogue no.
04-130

2 nM or 0.7 nM

time of reaction 30 min
temperature of reaction rt
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kinase (background control); and (iii) 30 μL of the reaction mixture
containing the reaction buffer, substrate, kinase, ATP, and DMSO
(vehicle control). The final concentration of DMSO in the reaction
was 2%. To detect the ADP amount produced during the kinase
reaction, the commercially available kit ADP-Glo Kinase assay
(Promega, cat. No # V9103) was used. The protocol used for the
detection was based on the Technical Bulletin of the ADP-Glo Kinase
assay (Promega) and was adapted to a 96-well plate containing a 30
μL reaction mixture.
More precisely, 30 μL of ADP-Glo reagent was added to each well

of a 96-well plate containing 30 μL of reaction mixture to terminate
the kinase reaction and to deplete the remaining ATP. The plate was
incubated for 60 min on a shaker at room temperature (RT). Then,
the 60 μL of kinase detection solution was added to each well of 96-
well plate containing 60 μL of the solution to convert ADP to ATP
and to allow the newly synthesized ATP to be measured using a
luciferase/luciferin reaction (ratio of kinase reaction volume to ADP
Glo Reagent volume to kinase detection solution volume was
maintained at 1:1:2). The plate was incubated for 40 min on a
shaker at RT while protected from light. Luminescence was measured
in the plate reader, wherein the luminescent signal is proportional to
the ADP concentration produced and thus directly correlated with the
kinase activity.
The IC50 values were determined, using the GraphPad Prism 6.0

as log(agonist) versus normalized response minus the variable slope
after data normalization to controls (complete reaction mix and no-
substrate control) after putting the test compound concentrations on
a natural logarithmic scale.
Quantitative Metric for sP. At every pipeline iteration, the

targeted small subset (<10% of the initial set) of compounds is
evaluated for sP in the lab. Such a set is either proposed by (i)
docking for binding affinity estimation as an input for the first QSAR
iteration or (ii) QSAR prediction for the rest of the yet
(experimentally) unevaluated compound universe during subsequent
iterations.
The desired compound has to be both selective and potent. From

the earlier experimental experience,19 our team could not identify
chemical scaffolds, which would be both potent (inhibit DYRK1B at
very low ligand concentrations) and selective (inhibit DYRK1B but
not so much DYRK1A). Therefore, the metric of interest has to
incorporate both potency and selectivity. In particular, DYRK1B
inhibition potency should be encouraged while there should also be
some penalty within the metric for high DYRK1A inhibition potency.
Therefore, the utilized combined potency metric (sP) is defined as
follows

sP pIC50(DYRK1B) pIC50(DYRK1A)

if pIC50(DYRK1B) 0

=
> (1)

sP pIC50(DYRK1B) abs(pIC50(DYRK1A))

if pIC50(DYRK1B) 0

=
< (2)

where pIC50 = −log(IC50) is a log transformation for more uniform
distribution (and thus easier modeling) of the response variable (sP).
Conditions 1 and 2 penalize the total sP values for potency to
DYRK1A, that is, to account for non-potent and/or non-selective
compounds.
Combined Docking and Ligand-Based Machine-Learning

Approach for QSAR. The proposed combined (docking and ligand-
based) approach has been encouraged by the literature.42 This
published work justifies the use of combined structure-based docking
and ligand-based QSAR (in particular, structural docked pose
descriptors) to reduce the rate of false positives in compound
optimization.
On the initial iteration, the compounds were selected solely based

on their docked binding energies. These initial compounds were
included in the following QSAR interactions after their experimental
selective potencies were evaluated in the lab. Because 3D and non-3D
descriptors (features) naturally contribute to explaining the
compounds’ activity, the standard StarDrop Automodeler43 set of
features has been augmented with the 3D shape descriptors from
open drug discovery toolkit (ODDT),44 which contributed to
additional 15 real-valued features per conformer (docked pose).
The very purpose of shape descriptors is to describe the 3D molecular
conformation in the most accurate and concise way and in the
situations, when the number of training instances is small (our case),
the compact feature representation of the training set would provide
an additional protection against overtraining and add accuracy. That
is exactly what was found in the recent research: Bonanno and
Ebejer45 report a mean enrichment factor improvement of 430%
when shape-based descriptors are used in machine learning models
rather than in traditional Tanimoto-based virtual screening. In our
recent work,46 we show that it is specifically 3D features that helped
us identify compounds with similar biologic activity that would be
missed otherwise if only 2D descriptors are used. In this work, we also
found that shape descriptors were significantly enriched in the
selected feature sets for our QSAR models, which are described in the
Discussion section.
Because both ICM and PyRx packages optimize ligands and select

the optimal conformation for docking that docked conformation can
be saved in the 3D structure data file (SDF) format and fingerprinted.
ODDT allows reading molecules in multiple industry accepted
formats, including 3D SDF, which consists of multiple chemical table
(CTAB) units separated by quadruple dollar signs. This format was
developed by molecular design limited (MDL) information systems,
Inc that is now a part of Dassault Systems. ODDT allows reading
CTAB with one line of Python code

molecule object oddt. toolkit. readstring(‘sdf’, CTAB)_ = (3)

generating an internal “molecule” object from the CTAB string. After
that, one can calculate the electroshape object using the following
instruction

shape oddt. shape. electroshape(molecule object)= _ (4)

where shape would be just a Python list of 15 floating point numbers.
There were multiple reasons to use ODDT to augment the initial

set of 3D features. In particular, shape and electrostatic charge along
the surface are missing in most conventional non-3D fingerprints
since the exact pose ,that is, docked to the target is often unknown in
the ligand-based-only QSAR modeling. This is not acceptable for
DYRK1A/DYRK1B studies because both targets’ binding pockets and
their ligands have similar shapes and the homology model contributes
a lot of uncertainty to the binding-only sP estimation. However, once
the actually measured pIC50 values are revealed for each binding
prediction, the structural features would be able to provide valuable
information on the next iteration to the QSAR model regarding what
structural features were not contributing to the modeled potency and
selectivity. Therefore, we generated 3D shape fingerprints using the
standard ODDT package first and added them to the StarDrop
Automodeler set, which then collectively empowered the feature
selection algorithm to do the selection of only those fingerprint
components that would bring the most predictive power to the QSAR

Table 5. Optimized Conditions for Measuring DYRK1B In
Vitro Kinase Activity

reagent/condition final concentration

Buffer 5 mM MOPS, pH
7.5

MgCl2 5 mM
EDTA 0.4 mM
DTT 1 mM
ATP (Km) (ultrapure, from ADP-Glo TM kit) 15 μM
substrate (Km): RRRFRPASPLRGPPK (Lipopharm) 7 μM
enzyme�DYRK1B (Carna Bioscience) catalogue no.
04-131

1 nM or 0.3 nM

time of reaction 1 h
temperature of reaction Rt
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model. As a result, a combination of enriched conformer-specific 3D
fingerprints with the initial set of non-binary general-purpose 3D
fingerprints, through proper feature selection and extensive CV
resulted in the optimal model, from the R2 metric perspective and
robust informative sets of features that are paramount to use for small
sample sizes.
Because the desired goal of the proposed pipeline is to minimize

the number of tested compounds (i.e., the number of samples in the
respective training set) during each iteration, the preliminary step is to
find the shortest numerical representation of each compound shape to
avoid over-training problems. Typically, the lengths of a fingerprint
can range from 128 to 4096 bits; however, much shorter alternatives
are available. In particular, the ElectroShape method,47 which is
implemented in the ODDT package, is based on the algorithm that
incorporates shape, chirality, and electrostatics, and represents each
conformer via a fixed-length vector of only 15 real-valued numbers.
This short representation, however, is quite powerful and predictive,
which has been confirmed by recent ligand-based screening studies.45

Therefore, this 15-dimensional 3D shape representation as
implemented in the ODDT package has been chosen for the
proposed pipeline as the most condensed one. The proposed method,
however, is not restricted by such choice and if longer fingerprint-
length alternatives are desired they can be used. The example of such
an alternative includes the E3FP package, which also utilizes an
alignment-invariant 3D representation of molecular conformers as a
fixed-length (2048) binary vector for each conformer48 as well as 48-
dimensional spectrophores.49

Feature Selection and Cross Validation for Building Robust
Predictive Models. The proposed QSAR machine learning-based
optimization procedure uses the augmented set of features and
automatically selects a subset from the set to build the best predictive
model based on the sP metrics (1) and (2). The “best” model in this
context is determined by predictive power in the R2 sense and is based
on the extensive CV procedure to prevent overfitting. The summaries
of the machine learning algorithm are outlined in Figure 3A−G.
Overfitting may be a problem for situations when the number of

features (337-dimensional fingerprint vector) far exceeds the number
of compounds in the training set (164 total, while only up to 50

compounds in any given QSAR model). To prevent overfitting, we
followed the repeated grid-search CV methodology described in the
literature.50 More precisely, the data set has been divided randomly
into K folds, and the model has been refitted K times with the data
points in each fold withheld in turn from the training set (non-
stratified CV). No stratification was used because Breiman and
Spector51 reported no improvement of stratified CV versus non-
stratified CV in a regression setting. Also, ref 50 has found that with a
large number of repeated CVs, the issue of stratification becomes
redundant.
Parameter tuning has been performed following the repeated grid-

search approach also described in ref 50. CV has been used to select
both the optimal number of parameters and their values. On each
optimization step, feature selection has been performed as
implemented in the Caret package.52,53 The grid search CV
optimization procedure was repeated until the R2 quality metric54

had converged. The R2 was considered converged if the observed
change in the value during iterations was less than 10−4. The
optimization procedure is schematically depicted in Figure 3A−G.
According to our knowledge, the value and the importance of

repeated CV on a grid search has not been extensively explored and
discussed in the literature. We believe that this can be partially
explained by the associated high computational costs, which are
expected during implementation. Those computational costs,
however, are “manageable” provided the size of the investigated
data set is relatively small (164 compounds, 388 features per
compound), which is exactly the case here because we are performing
lead optimization on a purposefully small number of compounds.

■ COMPETING FINANCIAL INTERESTS
The protocol has been submitted for a patent.39,41 The
identified compounds have also been patented. The patented
products can be a source of income for a commercial for-profit
company Felicitex Therapeutics, Inc.

Figure 3. Summary diagram of the QSAR algorithm for each iteration. The diagram summarizes the repeated optimization of the decision tree
ensemble model using CV (for parameters tuneup) and tree size trimming via feature selection. The features and the size of the trees on each
iteration are selected as implemented in the Caret package.21 The diagram summarizes every algorithm step: (A) specification of decision tree
ensemble, (B) optimization of parameters for the trees, (C) selection of the best model based on the CV approach, (D) computation of R2 for the
current algorithm iteration, (E) computation of R2 for the current algorithm iteration and comparison with the previous iteration, (F) evaluation of
the algorithm stopping conditions, and (G) move to the next iteration if the stopping conditions are not met.
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Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A.
J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.;
Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.;
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.;
Hassabis, D. Highly Accurate Protein Structure Prediction with
AlphaFold. Nature 2021, 596, 583−589.
(23) David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M. J. E. The
AlphaFold Database of Protein Structures: A Biologist’s Guide. J. Mol.
Biol. 2022, 434, 167336.
(24) Lionta, E.; Spyrou, G.; Vassilatis, D. K.; Cournia, Z. Structure-
Based Virtual Screening for Drug Discovery: Principles, Applications
and Recent Advances. Curr. Top. Med. Chem. 2014, 14, 1923.
(25) Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.-F.; Fischer, P. D.;
Coote, P.; Padmanabha Das, K. M.; Malets, Y. S.; Radchenko, D. S.;
Moroz, Y. S.; Scott, D. A.; Fackeldey, K.; Hoffmann, M.; Iavniuk, I.;
Wagner, G.; Arthanari, H. An Open-Source Drug Discovery Platform
Enables Ultra-Large Virtual Screens. Nature 2020, 580, 663.
(26) Muhammed, M. T.; Aki-Yalcin, E. Homology Modeling in
Drug Discovery: Overview, Current Applications, and Future
Perspectives. Chem. Biol. Drug Des. 2019, 93, 12.
(27) Neves, M. A. C.; Totrov, M.; Abagyan, R. Docking and Scoring
with ICM: The Benchmarking Results and Strategies for Improve-
ment. J. Comput.-Aided Mol. Des. 2012, 26, 675.
(28) Pdb. R. RCSB PDB: Homepage. https://www.rcsb.org/
(accessed Oct 5, 2022).
(29) UniProt. UniProt. https://www.uniprot.org/ (accessed Oct 5,
2022).
(30) Dallakyan, S.; Olson, A. J. Small-Molecule Library Screening by
Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243.
(31) Autodock Vina. AutoDock Vina. https://vina.scripps.edu/
(accessed Oct 5, 2022).
(32) Trott, A. J. O. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010, 31, 455.
(33) Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the
CASF-2013 Benchmark. J. Chem. Inf. Model. 2018, 58, 1697−1706.
(34) Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou,
T. Comprehensive evaluation of ten docking programs on a diverse
set of protein-ligand complexes: the prediction accuracy of sampling
power and scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964−
12975.
(35) Pham, T. N. H.; Nguyen, T. H.; Tam, N. M.; Y. Vu, T.; Pham,
N. T.; Huy, N. T.; Mai, B. K.; Tung, N. T.; Pham, M. Q.; Vu, V.; Ngo,
S. T. Improving ligand-ranking of AutoDock Vina by changing the
empirical parameters. J. Comput. Chem. 2022, 43, 160−169.
(36) Pagadala, N. S.; Syed, K.; Tuszynski, J. Software for Molecular
Docking: A Review. Biophys. Rev. 2017, 9, 91.
(37) Abagyan, R.; Totrov, M. Biased Probability Monte Carlo
Conformational Searches and Electrostatic Calculations for Peptides
and Proteins. J. Mol. Biol. 1994, 235, 983.
(38) Eberhardt, J.; Santos-Martins, D.; Tillack, A.; Forli, S.
AutoDock Vina 1.2.0: New Docking Methods, Expanded Force
Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891.
(39) Felicitex Therapeutics, Inc.Derivatives of quinoline as inhibitors
of DYRK1A and/or DYRK1B kinases. https://patents.justia.com/
patent/10577365 (accessed Oct 5, 2022).
(40) Zegzouti, H.; Zdanovskaia, M.; Hsiao, K.; Goueli, S. A. ADP-
Glo: A Bioluminescent and Homogeneous ADP Monitoring Assay for
Kinases. Assay Drug Dev. Technol. 2009, 7, 560−572.
(41) Dreas, A.; Fabritius, C.-H.; Dzienia, A.; Buda, A.; Galezowski,
M.; Kachkovskyi, G.; Kulesza, U.; Kucwaj-Brysz, K.; Szamborska-

Gbur, A.; Czardybon, W.; Vilenchik, M.; Frid, M.; Kuznetsova,
A.Derivatives of Quinoline as Inhibitors of DYRK1A And/or
DYRK1B Kinases. U.S. Patent 10,577,365 B2, March 3, 2020.
(42) Adeshina, Y. O.; Deeds, E. J.; Karanicolas, J. Machine Learning
Classification Can Reduce False Positives in Structure-Based Virtual
Screening. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 18477−18488.
(43) ADME QSAR. Optibrium. https://www.optibrium.com/
project/adme-qsar/ (accessed Oct 5, 2022).
(44) Wójcikowski, M.; Zielenkiewicz, P.; Siedlecki, P. Open Drug
Discovery Toolkit (ODDT): A New Open-Source Player in the Drug
Discovery Field. J. Cheminform. 2015, 7, 26.
(45) Bonanno, E.; Ebejer, J.-P. Applying Machine Learning to
Ultrafast Shape Recognition in Ligand-Based Virtual Screening. Front.
Pharmacol. 2020, 10, 1675.
(46) Polyakov, V. R.; Alexandrov, V.; Maderna, A.; Bajjuri, K.; Li, X.;
Zhou, S. Indexing Ultrafast Shape-Based Descriptors in MongoDB to
Identify TLR4 Pathway Agonists. J. Chem. Inf. Model. 2022, 62,
2446−2455.
(47) Armstrong, M. S.; Morris, G. M.; Finn, P. W.; Sharma, R.;
Moretti, L.; Cooper, R. I.; Richards, W. G. ElectroShape: Fast
Molecular Similarity Calculations Incorporating Shape, Chirality and
Electrostatics. J. Comput.-Aided Mol. Des. 2010, 24, 789−801.
(48) Axen, S. D.; Huang, X.-P.; Cáceres, E. L.; Gendelev, L.; Roth, B.
L.; Keiser, M. J. A Simple Representation of Three-Dimensional
Molecular Structure. J. Med. Chem. 2017, 60, 7393−7409.
(49) Gladysz, R.; Dos Santos, F. M.; Langenaeker, W.; Thijs, G.;
Augustyns, K.; De Winter, H. Spectrophores as One-Dimensional
Descriptors Calculated from Three-Dimensional Atomic Properties:
Applications Ranging from Scaffold Hopping to Multi-Target Virtual
Screening. J. Cheminform. 2018, 10, 9.
(50) Krstajic, D.; Buturovic, L. J.; Leahy, D. E.; Thomas, S. Cross-
Validation Pitfalls When Selecting and Assessing Regression and
Classification Models. J. Cheminform. 2014, 6, 10−15.
(51) Breiman, L.; Spector, P. Submodel Selection and Evaluation in
Regression. The X-Random Case. Int. Stat. Rev. 1992, 60, 291.
(52) Kuhn, M.20 Recursive Feature Elimination. https://topepo.
github.io/caret/recursive-feature-elimination.html (accessed Oct 05,
2022).
(53) Kuhn, M. Building Predictive Models in R Using the Caret
Package. J. Stat. Softw. 2008, 28, 1−26.
(54) Alexander, D. L. J.; Tropsha, A.; Winkler, D. A. Beware of R2:
Simple, Unambiguous Assessment of the Prediction Accuracy of
QSAR and QSPR Models. J. Chem. Inf. Model. 2015, 55, 1316.
(55) GitHub - Quantori, https://github.com/quantori/DYRK1B
(accessed Oct 5, 2022).

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on October 14, 2022, with the
images for Figure 1 and Figure 2 transposed. The corrected
version was reposted on October 17, 2022.

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.2c00988
J. Med. Chem. 2022, 65, 13784−13792

13792

https://doi.org/10.1080/17460441.2018.1542428
https://doi.org/10.1080/17460441.2018.1542428
https://doi.org/10.1080/17460441.2018.1542428
https://topepo.github.io/caret/
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/j.jmb.2021.167336
https://doi.org/10.1016/j.jmb.2021.167336
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1038/s41586-020-2117-z
https://doi.org/10.1111/cbdd.13388
https://doi.org/10.1111/cbdd.13388
https://doi.org/10.1111/cbdd.13388
https://doi.org/10.1007/s10822-012-9547-0
https://doi.org/10.1007/s10822-012-9547-0
https://doi.org/10.1007/s10822-012-9547-0
https://www.rcsb.org/
https://www.uniprot.org/
https://doi.org/10.1007/978-1-4939-2269-7_19
https://doi.org/10.1007/978-1-4939-2269-7_19
https://vina.scripps.edu/
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1021/acs.jcim.8b00312?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.8b00312?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/c6cp01555g
https://doi.org/10.1039/c6cp01555g
https://doi.org/10.1039/c6cp01555g
https://doi.org/10.1002/jcc.26779
https://doi.org/10.1002/jcc.26779
https://doi.org/10.1007/s12551-016-0247-1
https://doi.org/10.1007/s12551-016-0247-1
https://doi.org/10.1006/jmbi.1994.1052
https://doi.org/10.1006/jmbi.1994.1052
https://doi.org/10.1006/jmbi.1994.1052
https://doi.org/10.26434/chemrxiv.14774223
https://doi.org/10.26434/chemrxiv.14774223
https://patents.justia.com/patent/10577365
https://patents.justia.com/patent/10577365
https://doi.org/10.1089/adt.2009.0222
https://doi.org/10.1089/adt.2009.0222
https://doi.org/10.1089/adt.2009.0222
https://doi.org/10.1073/pnas.2000585117
https://doi.org/10.1073/pnas.2000585117
https://doi.org/10.1073/pnas.2000585117
https://www.optibrium.com/project/adme-qsar/
https://www.optibrium.com/project/adme-qsar/
https://doi.org/10.3389/fphar.2019.01675
https://doi.org/10.3389/fphar.2019.01675
https://doi.org/10.1021/acs.jcim.2c00156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10822-010-9374-0
https://doi.org/10.1007/s10822-010-9374-0
https://doi.org/10.1007/s10822-010-9374-0
https://doi.org/10.1021/acs.jmedchem.7b00696?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.7b00696?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-018-0268-9
https://doi.org/10.1186/s13321-018-0268-9
https://doi.org/10.1186/s13321-018-0268-9
https://doi.org/10.1186/s13321-018-0268-9
https://doi.org/10.1186/1758-2946-6-10
https://doi.org/10.1186/1758-2946-6-10
https://doi.org/10.1186/1758-2946-6-10
https://doi.org/10.2307/1403680
https://doi.org/10.2307/1403680
https://topepo.github.io/caret/recursive-feature-elimination.html
https://topepo.github.io/caret/recursive-feature-elimination.html
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1021/acs.jcim.5b00206?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.5b00206?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.5b00206?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/quantori/DYRK1B
pubs.acs.org/jmc?ref=pdf
https://doi.org/10.1021/acs.jmedchem.2c00988?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

