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A B S T R A C T   

Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human 
controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of patholog-
ically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underex-
plored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a 
comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived 
“healthy” normal tissues. We found a number of systemic molecular differences related to activation of the 
immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, 
cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were defi-
cient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition check-
point. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 
and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes 
may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, 
that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, 
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Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min 
– 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact “differential” 
expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should 
be addressed in practice.   

1. Introduction 

Normal tissue controls are crucial for examining differential gene 
expression profiles associated with human pathology. However, 
obtaining healthy human norms is problematic for most of the tissues 
and available only for postmortal autopsy biosamples. Several projects 
were initiated to create reference banks of RNA sequencing (RNAseq), 
expression microarray, and proteomic profiles of healthy human tissues 
such as GTEX [1], ANTE [2], and CPTAC [3]. In GTEX project database, 
totally 979 paired RNAseq and microarray profiles for 54 human tissue 
types are available that correspond to multiple autopsy materials from 
donors who died from different reasons including diseases. Tissues were 
analyzed both by sequencing and by gene expression microarrays to 
enable a technology comparison [1]. Some GTEX RNAseq profiles were 
shown to contain signs of minor batch-specific cross-tissue contamina-
tion [4]. In turn, we created ANTE collection including only 196 RNAseq 
profiles for 20 tissue types, but they were obtained for the donors killed 
in road accidents that could be regarded relatively free from severe 
chronic diseases and, therefore, more likely represent true “healthy” 
tissue controls [2]. From CPTAC project repository, 907 Orbitrap pro-
teomic profiles of 10 normal human tissues can be explored, but for 
smaller number of genes compared to the above transcriptomic data-
bases: for 6755 proteins compared to ~60 600 transcripts, respectively 
[1]. 

Alternatively, in cancer research, so-called tumor matched norms 
(fragments of pathologically normal tissue located adjacent to tumor site 
and removed during surgery/biopsy) are frequently used as the controls 
[5,6]. Perhaps the most complete such data repository was provided by 
The Cancer Genome Atlas (TCGA) database which includes roughly 
2900 RNAseq profiles for tumor matched pathologically normal samples 
of 33 tissue types [7]. 

However, cancer cells can influence neighboring tissues in many 
ways including by causing inflammation and by producing growth fac-
tors [8]. This can result in coordinated expression patterns between the 
cancer and neighboring “normal” tissue profiles. The latter was recently 
demonstrated for an impressive DNA repair pathway activation 
congruence between the cancerous and matched normal thyroid tissues 
[9]. Tumor cells can significantly influence adjacent normal tissues by 
altering their functions and forcing them to acquire new phenotypes 
and/or to produce molecular factors necessary for tumor growth and 
spread [10,11] To do this, cancer cells can affect both the surrounding 
non-malignant cells and the extracellular matrix [12,13]. Tumors can 
suppress immune editing or cause a pro-inflammatory condition due to 
the use of cancer associated fibroblasts (CAFs) and tumor associated 
macrophages (TAMs). They can also stimulate pericytes and endothelial 
cells to promote angiogenesis [14]. They can influence activities of 
intrinsic signaling pathways of the neighboring cells to better detach and 
invade in the form of circulating tumor cells [15]. The specific DNA 
repair pathway activation profiles there were strongly connected be-
tween the tumor and the corresponding matched normal tissues, which 
directly indicates their molecular interplay [9,16]. Thus, tumor matched 
“normal” tissues can be pathologically biased. However, to the date this 
possibility remained largely underexplored at the transcriptome-wide 
level. 

Here we investigated correlations of gene expression and molecular 
pathway activation patterns between the cancer and matched paired 
normal tissues in TCGA profiles for 22 cancer types, and experimentally 
validated the correlations found. Activities of few thousands of human 
molecular pathways can be algorithmically deduced using 

transcriptomic profiles of individual cancer and normal biosamples 
[17]. Pathway activation assay is the next-level way of gene expression 
data analysis, where positive/negative pathway activation levels (PALs) 
mean pathway activation/inhibition in a biosample compared to the 
control group, whereas zero PAL indicates no difference in the pathway 
activation [18,19]. In addition, the extent of PAL quantitatively reflects 
up/downregulation of a pathway [20]. 

The first pan-cancer high-throughput comparison of molecular pro-
files of the tumor-adjacent pathologically normal tissues with the 
autopsy-derived “healthy” normal tissues was performed by D. Aran 
et al. The study revealed pro-inflammatory molecular peculiarities in 
tumor-adjacent normal tissues [8]. Here we analyzed experimental and 
literature datasets and demonstrate that compared to the 
autopsy-derived tissues, the tumor-adjacent norms have a number of 
systemic molecular differences including alterations of cancer drug 
targets. 

These differences may be driven by molecular events that are 
correlated between the paired cancers and the adjacent non-cancer tis-
sues. As a result, molecular targets of 32 and 37 cancer drugs appeared 
to be over- or underexpressed, respectively, in the tumor-adjacent 
compared to the “healthy” norms. Thus, the tumor-adjacent pathologi-
cally normal tissues cannot be considered as the fully adequate norms 
for the analysis of tumor molecular profiles, and autopsy tissue bio-
samples taken from the healthy donors can be a plausible alternative. 
However, we show that for the latter possibility an RNA degradation- 
induced bias in gene expression profiles has to be carefully taken into 
account. 

2. Materials and methods 

2.1. Patients and samples 

All patients whose biosamples were included in this study have 
previously signed written informed consents to participate in the 
observational clinical investigation, and profiling of their biosamples by 
RNA sequencing using Illumina HiSeq3000 or Illumina NextSeq550 next 
generation sequencing platform. The patients signed agreement for 
publication of depersonalized RNAseq profiles of pairs of cancer and 
matched pathologically normal tissues for their biosamples, and for 
publication of study results in the form of gene activity profiles associ-
ated with age, sex, and diagnosis. 

The study was planned and performed in accordance with the 
Declaration of Helsinki ethical principles. Local ethical committee at I. 
M. Sechenov First Moscow State Medical University and Vitamed clinic 
approved design of this study and its public presentation as the research 
paper. Pairs of biosamples where tumor matched pathologically normal 
tissue specimens were available were collected prospectively during the 
clinical trial Oncobox (NCT03724097) from February 2019 till 
December 2020. All biosamples were FFPE solid tumor blocks obtained 
from primary tumor sites and evaluated by pathologist, with no less than 
60% of cancer cells, or matched pathologically normal tissue blocks with 
no detectable cancer cells (Table S1). 

2.2. Animal biosamples 

The study was conducted according to the guidelines of the Decla-
ration of Helsinki, and approved by the local Institutional Ethics Com-
mittee (protocol N◦ 81/1, January 26, 2022) in the Research Institute of 
Medical Primatology, Sochi, Russia. Three adult Macaca Fascicularis 
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monkeys were involved in the study. The animals were sacrificed by 
intravenous injection of 5.0 ml of 5% Anestofol (Interfarm LLC, Russia) 
with preliminary general anesthesia by intravenous injection of 0.10 ml/ 
kg of 2% Xylazine (Interchemie Werken "de Adelaar" BV, Netherlands) 
and 0.05 ml/kg Zoletil (Virbac Sante Animale, France). After autopsy of 
lung and liver tissues, the aliquots of each sample were stored at 4ºC for 
30 min, 3 h, 6 h, and 24 h, respectively, and then immediately frozen in 
liquid nitrogen prior to laboratory testing. The animals were: Animal 1 – 
48 months-old male, body mass 2.96 kg; Animal 2 – 40 months-old male, 
body mass 2.58 kg; Animal 3 – 41 months-old male, body mass 3.4 kg. 

2.3. RNA sequencing 

RNA sequencing was performed at Department of Pathology and 
Laboratory Medicine, University of California Los Angeles, and at Lab-
oratory of Clinical Genomic Bioinformatics, Sechenov First Moscow 
Medical University, according to [2,21]. Library construction and 
depletion of ribosomal RNA were done using KAPA RNA Hyper with 
rRNA erase (HMR only) kit. For multiplexing of samples in one 
sequencing run different adaptors were used. Library concentrations 
were measured using Qubit ds DNA HS Assay kit (Life Technologies) and 
quality was assessed using Agilent Tapestation (Agilent). RNA 
sequencing was done using Illumina HiSeq 3000 engine for single-end 
sequencing, 50 bp read length, for at least 30 million (mln) raw reads 
per sample. Data quality check was done with Illumina SAV. 
De-multiplexing was performed using Illumina Bcl2fastq2 v 2.17 
software. 

2.4. Autopsy and tumor-adjacent normal tissue gene expression datasets 

For comparison of tumor adjacent normal tissues vs normal tissues 
derived from healthy subjects we extracted 2911, 979 and 196 gene 
expression profiles from TCGA [7], GTEx [1] and experimental ANTE 
[2] databases, respectively (Table S2). 

For studying correlation between tumors and adjacent normal tissues 
we extracted 715 gene expression profiles from TCGA [7] (Table S3). 

For studying correlation between tumors and adjacent normal tissues 
at the proteomic level we extracted 306 protein expression profiles from 
the CPTAC database [22] (Table S4). 

2.5. Processing of gene expression data 

RNAseq FASTQ files were processed by STAR aligner (Dobin et al., 
2013) using “GeneCounts” mode, Ensembl human transcriptome anno-
tation (Build version GRCh38, transcript annotation GRCh38.89) or 
Ensembl Macaca fascicularis transcriptome annotation (Build version 
6.0, transcript annotation 6.0.106). Ensembl gene IDs were converted to 
HGNC gene symbols using Complete HGNC dataset (https://www.gen-
enames.org/, database version from 2017 July 13). Macaca fascicularis 
Ensembl gene symbols were converted to human Ensembl gene symbols 
using R biomaRt package. Overall, expression levels were determined 
for 36,596 genes with HGNC identifiers in case of human biosamples 
and 15,248 genes in case of Macaca fascicularis biosamples. 

Differential gene expression analysis was performed using DESeq2. 
FDR-Adjusted P-value cut-off was set to 0.1, |Log2 fold change| cut-off was 
set to > 1. 

2.6. Molecular pathway analysis 

In this study we used a publicly available collection of molecular 
pathways extracted from Reactome [23], NCI [24], KEGG [25] and 
Qiagen (https://www.qiagen.com) databases, and algorithmically an-
notated for molecular functions of pathway components and nodes[17]. 
Using the Oncobox bioinformatics platform [19] we calculated pathway 
activation levels (PALs) for totally 2934 molecular pathways. For PAL 
calculations, each individual expression profile was normalized on mean 

geometrical levels of RNA expression for all samples in the dataset under 
analysis. 

PAL approach considers the impact of each gene product on overall 
molecular pathway activation [18], PAL value for pathway p in a given 
sample is calculated as follows: 

PALp = ΣnARRnp⋅BTIFn⋅ln(CNRn),

where CNRn (case-to-normal ratio) is the ratio of gene n expression level 
in the sample under investigation to the mean geometrical gene n 
expression level in the group of control samples. The Boolean flag BTIFn 
(beyond tolerance interval flag) is zero when the CNRn value has not 
passed the significance criterion: when the difference with the control 
group of samples is not significant, where p > 0.05. ARRn,p (activator/ 
repressor role of gene n in pathway p) is the discrete value that equals to 
− 1 when gene product n is a repressor of pathway p; 1, when gene 
product n is an activator of pathway p; 0, when gene product n has both 
activities of an activator and of a repressor of pathway p; 0.5 and − 0.5, 
respectively, when gene product n is rather an activator or repressor of 
pathway p. 

2.7. Visualization 

Pathway activation graphs were visualized using open.oncobox.com 
web-service [26]. Ggplot2 and pheatmap R packages were used for other 
plots. PCA was done for log transformed counts of all genes using prcomp 
R functions. 

2.8. Permutation test 

Statistical significance of the intersections shown on the Venn dia-
grams were investigated by randomly permutating gene/pathway 
names and by intersecting random gene groups (n = 10,000) of the same 
sizes as above for the actual data. Actual intersection was considered 
significant if higher number of genes/pathways was observed in less 
than 5% of random groups. 

2.9. Experimental pathway and gene expression data availability 

Experimental RNAseq data are available at NCBI Sequencing Read 
Archive under accession ID PRJNA905832. Pathway activation data 
calculated for experimental, TCGA, GTEX, and ANTE collections are 
given in Table S5. 

3. Results and discussion 

3.1. Design of the study 

In this study we aimed to investigate major differences between 
human tumor-adjacent and healthy tissue normal biosamples at the 
transcriptomic level of gene expression and of molecular pathway acti-
vation at the pan-cancer level. Specific tasks were to explore (i) whether 
there are genes and molecular pathways that are regulated differently 
between the adjacent (tumor-matched) and healthy (autopsy-derived) 
norms, and (ii) whether there is a correlation between the cancers and 
their paired adjacent norms. Another task (iii) was to identify which of 
the correlated genes/pathways are connected with the patient identity 
or physiological conditions like infection, and which are due to the 
tumor influence on the neighboring tissues. To conclude (iv), we 
attempted to build a model of tumor transformation of the neighboring 
tissues at the level of major molecular mechanisms. In addition (v), we 
explored whether different times of postmortal biopsies can cause a bias 
in the gene expression/molecular pathway activation pattern on the 
primate model of crab-eating macaques. 
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3.2. Comparison of tumor-adjacent and healthy normal tissues 

We explored differences between human healthy/autopsy and 
tumor-matched normal tissues at the levels of gene expression, molec-
ular pathway activation, and cell type enrichment scores. Data sourсe of 
tumor-adjacent normal tissue was TCGA database, and healthy normal 
samples were extracted from GTEx and ANTE databases, respectively. 
We compared RNAseq profiles of 4086 samples: 2911 TCGA tumor- 
adjacent norms for colon (n = 723), kidney (n = 1032), and lung 
(n = 1156) with the autopsy-derived healthy tissue profiles from ANTE 
and GTEX databases (Table S2). The datasets were harmonized using 
two alternative approaches: Shambhala method [27,28], or quantile 
normalization [29]. 

3.2.1. Gene level of data analysis 
For every individual sample (tumor-adjacent normal or healthy 

normal) we assessed CNRs (Case-to-Normal-Ratios) as the major gene 
expression metric, i.e. fold-change of expression level in the individual 
sample relative to averaged expression in the healthy normal tissue 
(control group). Tumor-adjacent normal samples were extracted from 
TCGA database and healthy normal samples were extracted from GTEx 
or ANTE databases. A comparison was done for each of the three tissue 
types under investigation (colon, kidney, lung) separately. Two types of 
CNRs were calculated. First, a geometrical mean of GTEX samples was 
used as the control; second, a geometrical mean of ANTE group of 
samples was used as the control. 

For statistical estimates of differential gene expression between 
TCGA and ANTE or GTEX samples, we used Student’s T-test between 
log2CNR of TCGA samples and of ANTE or GTEX samples, with the 
subsequent Benjamini-Hochberg FDR correction, significance threshold 
q < 0.05). We considered genes with mean log2CNR > 0, q < 0.05 as 
upregulated, and genes with log2CNR < 0, q < 0.05 as downregulated. The 
comparisons were done separately for the TCGA/GTEX, and TCGA/ 
ANTE datasets. In order to exclude batch effect, comparisons were done 
separately for quantile normalized and Shambhala-harmonized expres-
sion profiles. Normalization methods can introduce bias, and we 
attempted to avoid bias specific to one of the normalization methods 
used. Thus, we intersected results of the two popular normalization 
methods which hopefully made our results free from distortion by one of 
the normalization algorithms. However, this approach has a limitation 
that some of true differential genes could be lost due to possible 
inconsistence between the two normalization methods used. 

For the quantile normalized TCGA/ANTE comparison we totally 
found 3088/2990 differential up/downregulated genes for colon, 3070/ 
3008 for lung, and 3088/2990 for kidney (Fig. S1). For the quantile 
normalized TCGA/GTEX comparison, there were 3631/3565 differential 
up/downregulated genes for colon, 3940/3256 for lung, and 3950/3246 
for kidney (Fig. S1). For each of the three above human tissue types, we 
then intersected TCGA/ANTE and TCGA/GTEX differential gene 
expression profiles. In total, we found 2462/2347 common up/down-
regulated genes for colon, 2283/1936 genes for lung, and 1993/1663 
genes for kidney. In every case, the intersections were non-random, as 
evidenced by the permutation test p < 0.0001, Fig. S1. This means that 
the experimentally observed intersection exceeded any of the 10,000 
randomly generated intersections of the initial gene sets of the same size 
[30]. 

Similarly, for the intersection of the Shambhala normalized TCGA/ 
ANTE and TCGA/GTEX comparisons (Fig. S1) we found 2761/2255 
common up/downregulated genes for colon, 2316/1691 for lung, and 
2103/1691 for kidney. In every case, the intersections were non-random 
with the permutation test p < 0.0001. 

Finally, to obtain an overall differential profile of healthy vs tumor- 
adjacent tissues, we then intersected all the above differential profiles 
for the three tissue types under analysis, all datasets, and two expression 
normalization methods. In a total intersection, we detected 1056/818 
common statistically significantly up/downregulated genes for the 

TCGA vs ANTE and GTEX datasets (Table S6). This overall intersection 
was non-random (permutation test p < 0.0001, Fig. 2A,B). 

We then performed Gene Ontology (GO) terms enrichment analysis 
for the genes which were up/downregulated after such an overall 
intersection. We found that for the upregulated genes the major enriched 
processes deal with the neutrophil degranulation and activation, antigen 
processing and presentation; protein folding and targeting; endoplasmic 
reticulum to Golgi vesicle transport and vesicle organization; macro-
autophagy; mitochondrial movement and gene expression, cellular 
respiration and catabolism of organic molecules; Krebs cycle and sec-
ondary alcohol synthetic processes; telomerase localization to Cajal 
bodies (Fig. 1A). 

Here, activated antigen processing and presentation processes may 
point on enhanced presentation of tumor-specific antigens in the tumor- 
adjacent tissues. In turn, the neutrophil degranulation occurs after acti-
vation of pathogen recognition receptors such as TLRs, or as the 
response on proinflammatory cytokines such as IL-8, TNF, and N-formyl- 
methionyl-leucyl-phenylalanine (fMLP) [31]. This may suggest 
increased inflammatory status of the tumor-matched norms compared to 
the autopsy-derived tissues, as previously observed by Aran and co-
authors [8]. Further focused studies are needed to analyze these 
mechanisms in-depth. Other implicated processes evidence the influ-
ence of tumors on the metabolism and cell physiology of the neighboring 
tissues. Furthermore, the process of telomerase localization to Cajal bodies 
is not normally observed in the healthy solid tissues but instead 
frequently occurs in tumors where it reflects production of an active 
telomerase including both RNA and protein components in cancer cells. 
Thus, this process activation in “normal” adjacent tissues may indicate 
physical presence there of proliferation-competent cancer cells [32]. 

In contrast, the downregulated genes resulted in another set of 
enriched processes (Fig. 1B). First of all, these indicated altered degra-
dation of extracellular matrix and cell-substrate adhesion patterns in the 
tumor-adjacent tissues. Other processes were connected with the regu-
lation of signal transduction via small GTPases (including Ras), and with 
the regulation of G2/M cell cycle transition. The latter two processes are 
strongly interconnected as the activated Ras is the major positive 
regulator of passing through the G2/M checkpoint in cell cycle pro-
gression [33]. Of note, among the downregulated genes there were 24 
members of the “Ras protein signal transduction” GO term, but no Ras 
gene family members themselves. KRAS gene is mutated in a significant 
proportion of colorectal cancer patients. Thus, it may be of interest to 
perform a separate series of analyses focused on the comparison of 
tumor-adjacent tissues in KRAS mutated vs wild type patients in the 
future, as well as for the other hot spot mutations as well, such as BRAF 
in melanoma and thyroid cancer, EGFR in lung cancer, BRCA1–2 in 
breast cancer, et cetera. 

3.2.2. Pathway level of data analysis 
We then performed similar analysis at the level of molecular 

pathway activation assessment in order to complement GO analysis and 
obtain additional insights on difference between tumor adjacent and 
healthy normal tissues. To this end, based on the CNR values for each 
gene, we calculated pathway activation levels (PALs) for 2934 molec-
ular pathways using OncoboxPD online pathway analysis tool [26]. We 
then intersected quantile normalized TCGA/ANTE and TCGA/GTEX dif-
ferential pathway profiles separately for the three tissue types under 
analysis (Fig. S2). In total, we found 927/830 common up/downregu-
lated pathways for colon, 782/802 for lung, and 735/620 for kidney. 

In the same way we found for the intersected Shambhala normalized 
TCGA/ANTE and TCGA/GTEX differential pathway profiles (Fig. S2) 
1181/595 common up/downregulated pathways for colon, 913/536 for 
lung, and 868/428 for kidney (Fig. S2). In every case, the intersections 
were non-random with the permutation test p < 0.0001 (Fig. S2). 

Further overall intersection between all three tissue types and both 
normalization methods gave a non-random (p < 0.0001) set of differ-
entially activated pathways, where 384 were up-, and 178 were 
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Fig. 1. Gene Ontology terms enriched among the list of upregulated (A) and downregulated (B) genes found in an overall intersection for TCGA vs GTEX and ANTE 
comparisons. 

Fig. 2. Results of the permutation test for total intersection between colon, kidney and lung tissue types, two harmonization methods (quantile normalization and 
Shambhala), and all datasets under analysis (TCGA vs GTEX, and TCGA vs ANTE). Observed (red) and random model-expected (black) number of intersections is 
shown for TCGA-upregulated (A) and downregulated (B) genes; and for TCGA-upregulated (C) and downregulated (D) molecular pathways. 
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downregulated in the tumor-adjacent tissues (TCGA) compared to the 
healthy norms (GTEX and ANTE) (Table S5; Fig. 2C,D). The resulting 
top-10 up- and downregulated pathways are shown on Fig. 3. 

Specifically, the set of the most strongly upregulated pathways indi-
cated altered cell-cell and cell-intracellular matrix interactions via E 
cadherin-derived adherens junctions, beta 7 integrin cell surface in-
teractions, EGF pathway regulation of cytoskeleton organization, and Arf6- 
mediated endocytosis processes including recycling of receptor molecules 
located on cell surface. Furthermore, upregulated CDC42-linked path-
ways are also in line with the enhanced cell migration, endocytosis and 
cell cycle progression processes [34]. 

In contrast, the top downregulated pathways indicated suppressed 
apoptotic signaling and inhibited negative regulation of cell growth; 
decreased formation of neuronal synapses; decreased C20 prostanoid 
biosynthesis; decreased regulation of cell migration by VEGFR3; inhibited 
branches of NOTCH and Hedgehog pathways. Similar to our previous 
findings of degraded extracellular matrix organization at the level of GO 
analysis for individual genes, we also detected here strongly down-
regulated pathways of syndecan 1-mediated cell-matrix interaction, beta 1 
integrin cell surface interactions, collagen biosynthesis, and chondroitin and 
dermatan biosynthesis (data not shown). 

3.2.3. Technical validation: comparison of tumor adjacent and healthy 
normal tissues profiled by RNA sequencing using the same reagents and 
equipment 

We then investigated whether specific trends identified in large-scale 
comparisons of TCGA tumor-adjacent norms with ANTE or GTEX 
autopsy-derived healthy tissues represented true functional differences 
or were related to cross-platform normalization bias. We performed an 
additional comparison of a small experimental group of tumor-adjacent 
norms with autopsy-derived healthy tissues (presented early as the 
ANTE database) profiled using the same equipment, reagents, research 
team and protocols according to [2]. To this end, six experimental 
tumor-adjacent and nine healthy liver samples were analyzed. In this 
case, no cross-platform normalization was needed because of uniform 
technical nature of RNA sequencing profiles. 

3.2.4. Gene level technical validation 
All samples were normalized on geometrical mean of nine autopsy- 

derived healthy tissue profiles. We calculated CNRs in the tumor- 
adjacent norms relatively to averaged expression in the autopsy- 
derived healthy tissues. Statistical estimates were performed in the 
same way as for the above TCGA vs ANTE/GTEX analysis. Thus, we 
totally identified 1393/1019 differential up/downregulated genes 
(Table S7). 

We then intersected the above differential genes with the total gene 
intersection set obtained for the TCGA vs ANTE/GTEX comparison and 
detected 121/58 common statistically significantly up/downregulated 
genes (Table S7). This overall intersection was non-random (permuta-
tion test p < 0.0001, Fig. 5A,B). 

We then performed GO enrichment analysis for the common upre-
gulated genes. In agreement with the previous results, we found a very 
similar set of the enriched terms: neutrophil degranulation and activa-
tion; antigen processing and presentation; endoplasmic reticulum to 
Golgi vesicle transport and vesicle organization; macroautophagy; 
telomerase localization to Cajal bodies (Fig. 4). 

Overall, this indicates congruent trends with the results obtained in 
the large-scale TCGA vs ANTE/GTEx comparison. 

3.2.5. Pathway level technical validation 
On the level of molecular pathway activation, we found 313/48 up/ 

downregulated pathways (Table S7). Further intersection of these dif-
ferential pathways with the total pathway intersection set obtained for 
the TCGA vs ANTE/GTEX comparison returned a list of non-random 
(p = 0.016) common 52 upregulated pathways and borderline signifi-
cance (p = 0.055) list of six downregulated pathways (Table S7; Fig. 5C, 
D). 

The top-10 upregulated pathways are shown in Table 1. Specifically, 
this set suggests activated DNA repair and related G2M checkpoint 
mechanism; CD28-mediated Vav1 activation which in turn activates the 
mitogen-activated protein kinases JNK and p38 [35]; processing of 
endosomal Toll-like receptors; T-cellular receptor signal transduction; 
activation of the BCR signaling promoting survival [36]; increased PD-1 

Fig. 3. Pathway activation chart for the top differentially activated pathways in tumor adjacent (TCGA) vs healthy (GTEX and ANTE) normal tissues. Mean pathway 
activation level (PAL) is shown for each pathway. Upregulated pathways are shown in green, and downregulated - in red color. 

M. Sorokin et al.                                                                                                                                                                                                                                



Computational and Structural Biotechnology Journal 21 (2023) 3964–3986

3970

signaling responsible for immune checkpoint inhibition, related with 
higher response rate and more prolonged progression-free survival [37]; 
and plasmalogen biosynthesis pathway strongly connected with 
inflammation [38]. 

Major pathways related to cell-cell and cell-intracellular matrix 

interactions revealed in the previous large-scale cross-platform analysis 
were also detected here but were not among the top-10 processes 
identified (Table S7). 

Thus, at the pathway level we obtained congruent activation patterns 
with the cross-platform comparison. Taken together, this confirms the 

Fig. 4. Gene Ontology terms significantly enriched among the list of upregulated genes found in an overall intersection of TCGA vs GTEx/ANTE and experimental 
comparison differential gene lists. 

Fig. 5. Results of the permutation test for total intersection between colon, kidney and lung tissue types, two harmonization methods (quantile normalization and 
Shambhala), and all datasets under analysis (TCGA vs GTEX, and TCGA vs ANTE), and new analysis (experimental tumor-adjacent vs healthy norms). Observed (red) 
and random model-expected (black) number of intersections is shown separately for upregulated (A) and downregulated (B) genes; and for upregulated (C) and 
downregulated (D) molecular pathways. 
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results obtained in the previous large-scale TCGA vs ANTE/GTEX com-
parison on both gene and pathway levels. 

3.2.6. Cell type enrichment assay 
We then used gene expression data to assess the cell type content of 

the tumor-adjacent and healthy norms. We performed bioinformatic cell 
type deconvolution using xCell method [39]. An overall intersection for 
all comparisons (TCGA/ANTE and TCGA/GTEX), tissue types (lung, 
kidney, and colon), and normalization methods (quantile or Shambhala) 
was non-random (permutation test p < 0.0001), and gave a figure of two 
cell types overrepresented in the tumor adjacent tissues compared to the 
healthy norms: (i) megakaryocyte erythroid progenitor (MEP) cells and 
(ii) natural killer T (NKT) cells (Fig. S3). 

Interestingly, megakaryocyte erythroid progenitor cells were re-
ported to be associated with tumor microenvironment and their content 
correlated with worse outcome in pancreatic cancer [40]. In turn, 
altered content of NKT cells in tumor microenvironment was also 
frequently mentioned in the literature (e.g. [41]). 

Thus, when comparing the tumor-adjacent and healthy normal tis-
sues for kidney, colon, and lung, we identified a number of statistically 
significantly differential gene expression patterns, molecular pathways 

and Gene Ontology terms, and also identified two associated cell types. 
Such differences can be explained by the following three major 

reasons. First, alterations directly influenced by the tumors. Second, 
influence caused by the complex organismic reaction on tumors. Third, a 
possibility of an artifact component linked with the specific features of 
postmortal biosampling in “healthy” controls theoretically cannot be 
excluded. 

We then attempted to further explore possible impacts of those fac-
tors in more detail. For the first two components (reciprocal influence of 
tumors and the adjacent tissues) we assessed genes and molecular 
pathways which expression/activation levels statistically significantly 
correlate between the tumors and the patient-matched adjacent norms 
(Fig. 6). 

For the possible artifact component, we explored gene expression 
and pathway activation features of the experimental postmortal samples 
of crab-eating macaque tissues taken 30 min - 24 h after the animal 
death. We hope that the comparable size and the primate origin of these 
organisms makes them an adequate model of time-dependent RNA 
degradation in human tissues under analysis. 

3.3. Genes and molecular pathways with coordinated activities between 
tumors and adjacent tissues 

In order to quantitatively characterize associations between the 
paired tumor and matched/adjacent pathologically normal tissues we 
took 715 available pairs of matched cancer-normal RNA sequencing 
profiles from the TCGA database. The samples represented 23 cancer 
types and the corresponding normal tissues (Table S4). For all tests, we 
considered male (n = 349) and female (n = 366) biosamples separately 
and then merged the results to exclude sex-specific bias from the final 
results of gene/pathway activation analysis. 

To explore which genes and pathways were significantly correlated 
between the paired tumor/normal biosamples, we calculated correla-
tions for CNRs of separately taken genes between all cancer and all 
normal samples among the matched pairs under study. CNR for the 
tumor sample was calculated as a gene expression level in the tumor 

Table 1 
Common differential pathways between overall intersection for TCGA vs GTEx/ 
ANTE and within ANTE comparisons. Top-10 upregulated pathways are shown.  

Pathway ID PAL 

NCI Fanconi anemia Pathway (DNA repair)  66.4 
reactome Chk1 Chk2 Cds1 mediated inactivation of Cyclin B Cdk1 complex 

Main Pathway  
61.1 

reactome G2 M DNA replication checkpoint Main Pathway  59.0 
reactome CD28 dependent Vav1 Main Pathway  52.3 
reactome Trafficking and processing of endosomal TLR Main Pathway  48.7 
reactome Phosphorylation of CD3 and TCR zeta chains Main Pathway  47.0 
reactome Regulation of the Fanconi anemia Main Pathway  43.1 
NCI BCR signaling Pathway (cell survival)  42.9 
reactome PD 1 signaling Main Pathway  42.4 
reactome Plasmalogen biosynthesis Main Pathway  42.4  

Fig. 6. Correlation of gene expression and pathway activation level among TCGA-male, TCGA-female, and experimental group of paired tumor/normal samples. X- 
axis, Spearman correlation coefficient; Y-axis, negative logarithm of Benjamini-Hochberg FDR-corrected q-value. Color scale reflects the extent of the Spearman 
correlation coefficient value. 
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divided by geometric mean expression in all normal samples, except this 
patient. CNR for the normal sample was calculated as a gene expression 
level in the normal sample divided by geometric mean expression in all 
normal samples, except this patient. 

On the correlation plots, dots were CNRs for an individual gene 
measured for paired cancer (X-axis) and normal (Y-axis) samples. The 
same analysis was done also for the pathway activation levels (PALs) of 
individual molecular pathways. We considered significant Spearman 
correlations that would be both (i) statistically significant after 
Benjamini-Hochberg FDR correction (q < 0.05), and (ii) either exceeding 
0.2 threshold for positive correlations, or less than − 0.2 for negative 
correlations (Fig. 6). 

In such a way we tested all available paired TCGA samples, and also 
an experimental cohort of 28 paired tumor/normal samples to validate 
the results (Fig. 5). Twenty-eight experimental pairs of tumor and 
adjacent pathologically normal samples were compared here with the 
control group of experimental healthy postmortal tissues that were ob-
tained by us and published separately [42]. The current normal tissue 
adjacent to the tumor (NAT) and ANTE expression profiles were ob-
tained by the same team, and sequenced using the same protocol, re-
agents and equipment. To our knowledge, ANTE database is 
unparalleled because for this collection only the tissues taken from 
healthy donors killed in road accidents were included. It contrasts with 
the samples deposited in GTEx database, where the patients normally 
died in the hospitals after disease [43]. 

Interestingly, we identified only positive, but no negative statisti-
cally significant correlations at the levels of both individual genes and 
molecular pathways, in both male and female paired tumor/normal 
samplings, and also in the experimental group (Table S8, Fig. 3). After 
triple intersection of all three groups of paired samples (male, female, 
and experimental), we found 1620 common genes and 12 common 

pathways (Table S9), all positively correlated, permutation test 
p < 0.0001 for genes and 0.0004 for pathways (Fig. 7). 

Thus, we did a pan-cancer screen for the congruently regulated genes 
and pathways between tumors and paired norms, which are common in 
both male and female patients. We then investigated these common 
genes and pathways in more detail. 

3.3.1. Coordinated gene expression patterns 
The GO terms enrichment analysis showed that the triple-intersected 

gene set was most strongly enriched by the terms dealing with the che-
mosensory perception and olfaction, epithelial development, keratinocyte 
differentiation, regulation of JAK-STAT signaling and, specifically, phos-
phorylation of STAT, defense response to bacteria, and response to exogenous 
double-stranded RNA (dsRNA) (Fig. 8). 

We hypothesize that the correlation of processes dealing with de-
fense against infectious agents like response to foreign dsRNA and 
response to bacteria can be explained by the common protective reac-
tion of both cancer and adjacent non-cancer tissues on pathogen 
invasion. 

The epithelial development and differentiation of keratinocytes can 
be related to many common processes in cancer and adjacent tissues 
such as the tumor encapsulation and the transforming influence of 
cancer cells e.g. through the production of growth factors [44,45]. The 
correlated genes related to keratinization are listed in Table S10, and 
top-30 correlated keratinization genes are shown on Fig. 9A. 

For the chemosensory perception and olfaction GO terms, the signifi-
cantly correlated gene products identified are shown in Table S11, top- 
30 genes shown on Fig. 9B. The link between aberrant expression of 
olfactory receptors and cancer development, progression, and metas-
tasis was previously established for many cancer types [46–48]. How-
ever, to our knowledge there were no previous reports on the association 

Fig. 7. Venn diagrams and permutation tests for triple intersection (TCGA-male vs TCGA-female vs experimental). A, Venn diagram for triple intersection at the gene 
level. B, Venn diagram for triple intersection at the pathway level. Results obtained with random permutations for genes (C) and pathways (D) are shown in black, red 
line corresponds to the experimentally observed numbers of intersected items. 
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of their profiles in tumors with the adjacent pathologically normal tis-
sues. Since chemosensory perception and olfaction represented six most 
robust clusters of the correlated genes, this phenomenon may have a 
considerable yet poorly investigated significance in tumor biology. 

In turn, the JAK-STAT signaling pathway activity and STAT phos-
phorylation are directly linked with the immunity and tumorigenesis 
[49]. This pathway primarily regulates events following cytokine 
binding to the immune cells. Specifically, the binding of interferons and 
interleukins to cell-surface receptors on the immune cells results in 
dimerization of the receptors, which are complexed with JAK proteins 
[50]. This brings JAKs from the two receptor molecules into close 
proximity, they are then reciprocally phosphorylated by each other at 
tyrosine residues, which additionally activates their kinase domains 
[51]. Activated JAKs then phosphorylate tyrosine residues of the re-
ceptor molecule, which creates binding platform for STAT proteins 
which are, in turn, phosphorylated by JAKs. This causes dissociation of 
STATs from the receptor complex, and their activation as the nuclear 
transcriptional regulators [52]. Thus, these signaling events can be 
directly implicated in the inflammation and tumor niche formation 
processes, which are all connected with the infiltration of tumor and 
neighboring tissues by the immune cells [53,54]. The most strongly 
impactful nodes of the JAK-STAT pathway are shown on Fig. 10. 

We then tried to perform such an assay at the proteomic level. To this 
end we took five publicly available datasets of paired tumor-normal 
proteomic profiles (totally 309 pairs of samples) from the CPTAC data-
base. We collected profiles for totally 139 female and 170 male patients 
with clear cell renal cell carcinoma, colon cancer, lung adenocarcinoma, 
breast and ovarian cancers (Table S12). At the level of gene expression, 
we found 76 common correlated genes with the same thresholds as 
before for the transcriptomic data analysis (non-random overlap, 
p < 0.0001, Fig. 12A). This figure is less than what was observed before 
for the RNA sequencing data, which can be explained in part by lower 

number of genes included in the proteome profiling for all the datasets 
under analysis (6755 genes for proteomic and 20,501 genes for tran-
scriptomic correlation assay). Four correlated genes (FKBP5, GSTM1, 
MRI1, MX1) were also identified before by transcriptomic data. 

Interestingly, the most strongly correlated gene in this analysis was 
GSTM1 (Table 2), which was also the most strongly correlated gene in 
the RNA sequencing data. Of note, GSTM1 function deals with the 
detoxification of electrophilic compounds, including carcinogens, ther-
apeutic drugs, environmental toxins, and products of oxidative stress, by 
conjugation with glutathione [55]. 

GO enrichment analysis of the 76 common correlated genes revealed 
the following functional groups: organic acid biosynthesis, inflammatory 
response, neutrophil activation and degranulation, regulation of complement 
activation, response to toxic substances, lipoprotein regulation, glutathione 
biosynthetic processes, and zymogen activation (Fig. 11). Overall, about 
37% of all top GO terms identified deal with the immunity and in-
flammatory reactions. 

3.3.2. Coordinated pathway activation patterns 
We then performed paired tumor-norm correlation assay at the level 

of molecular pathway activation. At the transcriptomic level, we totally 
found twelve pathways with strongly correlated PAL values (Table 3). 

Among these correlated pathways, presence of two versions of 
circadian clock pathway (Table 3) may be considered as the internal 
positive control of our analytic approach of finding commonly regulated 
processes in the paired samples. Indeed, this pathway controls intra-
cellular molecular clock that maintains daily rhythms and thereby reg-
ulates cellular physiology [56,57]. Circadian rhythms are common to all 
cells of the body and the circadian clock works concordantly for 
different tissues of the same individual [58]. Thus, all cells of the body 
are thought to be synchronized through circadian clock pathway acti-
vation [59]. In turn, circadian clock pathway activation patterns are 

Fig. 8. Gene Ontology terms enrichment analysis for triple-intersected set of the correlated paired tumor/normal genes.  
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expected to be similar in all tissues taken postmortally from the same 
donor. High correlation among the paired tissue samples for this 
pathway can be explained by the same time of obtaining biosamples 
both for tumors and for their adjacent norms. In turn, the correlated 
activation of KEGG RNA polymerase main pathway may be a direct 
consequence of the circadian clock-associated transcriptional regulation 
[60,61]. The genomic targets of circadian clocks are numerous and are 
intimately linked to the regulation of cell growth and metabolism [60]. 
Among the tumor-norm correlated metabolic pathways there were three 
responsible for guanosine and pyrimidine nucleotide biosynthesis, and one – 
for glutathione metabolism. Congruent activation patterns of these path-
ways can be also explained in part as the consequence of common 
circadian rhythm regulation [56,62,63]. Alternatively, their activation 
can be controlled by the proliferative status of tumor and adjacent cells, 
which is clearly to certain extent regulated by the cancer itself [64]. 

Furthermore, another metabolic pathway of leukotrienes and eoxins 
biosynthesis is strongly connected with the inflammation [65]. Again, 
this indicates congruent inflammatory status for the cancer and adjacent 
“normal” tissue. In turn, common activation of the p38 MAPK pathway in 
cancers and adjacent tissues can be a direct consequence of building 
cancer niche [66]. The remaining three correlated pathways dealing 
with the phosphatidylinositol phosphate synthesis, Notch and IGF1 signaling 
can be each the consequence of any of the above tumor niche or circa-
dian clock interplay or may represent a specific phenomenon. 

At the proteomic level of pathway analysis, we found 40 non- 
randomly intersected correlated molecular pathways (p < 0.0001,  
Fig. 12B). The top-10 correlated pathways (Table 3) did not overlap with 
the transcriptomic findings possibly due to technical reason of consid-
erably lower number of genes interrogated in the proteomic assay. For 
example, proteomic datasets contained data for only 5 genes of the 

Circadian clock pathway, compared to 18 in the transcriptomic datasets. 
However, none out of top-10 “proteomic” pathways could be identified 
as the significantly correlated in our transcriptomic assay. 

Functionally, the top correlated pathways by proteomic data 
(Table 3) deal with the inflammatory response (TLR signaling pathways, 
formyl peptide receptor pathway, STING-mediated induction of host immune 
response), proliferative signaling (remodeling of acyl residues in phospha-
tidylinositol, AKT signaling), remodeling of extracellular matrix (derma-
tan sulfate biosynthesis), cellular import of fatty acids from blood flow 
(LDL endocytosis pathway), and with thyroid hormone metabolism 
(Table 3). 

Thus, in this pan-cancer study we identified a fraction of genes and 
molecular pathways which activation is coordinated between the tu-
mors and the non-tumor tissues from the same site. A fraction of these 
genes and pathways can be explained by the common circadian clock 
regulation, and by the overlapping pathogen response pattern in tissues 
taken from the same individual and located nearby. However, the others 
clearly represent signatures of proliferative signaling, and of inflam-
mation and building cancer niche. This trend was congruent for both 
transcriptomic and proteomic data and can explain at least some of 
molecular differences observed between the tumor-matched and 
“healthy” norms. 

3.3.3. Molecular processes linked with the patient identity 
We then investigated the finding that the molecular features of an 

adjacent normal tissue may correlate with those of a paired tumor not 
due to tumor impact, but because of individual peculiarities of a patient. 
To discriminate such molecular features from those caused by the tumor, 
we correlated gene expression profiles of different postmortal healthy 
tissues collected from the same individual donor. For this analysis we 

Fig. 9. Top-30 genes with highest mean correlation among pairs of tumors and matched norms in TCGA male, TCGA female, and experimental samples. A, genes 
involved in epithelial/keratinocyte development Gene Ontology (GO) terms. B, genes involved in chemosensory perception GO terms. Color scale reflects correlation 
coefficients of each gene product between tumor and adjacent normal tissue samples. 
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selected seven tissue types that allowed at least 70 samples in each 
pairwise correlation test (Fig. S4): esophagus, pancreas, stomach, breast, 
thyroid, colon, and lung. 

We then did pairwise correlation tests for all the samples from the 
same donor available for the above seven healthy tissue types. Using the 
same criteria as before for the correlated items, we considered that the 
feature was related to patient identity when correlation coefficients in 
pairwise comparisons in all groups exceeded 0.2 and were statistically 
significant (q-value < 0.05). In order to exclude the influence of gender, 
the comparison was made separately for male and female donors, and 
only the features that coincided in both sets were selected for further 
analysis. 

Among the previously identified paired tumor-norm correlated hits, 
we found 52 genes (Fig. 13A) and one molecular pathway (Fig. 13B) 

which expression/activation level were found to be associated with the 
individual patient/donor identity, but most likely not with the tumor 
impact (Table S13). Triple intersections were non-random both in the 
gene level and pathway level, as evidenced by the permutation test 
p < 0.0001 and p = 0.0035 (Fig. 13C, D). 

Interestingly, 6/10 top correlated transcripts and 1/10 top correlated 
proteins that were obtained from RNA sequencing and proteomic data, 
respectively, appeared to be related to patient identity (Table 3). Thus, 
these entries most likely correlated with the paired tumors because of 
intrinsic physiological patterns. This finding also showed adequacy of 
our analytic approach for refinement of the lists of tumor-linked mo-
lecular factors. 

In contrast, the other top correlated genes involved in epithelial/ 
keratinocyte development, chemosensory perception and JAK-STAT 

Fig. 10. Pathway activation graph for JAK-STAT signaling pathway. Color depth of the pathway nodes is proportionate to averaged correlation of the respective gene 
products between tumors and matched norms in paired samples, for (A) TCGA male, (B) TCGA female, and (C) experimental samplings. Color scale denotes cor-
relation of the respective node-forming gene product(s). Green arrows indicate activating interactions. 
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pathway were not connected with patient identity and, therefore, should 
be considered as those influenced by the tumorigenesis. 

The only subject identity-linked molecular pathway identified here 
was the Circadian rhythm pathway which was also among the list of 
paired tumor-normal correlated items and can be explained by the co-
ordinated work of molecular clock in all tissues of the same individual. 

3.3.4. Time-dependent alterations in healthy tissues after sample collection 
during autopsy 

We then experimentally tested the hypothesis that gene expression 
profiles in healthy tissue autopsies contain an artifact component linked 
with the time of obtaining biosample after death which could be due to 
transcription in postmortal tissues or RNA degradation. To this end, we 
used the model of crab-eating macaque (Macaca fascicularis) as the 
mammalian species of a common primate ancestry and of a comparable 
size with human. 

Three male Macaca fascicularis animals (age 3, 3, and 4 years) were 
sacrificed for the experiments unrelated to this study. We then imme-
diately isolated lung and liver tissue samples and stored them at 4ºC for 
30 min, 3 h, 6 h, and 24 h. The 4ºC regimen roughly corresponds to the 
average temperature conditions in the Moscow region from November 
till March and storage conditions in morgue. These conditions were 
previously applied for obtaining our experimental collection ANTE of 
healthy tissue RNA sequencing profiles obtained from biosamples of 
donors killed in road accidents [2]. 

We profiled gene expression in macaque tissues by RNA sequencing 
and compared the molecular profiles corresponding to the different 
sample storage timepoints. On the principal component analysis (PCA) 
plot of the biosamples obtained (Fig. 14A) the profiles most strongly 
clustered according to the tissue type (lung or liver; explains ~74% of 
standard deviation) and then by the animal identity (explains ~4% of 
standard deviation). 

Table 2 
Top-10 intersected genes with correlated activation levels in paired tumor- 
normal samples in transcriptomic and proteomic samplings (TCGA-male, 
TCGA-female, CPTAC-male, CPTAC-female, and experimental) sorted by mean 
correlation.  

Transcriptomic data 

Gene ID Correlation, 
TCGA-Male 

Correlation, 
TCGA-Female 

Correlation, 
Experimental 

Relation to 
patient 
identity 

GSTM1 0.91 0.87 0.90 yes 
RPS28 0.86 0.84 0.98 no 
RPL9 0.84 0.81 0.98 yes 
ERAP2 0.79 0.78 0.81 yes 
FKBP1AP1 0.70 0.65 1.00 no 
GSTT2 0.71 0.66 0.90 yes 
POMZP3 0.70 0.73 0.79 yes 
XRRA1 0.72 0.59 0.90 yes 
POM121L10P 0.60 0.58 0.93 no 
CTAG2 0.47 0.71 0.95 no 
Proteomic data 
Gene ID Correlation, 

CPTAC-Male 
Correlation, 
CPTAC- 
Female 

Relation to 
patient 
identity  

GSTM1 0.76 0.74 yes  
GSTT1 0.74 0.69 no  
GSTM4 0.7 0.62 no  
OAS1 0.63 0.66 no  
NUDT2 0.54 0.59 no  
LBP 0.61 0.52 no  
CPS1 0.48 0.57 no  
SAA2-SAA4 0.5 0.52 no  
SQSTM1 0.71 0.26 no  
NTPCR 0.45 0.5 no   

Fig. 11. Gene Ontology terms enrichment analysis for double-intersected set of the correlated paired tumor/normal genes (proteomic profiles).  
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We then investigated whether postmortal transcription or RNA 
degradation may alter the results of further differential gene expression 
analysis. First, we compared RIN and DV200 values in all samples 
(Fig. 14B). RNA extracted from the liver tissue showed higher RIN and 
DV200 levels compared to the lung tissue. RIN, but not DV200 values 
decreased over the storage time for all three liver samples. DV200 values 
for the lungs decreased over time for all samples, while RIN changes 
showed no clear trend. We then performed differential expression 
analysis using DESeq2 software with a group of 30-minute samples as 
the reference, Table S14. Virtually no differential expression was 
detected in liver samples for all types of comparison (30 min vs 3 h; vs 
6 h; vs 24 h), Fig. 15. 

However, for the lung samples we observed dramatically different 
results; 31, 6, and 300 genes were significantly upregulated, and 97, 10, 
and 696 genes were downregulated in samples stored for 3, 6, and 24 h, 
respectively (Fig. 15). For 3 h timepoint we observed even bigger 
number of differential genes than for the 6 h point which can be related 
to sampling bias or relatively soft statistical criteria used. Among them 
0, 1, and 1 drug target genes were upregulated, while 3, 0, and 7 were 
downregulated at 3, 6, and 24-hour timepoints, respectively. This in-
dicates that in lungs the expression profiles were altered with storage 
time for a significant fraction of genes (up to 1140 genes as for 24 h at 
4ºC). 

Since there were no such common artifact differential genes for the 
macaque lung and liver tissues at any time point, these results evidence 
in favor of the adequacy of the analytic approach used here for the 
assessment of human tissues, where we considered common differential 
genes for all tissue types under analysis. Extrapolation of the above test 
shows that this should have eliminated all possible RNA degradation- 
introduced artifacts. 

We also calculated pathway activation level values to identify pu-
tative differential molecular pathways. No differential pathways were 
found for all comparisons with liver samples, and for the lung samples 
stored for 3 h. For 6-hour and 24-hour lung samples, the differential 
pathways were identified: 2/1 and 2/2 up/downregulated pathways, 
respectively, although there were no common differential pathways for 

the different timepoints. 
Furthermore, although there was a number of common differential 

genes for the different timepoints in lung tissues, the intersection with 
the liver tissue patterns could give no common differential genes. This 
gives hope that our analysis of common pan-cancer trends was not 
significantly impacted by the times of exposure for the postmortal bio-
samples used. 

However, our results evidence that differential expression analysis in 
some tissue types may be relatively strongly affected by the times of 
storage of biomaterials (e.g. ~1000 affected genes in lungs for 24 h of 
exposure at 4ºC, Fig. 15). Moreover, we identified 9 cancer drug target 
genes among such artifact differential genes, and highlighted drugs 
approved for lung cancer treatment (Table S15). Although most of these 
targets are not analyzed at RNA level as routine predictive biomarkers, 
evidence is provided that their transcriptomic profiling is useful for 
clinical settings. For instance, transcriptomic profiling, compared to 
DNA mutation-based approach, was reported to substantially extend the 
cohort of patients who could receive benefit from personalized molec-
ular diagnostics, and prescription of the corresponding targeted thera-
pies. This could increase median overall survival, as well as the speed 
and efficiency of clinical trials [67–69]. 

Overall, these results are in line with the previous reports showing 
that different storage/time conditions of the autopsy or operational or 
animal tissue materials can lead to artifact bias of the gene expression 
profiles measured by RNA sequencing [70–73]. 

4. Discussion 

Implications in cell and tissue physiology. 
Based on the results obtained, we tried to build a simplified pan- 

cancer model of solid tumor influence on gene expression in adjacent 
tissues. It has a limitation of being derived from the molecular profiles of 
normal tissues for 22 cancer types and, therefore, represents an overall 
averaging, which does not take into consideration all possible tissue- 
specific patterns. 

Table 3 
Molecular pathways with correlated activation levels in paired tumor-normal samples in transcriptomic and proteomic samplings (TCGA-male, TCGA-female, CPTAC- 
male, CPTAC-female, and experimental) sorted by mean correlation.  

RNA sequencing data 

Pathway ID Correlation, 
TCGA-Male 

Correlation, TCGA- 
Female 

Correlation, 
Experimental 

Relation to 
patient identity 

KEGG_Circadian_rhythm_Main_Pathway 0.31 0.25 0.74 yes 
KEGG_Glutathione_metabolism_Main_Pathway 0.26 0.25 0.9 no 
Reactome_Synthesis_of_PIPs_at_the_early_endosome_membrane_Main_Pathway 0.24 0.26 0.83 no 
Reactome_p38MAPK_events_Main_Pathway 0.23 0.26 0.74 no 
Guanosine_nucleotides_de_novoi_biosynthesis 0.2 0.23 0.95 no 
Reactome_Synthesis_of_Leukotrienes_and_Eoxins_Main_Pathway 0.24 0.23 0.71 no 
KEGG_RNA_polymerase_Main_Pathway 0.22 0.23 0.71 no 
Circadian_Pathway 0.22 0.22 0.76 yes 
Guanosine_deoxyribonucleotides_de_novoi_biosynthesis 0.21 0.2 0.86 no 
Pyrimidine_deoxyribonucleotides_de_novoi_biosynthesis 0.23 0.2 0.74 no 
NCI_Notch_mediated_HES_HEY_network_Main_Pathway 0.21 0.21 0.76 no 
NCI_IGF1_Main_Pathway 0.21 0.2 0.74 no 
Proteomic data 
Pathway ID Correlation, 

CPTAC-Male 
Correlation, CPTAC-Female Relation to 

patient identity 
NCI Endogenous TLR signaling Pathway (regulation of granulocyte colony stimulating 

factor production) 
0.72 0.83 no 

NCI Endogenous TLR signaling Pathway (regulation of interleukin 10 production) 0.72 0.83 no 
Reactome Formyl peptide receptors bind formyl peptides and other ligands Main Pathway 0.46 0.55 no 
Thyroid hormone metabolism II via conjugation and/or degradation 0.33 0.41 no 
Reactome Acyl chain remodeling of PI Main Pathway 0.34 0.39 no 
Reactome STING mediated induction of host immune responses Main Pathway 0.36 0.33 no 
Akt Signaling Pathway Proto-Oncogenic and RTK-signaling 0.38 0.31 no 
Dermatan sulfate biosynthesis 0.36 0.3 no 
Reactome LDL endocytosis Main Pathway 0.28 0.39 no 
Akt Signaling Pathway Enhancement of Breast Epithelial 0.35 0.31 no  
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4.1. Differentially activated processes between a tumor-adjacent and 
healthy normal tissues 

We found the following differentially activated processes in tumor- 
adjacent normal tissues when compared to postmortal pathologically 
healthy tissues: enhanced neutrophil degranulation and activation; antigen 
processing and presentation; protein folding and targeting; endocytosis and 
recycling of receptor molecules from cell surface; vesicle organization and 
transfer from endoplasmic reticulum to Golgi; macroautophagy; mitochon-
drial movement and gene expression; cellular respiration, catabolism of 
organic molecules, Krebs cycle and secondary alcohol synthetic processes; 
telomerase localization to Cajal bodies; CDC42 and EGF pathway regulation 
of cytoskeleton organization; degradation of extracellular matrix and cell- 
substrate adhesion patterns through the decrease of syndecan 1-mediated 
cell-matrix interaction, beta 1 integrin cell surface interactions, collagen 
biosynthesis, and chondroitin and dermatan biosynthesis (Fig. 16A). 

At the same time, the following molecular processes were differen-
tially downregulated: apoptotic signaling and negative regulation of cell 
growth, formation of neuronal synapses, C20 prostanoid biosynthesis, 

regulation of cell migration by VEGFR3, and specific branches of Notch and 
Hedgehog pathways, signaling by small GTPases including Ras, and regula-
tion of G2/M cell cycle transition (Fig. 16A). The latter two processes are 
strongly interconnected as the activated Ras is known as the major 
positive regulator of passing through the G2/M checkpoint [33]. 

4.2. Coordinated processes between paired tumor and tumor-adjacent 
normal tissues 

We then focused on the processes which are statistically significantly 
correlated between the paired tumor and normal tissues. We found that 
adjacent normal tissues share with tumors the common patterns of de-
fense response to bacteria and viruses, regulation of JAK-STAT signaling, 
chemosensory perception and olfaction, activation of RNA polymerase, 
epithelial development and keratinocyte differentiation, regulation of the p38 
MAPK, Notch and IGF1 pathways, activities of metabolic pathways for 
nucleotide biosynthesis, for glutathione metabolism, for leukotrienes and 
eoxins biosynthesis. In this analysis we have filtered out the processes and 
genes related to the patient identity, e.g. regulation of circadian clock. 

Fig. 12. Intersection of paired tumor-normal correlated genes (A) and pathways (B) identified in CPTAC proteomic datasets (left) and representation of the results of 
random permutation test (right). Results obtained with random permutations are shown in black, red line corresponds to the really observed number of inter-
sected items. 
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Interestingly, the chemosensory perception-related processes formed the 
biggest clusters during the Gene Ontology analysis of the correlated 
genes. 

Overall, most of the processes identified can be attributed to the 
following three main categories (Fig. 16B): (i) chemosensory perception; 
(ii) antiviral and bacterial defense mechanisms; (iii) inflammation; (iv) 
regulation of intracellular molecular pathways;. 

Thus, we suggest that the differences seen between the tumor- 
adjacent and “healthy” norms may be due to the above molecular pro-
cesses correlated among the cancer and paired normal tissues, which can 
act as the drivers of the apparent phenotypic remodeling (Fig. 16). 

4.3. Possible clinical significance 

In this study we confirmed that human cancers exhibit strong 
transforming activities on gene expression of the adjacent pathologically 
normal tissues. Compared to the “healthy” norms obtained from the 
autopsies, we detected in tumor-matched norms statistically significant 
upregulation of target genes for 33 clinically approved cancer drugs, and 
downregulation of target genes for 37 drugs (Table 4). This indicates 
that the differential analysis of gene expression, which can guide tar-
geted therapy prescription (e.g., exemplified in [67,74,75], will be 
significantly biased for at least 52 cancer drugs, if the tumor-adjacent 
tissues are used as the controls (Table 4). 

In particular, this list includes tyrosine kinase inhibitors axitinib, 
imatinib, dovitinib, imatinib, lenvatinib, masitinib, nintedanib, pazopanib, 
regorafenib, ponatinib, sorafenib, sunitinib, tivozanib, entrectinib, laro-
trectinib, afatinib, lapatinib, and ivosidenib; monoclonal therapeutic an-
tibodies ado-trastuzumab, brentuximab, olaratumab, pertuzumab, and 
trastuzumab. Thus, using tumor-matched normal tissues as the controls 
can result in significantly biased predicted personalized drug activity 
profiles, constructed based on RNA expression data [67,76]. 

Furthermore, we also found statistically significant correlation be-
tween tumors and adjacent normal tissues for the expression of genes 
TNF, MAP2K2, and PIK3CA which serve as the targets for 6 cancer drugs 
(Table 5). This association needs to be further investigated but theo-
retically can be another factor that can bias results of the differential 
expression assay with such normalization. 

4.4. Technical validation of data consistency 

Experimental tumor samples, tumor-adjacent normal samples, and 
healthy normal samples investigated in this study were manipulated by 
the same group of researchers using uniform standard protocol and re-
agent settings. We investigated consistency of the method used here for 
obtaining experimental RNA sequencing profiles in the following assays. 
First, we did technical replicates and assessed correlation coefficients 
between gene expression profiles among the replicates. Second, we 

Fig. 13. Venn diagrams (A, B) and permutation tests (C, D) for individual genes (A, C) and molecular pathways (B, D) correlated with the subject identity (shown 
separately for male and female donors), and between the paired tumor and normal tissues. 
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analyzed congruence of the RNA expression and immunihistochemical 
(IHC) profiles in the same biosamples for selected biomarker genes. 

In our experiments, 0.95 Spearman correlation coefficient was ob-
tained for the comparison of tumor tissue replicates [77], and the rep-
licates demonstrated tight clustering on the dendrograms [77]. The 
same correlation coefficient of 0.95 was also demonstrated in our ex-
periments for the quadruplicates of postmortal normal human tissues 
[42]. 

The correlation between IHC and RNA sequencing profiles was 
assessed for the HER2/ERBB2, ESR1 and PGR biomarkers in breast 
cancer, and for the PD-L1 biomarker in lung cancer specimens. For 
HER2, ESR1, and PGR correlations (Spearman’s rho) were 0.798 
(p = 6.9 × 10− 10); 0.777 (p = 3.8 × 10− 9), and 0.653 (p = 4.9 ×10− 6), 
accordingly. For PD-L1, correlation was 0.797 (p = 4.4 × 10− 5) [78]. 

4.5. Functional assessment of the results 

In this study we found statistically significant correlation of the 
expression of MAPK1 gene for ERK2 regulatory kinase in tumors and 
tumor-adjacent norms. In addition, MAPK1 was found upregulated in 
tumor-matched compared with healthy normal tissues. In our separately 
published experiments, we added ERK2 inhibitors (SCH772984, ravox-
ertinib, LY3214996, ulixertinib, and VX-11e) in combination with tar-
geted tyrosine kinase inhibitors, which had a synergistic effect on 
inhibiting cancer cell survival and proliferation [79–81]. 

4.6. Future directions 

In this study, we attempted to identify general characteristics of 
tumor-adjacent pathologically normal tissues. Here, all the patients 
investigated were adults, of similar age in both experimental (mean 
59.7, sd 14.8 y.o.) and in the TCGA (mean 59.1, sd 14.4 y.o.) [82] co-
horts. We sought to exclude the influence of gender on the results by 
intersecting subsets of differential genes obtained separately for the 
groups of male and female patients. In addition, our study most likely 
reflects features specific for the later cancer stages, as those were 
overrepresented in the experimental group. In the future, it will be 
important to investigate in-depth also specific relevant factors con-
nected with tumor type, stage, gender, age, separately for the adult and 

pediatric cancers. This will be a matter of our further studies. 

4.7. Potential limitations 

In total, we analyzed 252 experimental samples (196 postmortal 
healthy tissues, 28 pairs of tumor and normal NAT samples). The post-
mortal samples were published by us earlier in the form of ANTE data-
base. The sampling size of NATs is limited yet we believe it is sufficient 
for the statistical methods used here, as can be exemplified by the 
following published papers with smaller sampling assessed with the 
same statistical criteria: [83–88]. 

Another point that has to be discussed here is the potential presence 
of cancer cells in the tumor-adjacent normal tissues. We presume that 
part of the differential genes found between the tumor-adjacent and 
healthy normal tissues can be associated with the residual tumor cells 
that could not be identified by a pathologist. This leads to certain lim-
itations of the current study and suggests innovative technological ap-
proaches such as utilizing single-cell sequencing, to gain deeper insights 
into the impact of cancer cells on surrounding normal tissues in the 
future. 

5. Conclusion 

Here we demonstrate that compared to the autopsy-derived patho-
logically healthy tissues, the tumor-adjacent tissues have a number of 
systemic molecular differences. These differences relate to activation of 
the immune cells, intracellular vesicle transport and autophagy, cellular 
respiration, activation of telomerase, activation of p38 signaling, cyto-
skeleton remodeling, and reorganization of the extracellular matrix. The 
tumor-adjacent tissues are deficient in apoptotic signaling and negative 
regulation of cell growth including G2/M cell cycle transition check-
point. In addition, there is an extensive rearrangement of the chemical 
perception network that is strongly connected with the neighboring 
tumor development. 

We showed that these processes may be driven by another group of 
molecular events that are correlated between the paired cancers and the 
adjacent non-cancer tissues, that mostly relate to inflammation and 
regulation of intracellular molecular pathways such as the p38, MAPK, 
Notch and IGF1 signaling. 

Fig. 14. Comparison of gene expression pro-
files in crab-eating macaque (Macaca fas-
cicularis) tissues at the different sample storage 
timepoints. (A) Principal component analysis of 
gene expression profiles for postmortal liver 
and lung specimens stored at 4ºC for 30 min, 
3 h, 6 h, and 24 h. Percent of standard devia-
tion explained by the principal components is 
shown in brackets. Color indicates tissue type, 
shape – sample storage time. Each dot is 
marked with the animal identifier; (B) RIN (top) 
and DV200 (bottom) values for RNA samples 
obtained at different time points for lung and 
liver tissues.   
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As the consequence, molecular targets of 32 and 37 cancer drugs 
appear to be over- or underexpressed, respectively, in the tumor- 
adjacent compared to the “healthy” norms. However, using a model of 
crab-eating macaque postmortal tissues (liver and lung) we showed that 
for the 30 min – 24 h time frame of storage at 4ºC, there was a significant 
RNA degradation pattern in lung biosamples that resulted in an artifact 
“differential” expression profile for 1140 genes, including molecular 
targets of 9 cancer drugs. This effect was not seen for the liver samples. 

Taken together, our results evidence that tumor-adjacent patholog-
ically normal tissues cannot be considered as the fully adequate norms 

for the analysis of cancer molecular profiles. The alternative solution 
could be the autopsy tissue biosamples taken from the healthy donors, 
yet for the latter possibility an RNA degradation-induced bias in gene 
expression profiles has to be carefully considered. In addition, normal 
adjacent tumor tissue is not guaranteed for being free from cancer cells. 
Thus, comparing tumor adjacent tissue with healthy controls may un-
cover differential expression of residual cancer cells. In the future, 
single-cell sequencing approach may provide deeper insights on the 
impact of cancer cells on surrounding normal tissues. However, at pre-
sent several technical aspects of this technology seem to be 

Fig. 15. Differential gene expression analysis of liver (A) and lung (B) Macaca fascicularis tissues. Group of 30-minute storage timepoint samples was used as the 
reference, and compared with samples stored for 3 h (top), 6 h (middle) and 24 h (bottom). Adjusted p-value cut-off was set 0.05, |Log2 fold change| cut-off was set 
higher than 1. Statistics of significantly differentially regulated genes is shown at the bottom of each volcano plot. Differentially up-/downregulated molecular drug 
targets are shown on the left/right side of each volcano plot. 
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Fig. 16. Schematic representation of the processes differentially activated in tumor-adjacent norms compared to the postmortal pathologically healthy human tissues 
(A) and major functional categories of molecular processes which activities correlate among the paired tumor and adjacent normal tissues (B). Visualized with 
BioRender.com. 
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underdeveloped for such a large-scale analysis including poor compat-
ibility of the results/strong batch effect and low RNA sequencing reads 
coverage per cell [89]. 

Table 4 
Cancer drug target genes which are differentially regulated between tumor- 
matched norms and autopsy-derived “healthy” tissue norms at the level of 
pan-cancer comparison.  

Drug 
target 
gene ID 

Up/down- 
regulated in 
tumor 
adjacent 
norms 

Cancer drug generic 
names 

Approved cancer types 

TUBA1C Up Ado-trastuzumab 
emtansine, 
enfortumab vedotin, 
vinblastine, 
vincristine, 
vindesine, 
vinorelbine 

Breast cancer, non-small 
cell lung cancer (NSCLC), 
bladder cancer, ovarian 
cancer 

IDH1 Up Ivosidenib Acute myeloid leukemia 
NFKB1 Up Thalidomide Multiple myeloma 
TUBB4B Up Cabazitaxel, 

docetaxel, eribulin, 
ixabepilone, 
paclitaxel 

Prostate cancer, bladder 
cancer, breast cancer, 
NSCLC, ovarian cancer, 
stomach cancer, 
endometrial cancer, 
cervical cancer, kidney 
cancer 

CSF1R Up Dovitinib, sunitinib Kidney cancer, thyroid 
cancer 

PSMB5 Up Bortezomib, 
carfilzomib, ixazomib 
(MLN9708) 

Multiple myeloma 

HDAC2 Up Belinostat, 
panobinostat, 
romidepsin, 
vorinostat 

T-cell lymphoma, multiple 
myeloma 

TUBB Up Ado-trastuzumab 
emtansine, 
brentuximab vedotin, 
cabazitaxel, 
docetaxel, 
enfortumab vedotin, 
eribulin, ixabepilone, 
paclitaxel, 
Vinblastine, 
Vincristine, 
Vindesine, 
Vinorelbine 

Breast cancer, NSCLC, 
prostate cancer, bladder 
cancer, ovarian cancer, 
stomach cancer, 
endometrial cancer, 
cervical cancer, kidney 
cancer 

IDH2 Up enasidenib Acute Myeloid Leukemia 
TUBA1B, 

TUBA4A 
Up Ado-trastuzumab 

emtansine, 
brentuximab vedotin, 
enfortumab vedotin, 
vinblastine, 
vincristine, 
vindesine, 
vinorelbine 

Breast cancer, NSCLC, 
bladder cancer, ovarian 
cancer 

CDK4 Up Abemaciclib 
(LY2835219), 
flavopiridol 
(alvocidib), 
palbociclib, ribociclib 

Breast cancer 

LYN Up Masitinib Pancreatic cancer, 
melanoma, multiple 
myeloma, peripheral T-cell 
lymphoma, 
gastrointestinal stromal 
tumor, gastric cancer, 
colorectal cancer, 
esophageal cancer 

ERBB2 Up Ado-trastuzumab 
emtansine, afatinib, 
lapatinib, 
pertuzumab, 
trastuzumab 

Breast cancer, NSCLC, 
stomach cancer, 
endometrial cancer 

FGFR1 Down Dovitinib, erdafitinib, 
lenvatinib, 
nintedanib (BIBF 

Bladder cancer, kidney 
cancer, hepatocellular 
carcinoma, thyroid cancer,  

Table 4 (continued ) 

Drug 
target 
gene ID 

Up/down- 
regulated in 
tumor 
adjacent 
norms 

Cancer drug generic 
names 

Approved cancer types 

1120), regorafenib, 
sorafenib 

colorectal cancer, ovarian 
cancer 

MAPK11 Down Regorafenib Colorectal cancer, 
hepatocellular carcinoma 

PGF Down Aflibercept Colorectal cancer 
ABL1 Down Bosutinib, dasatinib, 

imatinib, nilotinib, 
ponatinib, 
regorafenib 

Colorectal cancer, 
hepatocellular carcinoma 

FLT4 Down Axitinib, dovitinib, 
foretinib, lenvatinib, 
nintedanib (BIBF 
1120), pazopanib, 
regorafenib, 
sorafenib, sunitinib, 
tivozanib, vandetanib 

Kidney cancer, thyroid 
cancer, hepatocellular 
carcinoma, colorectal 
cancer, ovarian cancer, 
NSCLC 

PDGFRA Down Imatinib, lenvatinib, 
masitinib, 
midostaurin, 
nintedanib (BIBF 
1120), olaratumab, 
pazopanib, 
regorafenib, 
sunitinib, tivozanib 

Kidney cancer, 
hepatocellular carcinoma, 
thyroid cancer, colorectal 
cancer 

TUBB3 Down Ado-Trastuzumab 
Emtansine, 
Brentuximab vedotin, 
Cabazitaxel, 
Enfortumab vedotin, 
Eribulin, Ixabepilone, 
Vinblastine, 
Vincristine, 
Vindesine 

Breast cancer, NSCLC, 
prostate cancer, bladder 
cancer 

HDAC4 Down Belinostat, Vorinostat T-cell lymphoma 
NTRK3 Down Entrectinib, 

Larotrectinib 
Pan-cancer 

RARG Down Acitretin, 
Alitretinoin, 
Tretinoin 

Nonmelanoma skin 
cancers 
(chemoprevention), 
Kaposi’s sarcoma 

PDGFRB Down Dovitinib, Imatinib, 
Lenvatinib, 
Masitinib, 
Midostaurin, 
Nintedanib (BIBF 
1120), Pazopanib, 
Regorafenib, 
Sorafenib, Sunitinib, 
Tivozanib 

Kidney cancer, 
Hepatocellular carcinoma, 
thyroid cancer, colorectal 
cancer, ovarian cancer 

HDAC7 Down Belinostat T-cell lymphoma  

Table 5 
Cancer drug target genes which are correlated among the paired tumor and 
adjacent normal tissues.  

Drug target 
gene ID 

Mean 
correlation 
coefficient 

Mean q- 
value 

Cancer drug generic 
names 

Approved 
cancer type 

TNF  0.412  0.009 Pomalidomide, 
thalidomide 

Multiple 
myeloma 

MAP2K2  0.464  0.002 Binimetinib, 
selumetinib, 
trametinib 

Мelanoma 

PIK3CA  0.405  0.012 Alpelisib Breast cancer  
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