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The identification of the major target antigen phospholipase A2 receptor (PLA2R) in the
majority of primary (idiopathic) cases of membranous nephropathy (MN) has been
followed by the rapid identification of numerous minor antigens that appear to define
phenotypically distinct forms of disease. This article serves to review all the known
antigens that have been shown to localize to subepithelial deposits in MN, as well as
the distinctive characteristics associated with each subtype of MN. We will also shed light
on the novel proteomic approaches that have allowed identification of the most recent
antigens. The paradigm of an antigen normally expressed on the podocyte cell surface
leading to in-situ immune complex formation, complement activation, and subsequent
podocyte injury will be discussed and challenged in light of the current repertoire of
multiple MN antigens. Since disease phenotypes associated with each individual target
antigens can often blur the distinction between primary and secondary disease, we
encourage the use of antigen-based classification of membranous nephropathy.

Keywords: membranous nephropathy, membranous lupus nephritis, antigen, epitope spreading, serologic testing,
autoimmune profiling, mass spectrometry
INTRODUCTION

Membranous nephropathy (MN) is an autoimmune kidney disease that is the second leading cause
of nephrotic syndrome. The pathological hallmark of MN is the deposition of immunoglobulin G
(IgG) and variable amounts of complement proteins within the subepithelial space. Immune
complexes can form in situ due to circulating antibodies targeting an intrinsic or planted antigen
within the glomeruli or from deposition of immune complexes that form in the circulation and then
become trapped in the subepithelial space (1, 2). The specific antigens within these immune
complexes have been progressively identified through technological advancements.

Analogous to Moore’s Law which predicted an exponential increase in computing power as
technology allowed more transistors per chip, MN research has recently been marked by an
accelerated pace in the discovery and identification of antigens, more so than at any time since the
first delineation of MN as a distinct clinicopathologic entity in 1957 (3). The research journey to
uncover the underlying mysteries of MN is best described by Couser in the title of a 2005 review
article entitled “Membranous Nephropathy: A Long Road But Well Traveled (4)”. It is worthwhile
to review this journey within the context of a wave of recent advances in MN research, which has
identified new antigens and highlighted new methodologies for such discoveries.
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Early studies questioned whether the source of the
subepithelial immune deposits in MN was from immune
complexes that formed in the circulation and then deposited in
the glomeruli (which was the prevailing view) or if, instead, they
formed in situ (5). Similarly, whether these antigens were
normally expressed in the glomerulus, and by which cell type,
or were extrinsic proteins that became implanted in the
glomerular basement membrane (GBM) (6, 7) or beneath the
podocyte was not clear. An animal model known as Heymann
nephritis provided an excellent investigatory platform and early
efforts focused on replicating features of the disease process in
this experimental rat model to better understand human MN
pathogenesis (8). This particular model involved immunizing
rats with a fraction of proximal tubular brush border, which
resulted in a histopathological pattern of MN nearly identical to
what was seen in human glomeruli. Two groups independently
disproved the reigning hypothesis that circulating immune
complexes were responsible for the glomerular deposits and
showed evidence for in situ formation of the deposits, with
circulating antibodies targeting an intrinsic antigen of the
glomerular filtration barrier (9, 10). While these data support
in situ immune complex formation/planted antigens, the
existence of circulating complexes has not been disproved. It
has been proposed that circulating immune complexes can occur
in the setting of membranous nephropathy related to
autoimmune disease, such as membranous lupus nephritis, but
has not been proven in humans or animal models. The brush
border component that triggered immunogenicity in the
Heymann nephritis model was ultimately identified as megalin,
also known as low density lipoprotein-related protein 2 (LRP2)
(11). Despite the similarities between Heymann nephritis and
human MN, megalin could not be shown to represent the target
antigen in human disease (12). Of note, LRP2 was later identified
to be the main antigen in the tubular basement membrane
immune deposits in anti-brush border antibody disease (anti-
LRP2 nephropathy), which is associated with MN features (13).

Other animal models of MN had been developed, including
those utilizing exogenous cationic bovine serum albumin (BSA)
as an antigen that traversed the GBM and become planted in a
subepithelial space. Mice injected with cationic BSA developed
features of MN with proteinuria developing within two weeks
(14). This modified protein was later identified to represent an
actual antigen in a minority of human cases of childhood MN
associated with antibodies to cationic BSA (6). Other murine
models implicated antibodies to dipeptidyl peptidase IV (15),
aminopeptidase A (APA) (16), a3NC1 (17), and annexin 3 (18),
but corresponding antigens in humans have not been identified
to date.

The first evidence of an intrinsic glomerular antigen in
human MN came through experiments of nature. Ronco and
colleagues documented rare cases of antenatal MN occurring in
newborns of mothers deficient in neutral endopeptidase (NEP), a
known glomerular protein (1). These mothers developed
alloantibodies to NEP which led to subepithelial deposits in the
fetal kidney (which expressed NEP due to paternal inheritance);
the alloantibodies disappeared several months after birth and
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were associated with clinical resolution of disease in the infant
(1). This finding confirmed that circulating antibodies directed
against a podocyte antigen could lead to MN in humans. Yet the
target antigen in adult disease, representing the vast majority of
MN, remained unknown.

It was not until 2009 that a target antigen was identified in
adult MN. Using patient serum to probe immunoblots of human
glomerular proteins, Beck and Salant were able to find evidence
of a common 185 kDa protein identified by the serum from a
proportion of idiopathic MN cases. Mass spectrometric analysis
of the gel band revealed this protein as the M-type (muscle
derived) phospholipase A2 receptor (PLA2R) (19). PLA2R was
thus the first identified target antigen in adult MN, and is now
known to be the most commonly-targeted antigen, associated
with 70-80% of MN cases (19). A second minor antigen,
thrombospondin type 1 domain-containing 7A (THSD7A) was
identified several years later using similar methodology (20).

Despite the identification of THSD7A and PLA2R, the
specific target antigens in approximately 30% of primary MN
cases remained unknown. There was a need to further
characterize the antibody repertoire in MN for patients who
were PLA2R and THSD7A-negative. However, for rare antigens,
it was becoming increasingly difficult to identify common
pattern of reactivity by Western blotting, confounded by a
proportion of patients who are in immunologic remission at
the time of serum sampling and therefore would not have these
rare circulating autoantibodies. Therefore, new approaches were
necessary that instead focused on the kidney biopsy as a tissue
source to identify the antigen, under the assumption that the
targeted antigen would be enriched in the subepithelial immune
complexes relative to normal glomerular proteins (21, 22).
TECHNOLOGIES FOR
ANTIGEN IDENTIFICATION

Western blotting for the detection of glomerular antigens remains
an effective method by which to identify additional candidate
antigens and to further validate tissue-based discovery. Moreover,
analysis of bands differentially recognized by serial serum samples
under different clinical states (nephrosis vs. remission vs. relapse)
(19, 22, 23), followed by immunoprecipitation and analysis by MS
remains a viable technique for antigen identification (Figure 1A).

Recent advances in proteomic technologies have enabled
large-scale profiling of proteins in tissue and sera from
patients, with the potential to better diagnose and classify
autoimmune diseases such as MN (24). The powerful method
of laser capture microdissection (LCM) of glomeruli from
formalin-fixed paraffin-embedded biopsy tissue, followed by
mass spectrometric (MS) proteomic analysis, capitalizes on
enrichment of glomerular proteins or antigens in certain
disease states (25, 26) (Figure 1B). Multiple kidney diseases
have been better defined through LCM-MS, including
membranoproliferative glomerulonephritis (GN), amyloidosis,
cryoglobulinemic GN, fibrillary GN, and membranous-like
November 2021 | Volume 12 | Article 800242
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glomerulopathy with masked IgG kappa deposits (MGMID)
(25–29).

In the field of MN, the use of sequential methods of LCM
followed by MS has allowed the discovery of multiple new
autoantigens including the exostosin 1/2 complex (EXT1/2)
(21), neural epidermal growth factor-like 1 (NELL1) (22),
semaphorin 3B (SEMA3B) (30), and protocadherin 7
(PCDH7) (31). It was also utilized as an ancillary technique in
confirmation of the new autoantigens serine protease HTRA1
(HTRA1) (23), neural cell adhesion molecule 1 (NCAM1) (32),
and type III transforming growth factor-beta receptor (TGFBR3)
(33). Additionally, the LCM-MS methodology confirmed the
appropriate target antigen in cases of PLA2R- and THSD7A-
associated MN cases, validating its utility for all known subtypes
of MN.

This technique was subsequently followed by protein G
immunoprecipitation (IP) from biopsy tissue, specifically focusing
on immune complexes eluted from kidney tissue, followed by MS
Frontiers in Immunology | www.frontiersin.org 3
for identification of antigenic targets (Figure 1C). This tissue IP
was the main method of identification of NCAM1 and TGFBR3,
and additionally supported the discovery of HTRA1 (23).
Functional validation of targeted antigens was performed by co-
localization of each target antigen with IgG within the glomerular
immune deposits.

Autoimmune profiling, based on serum reactivity with whole
proteome arrays, has emerged as a promising methodology to
complement the previously mentioned modalities (Figure 1D).
Autoimmune profiling, a new technology based on peptide or
protein fragment microarrays for the analysis of the antibody
repertoire in various autoimmune conditions, has only been
implemented in a few studies (34–36). This technique has been
applied to MN as an ancillary technique for the discovery of
autoantibodies against a novel MN antigen serine protease
HTRA1 (23), demonstrating proof-of-concept for its use in
this disease.

An overview of these methods is shown in Figure 1.
A

B

D

C

FIGURE 1 | Technologies used in the identification of membranous nephropathy antigens. (A) Western blotting evaluates seroreactivity against human glomerular
extract to identify podocyte antigens by mass spectrometry. (B) Laser capture microdissection (LCMD) from kidney biopsy specimens enriches for glomerular
proteins, which is followed by mass spectrometry for protein identification. (C) Protein G immunoprecipitation (tissue IP) from frozen tissue enriches for immune
complexes in kidney biopsy tissue for protein identification by mass spectrometry. (D) Autoimmune profiling evaluates seroreactivity against an array of peptides to
identify potential autoantigens. Created with BioRender.com.
November 2021 | Volume 12 | Article 800242
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AUTOANTIGENS IN PRIMARY MN

Traditionally, MN has been classified as a primary (previously
‘idiopathic’) or secondary disease. The presence of humoral
autoreactivity against a known antigen (e.g., PLA2R or
THSD7A) has been considered to represent primary MN (37)
while the association of MN with various concurrent conditions
such as malignancy, systemic autoimmune diseases, infections,
or medications has been considered secondary, especially in the
absence of staining for discrete MN antigens (38). While many of
these secondary causes have consistently been associated with
MN, in some cases it is difficult to exclude the coincidental
occurrence of primary MN and another condition (39).

Features on kidney biopsy can often point to primary or
secondary disease. The histopathology of primary MN, typically
evident with PLA2R- and THSD7A-associated disease,
demonstrates diffuse and global granular capillary loop staining
for IgG with C3, but not C1q or other immunoglobulin heavy
chains, within glomeruli. Ultrastructurally, subepithelial and
intramembranous electron-dense deposits are present, with the
absence of mesangial or subendothelial deposits (40) (Figure 2).
IgG subclass staining, when performed, demonstrates a
predominance of IgG4 in primary MN (41–44).

While the field may be moving away from a categorization of
primary vs. secondary MN and more towards an antigen-based
classification system (45, 46), we will continue to use the terms
‘primary’ and ‘secondary’ in this review when applicable. We will
describe both podocyte antigens, including PLA2R, THSD7A,
HTRA1, and SEMA3B as well as non-podocyte antigens
including NELL1 and PCDH7, in what we still call ‘primary’
membranous nephropathy. This will be followed by antigens
commonly encountered in membranous lupus nephritis,
including the podocyte-expressed antigens NCAM1, TGFBR3,
and CNTN1 as well as the more ubiquitously-expressed proteins
EXT1 and EXT2.
PRIMARY MN ANTIGENS EXPRESSED
WITHIN PODOCYTES

Phospholipase A2 Receptor
PLA2R is a transmembrane glycoprotein and member of the
small mannose-receptor family that is expressed in podocytes
and in other tissues (47). PLA2R is comprised of multiple
domains, and the conformation of many of these domains is
maintained by regular patterns of disulfide bonding (48). The
extracellular region comprises an N-terminal cysteine-rich (CysR
or ricin B) domain, a single fibronectin type-2 (FnII) domain,
and eight C-type lectin-like domains (CTLD). Motifs present in
the short cytoplasmic domain enable constitutive endocytic
recycling in clathrin-coated pits. PLA2R undergoes pH-
dependent conformational changes that are necessary for
ligand binding and subsequent release of the ligand in the
more acidic pH of endosomes and lysosomes (48, 49). Patients
often have a genetic predisposition with risk alleles in both MHC
class II genes and in the PLA2R1 gene itself (50). Patients with
Frontiers in Immunology | www.frontiersin.org 4
PLA2R-positive MN had a mean age of 58 years and had male
predominance (19). Kidney biopsies of patients with PLA2R-
positive MN showed diffuse and global granular capillary loop
staining for IgG, C3, and light chains and did not show
significant expression for other immune reactants.

Autoantibodies are reactive against the protein in its native and
non-reduced conformation, with seroreactivity lost under
reducing conditions (19). PLA2R antibodies, predominantly of
the IgG4 subclass (19), correlate with disease activity and
remission and are useful to evaluate treatment decisions and
evaluate prognosis (51–53). Epitope spreading from the
N-terminal cysteine-rich (CysR) domain to C-type lectin-like
domains (CTLD1-8) has been identified in several studies and is
associated with a poor prognosis (54, 55). Dependence of
autoantibody binding to PLA2R and other proteins under native
conditions with pH and/or disulfide bond dependence has been
based on immunoblotting experiments under reducing and non-
reducing conditions. For PLA2R, this was supported by further
epitope identification requiring non-reducing conditions, however
work towards epitope identification has not been extensively
studied for most autoantigens. However, this was investigated
with similar requirements for native conditions found for the
second identified primary MN autoantigen, THSD7A.

Thrombospondin Type 1
Domain-Containing 7A
THSD7A was the second autoantigen discovered in primary MN,
identified after recognition that MN sera uncommonly showed
reactivity by immunoblotting with a 250 kDa antigen present in
human glomerular protein extracts that was subsequently
identified as THSD7A (20). THSD7A is also a large glycoprotein
expressed by the podocyte, and stimulates an IgG4-predominant
autoantibody response in 3%–5% of patients with primary MN
(20). Similar to PLA2R, the epitopes within THSD7A are sensitive
to reducing agents (20). Autoantibodies against THSD7A
recognize multiple protein domains within the protein, with the
N-terminal end of the protein being the predominant region (56).

Patients with THSD7A-associated MN had a mean age of 62
years and had a slight male predominance (57). Similar to
PLA2R-associated MN, there was diffuse and global granular
capillary loop staining for IgG, C3, and light chains without
significant staining for other immune reactants. THSD7A-
positive MN is not strongly associated with underlying
autoimmune diseases (such as systemic lupus erythematosus)
but is seen in some patients with malignancy, where there is
corresponding increased expression in tumor tissue (58, 59).
Anti-THSD7A antibodies correlate with disease activity (60, 61)
and serologic testing is routinely used in clinical practice (56).
Further details regarding PLA2R and THSD7A MN have been
discussed in a prior review (62).

Serine Protease HTRA1
HTRA1 was identified by an inter-institutional collaborative
group including these three authors, utilizing four independent
but adjunctive methodologies (23). Western blotting of human
glomerular proteins with serum from the index patient identified a
November 2021 | Volume 12 | Article 800242
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50 kDa candidate antigen and mass spectrometry of
immunoprecipitates from serum at the time of nephrosis but
not remission revealed the identity of this protein as the serine
protease HTRA1. This finding was independently confirmed by
tissue-based studies with LCM-MS and tissue IP-MS, as well as by
autoimmune profiling of nephrotic versus remission sera from the
index patient. HTRA1 is a secreted trypsin-like serine protease
that is involved in the homeostasis of the extracellular matrix.

HTRA1-associated MN comprises a total of 4.2% of PLA2R-,
THSD7A-, NELL1-, and EXT2-negative cases, with the caveat
that it represents a much smaller proportion of the entire
primary MN spectrum. It also appears to be a disease of
Frontiers in Immunology | www.frontiersin.org 5
elderly, with a mean age of 67 years in this US-based cohort.
Similar to PLA2R- and THSD7A-associated MN, there is diffuse
and global capillary loop IgG staining on biopsy, with expression
of IgG and C3, but not other immune reactants. IgG4 was the
dominant IgG subclass. HTRA1 was specifically detected within
immune deposits of HTRA1-associated MN but not in other
types of MN. HTRA1-associated MN is favored to be mostly
primary, based on the lack of a clinical history of autoimmune or
infectious disease and negative staining in MLN biopsies.
Circulating anti-HTRA1 antibodies recognized native and
recombinant protein under both reducing and non-reducing
conditions, suggesting a linear epitope and lack of disulfide
FIGURE 2 | Representative histopathologic features of membranous nephropathy. (A) Glomerulus with prominent glomerular capillary loops, PAS, 400x.
(B) Glomerulus with capillary loop holes/lucencies, Jones Methenamine Silver, 400x. (C) Global granular capillary loop staining, IgG immunofluorescence, 400x.
(D) Electron photomicrograph of subepithelial and intramembranous electron-dense deposits. (E) Immunohistochemistry of a case of PLA2R-negative MN,
demonstrating staining within podocyte cell bodies consistent with inherent low-level PLA2R expression, 200x. (F) Immunohistochemistry of a case of PLA2R-
positive MN, demonstrating global granular capillary loop staining (positive result), 200x. Created with BioRender.com.
November 2021 | Volume 12 | Article 800242
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bond dependence. Longitudinal measurements of anti-HTRA1
antibodies by immunoblotting showed an apparent correlation
with disease course, suggesting serial monitoring might assist in
therapeutic decision making.

Semaphorin 3B
SEMA3B was also identified in primary MN by LCM-MS and is
enriched within cohorts of pediatric MN patients, some of which
were less than 2 years of age (30). SEMA3B is part of the
semaphorin family of proteins, which have high expression in
the nervous system and, similar to NELL1, is highly expressed
during development (63). It is expressed in podocytes, as
demonstrated from protein expression in the Human Protein
Atlas (64, 65) and single cell RNA sequencing analysis data (66).
A related protein, semaphorin 3A, has been associated with
podocyte foot process effacement and proteinuria (67),
although the function of the related SEMA3B in the kidney
is unknown.

In the discovery cohort by Sethi et al., eight of 11 cases of
SEMA3B-associated MN were in pediatric patients (30), making
up approximately 10% of MN biopsies in this population, while
this form of MN was found to occur rarely in adult MN (<1%).
Nearly all patients in this report had achieved partial or complete
clinical remission at last follow-up (30). Unlike PLA2R-,
THSD7A-, and NELL1-associated MN, IgA and/or C1q
staining of the glomerular deposits has been demonstrated in
some patients. Approximately one-third of the pediatric cases
also had tubular basement membrane (TBM) deposits. IgG1 is
the predominant IgG subclass (30). A possibility of familial
predilection was discussed in this report, based on two cases.

The presence of SEMA3B autoantibodies in the circulation
was demonstrated by serum reactivity against the recombinant
protein. Interestingly, and unlike the case for autoantibodies
against PLA2R and THSD7A, the serum from these cases reacted
only with the reduced form of SEMA3B and not the non-reduced
protein (30). This raises the question of how the autoantibody
would react with the protein in its native configuration and
whether another mechanism (or genetic variant) would be
required to expose this cryptic epitope.
PRIMARY MN ANTIGENS NOT
EXPRESSED WITHIN PODOCYTES

Neural Epidermal Growth Factor-Like 1
NELL1 was identified as the first antigen in non-lupus related
MN initially using LCM-MS (22) and later by tissue IP (68).
NELL1 is a non-membrane bound glycoprotein that is expressed
during development and primarily expressed within the nervous
system (69). Unlike the case for the target antigens in PLA2R and
THSD7A-positive MN, NELL1 is not routinely expressed by
podocytes under normal conditions. NELL1 associated MN
comprises 3.8-16% of all PLA2R-negative MN cases in the
United States and may be more frequent among Chinese
patients, making up 35% of PLA2R-negative MN cases in these
cohorts (22, 68, 70).
Frontiers in Immunology | www.frontiersin.org 6
NELL1-associated MN has unique histopathologic features,
including a segmental or incomplete global pattern of immune
complex deposition (71) and IgG1 subclass predominance (22,
68, 71). The presence of NELL1 autoantibodies in the circulation
was demonstrated by seroreactivity against recombinant protein
under non-reducing conditions and has been independently
confirmed by three groups (22, 68, 70, 72). In a single patient
where serial serum samples were available, immunological
remission (i.e., disappearance of anti-NELL1 antibodies)
preceded clinical remission (22), consistent with what is seen
in PLA2R-associated MN (19).

While initially felt to represent a mainly primary type of MN,
NELL1-associated MN has been found to be associated with
malignancy in 11.7-35% of cases (22). NELL1-associated MN
was also reported in the setting of graft-versus-host disease (73)
and in post-transplant nephrotic syndrome (72). A temporal
association of lipoic acid use with NELL1-associated MN has also
been shown in data from clinical trials, where remission of
proteinuria occurred upon drug cessation (74).

Protocadherin 7
A small subset of primary MN is associated with autoantibodies
to protocadherin 7, and can be identified through
immunohistochemical staining of kidney biopsies (31). PCDH7
is a transmembrane glycoprotein that is expressed at high levels
in the nervous system (75), similar to THSD7A, NELL1, and
SEMA3B, but has not been shown to be expressed by normal
podocytes. Its presence in this form of MN was suggested based
on LCM-MS. Similar to what had been shown for anti-PLA2R
and anti-THSD7A, IgG reactive with recombinant PCDH7 could
be eluted from the frozen tissue under non-reducing conditions
demonstrating the presence of antibodies within the tissue in
addition to enrichment of the antigen within glomerular
immune deposits (31). Unique to this form of MN, PCDH7-
associated MN has only low levels of complement staining on
biopsy, a feature which might prompt the renal pathologist to
further evaluate such a biopsy for PCDH7 positivity (31). The
minimal C3 staining on biopsy was corroborated by MS, as
spectral counts for many complement proteins (C3, C4A, C4B,
C5 and C9) were reduced in PCDH7-associated MN when
compared to a historical cohort of PLA2R-positive MN cases
(76). IgG subclasses in PCDH7-associated MN were shown to be
predominantly IgG1 and IgG4.

PCDH7-associated MN appears to be a disease of older adults
(mean age = 61-66 years) and often presents with sub-nephrotic
range proteinuria. PCDH7-associated MN was reported to
account for 5.7-10.5% of PLA2R-, THSD7A-, EXT1/2-,
SEMA3B-, and NELL1-negative MN cases (31). There are no
known clinical associations to date and PCDH7 was not found to
be localized to immune deposits in any cases of membranous
lupus nephritis.

Further evidence of the rapidly developing field and
consistent with Moore’s law are two new antigens identified
and presented at abstracts at the American Society of
Nephrology Kidney Week meeting in 2021. One antigen,
protocadherin FAT1, may unravel the dilemma of de novo
membranous nephropathy in the setting of stem cell
November 2021 | Volume 12 | Article 800242

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Caza et al. New Antigens in Membranous Nephropathy
transplantation or kidney transplantation. It was discovered by
LCMD, followed by mass spectrometry. Similar to the other
protocadherin protein associated with MN, PCDH7, there was
minimal complement deposition see by immunofluorescence (77).
The other newly identified autoantigen was Netrin G1 (NTNG1),
identified by seroreactivity against human glomerular extract and
subsequent western blotting (78).

We would like to emphasize that it is been becoming
exceedingly difficult to extrapolate percentages to the larger
MN population, since some studies have reported percentages
of PLA2R-negative cases or triple/quadruple antigen-negative
cases, while others have reported percentages of antigen-specific
MN subclasses in their whole cohort. Therefore, we tried to
provide our best estimates of the frequencies of each antigen in
MN through adjusting to reported percentages of PLA2R
MN (Table 1).
CONSIDERATIONS FOR MN
IN PEDIATRIC PATIENTS

Compared to adult MN, identifying specific antigens has been
more of an exception than the rule in children. ChildhoodMN has
a lower overall rate of PLA2R-positivity of 45%, compared to
greater than 70% in adults (79, 80). This frequency is quite low
below the age of 10 but is significantly higher in adolescence.
SEMA3B comprises approximately 10% of pediatric MN cases
(30). Rarer considerations include MN in the setting of primary
immunodeficiencies (81), antibodies to cationic bovine serum
albumin (6), and anti-neutral endopeptidase in newborns (1). In
children with immunodeficiency, MN is interestingly the leading
cause of nephrotic syndrome. It is unclear why patients with
impaired immunoglobulin production/hypogammaglobulinemia
develop MN and the inciting autoantigen is unknown in most
cases. PLA2R was found to be the culprit antigen in a neonate with
immune dysregulation, polyendocrinopathy, enteropathy,
X-linked (IPEX) syndrome (82).
Frontiers in Immunology | www.frontiersin.org 7
In cationic BSA-induced MN, the dietary antigen cationic
BSA (presumed to have arisen from modifications to bovine
albumin present in infant formula) interacts with the anionic
glomerular basement membrane and, with its corresponding
antibodies, forms in situ immune complexes resulting in a loss
of charge and size barrier, resulting in proteinuria (6).
Complement pathway activation may also play a role in
pathogenesis, resulting in the formation of membrane attack
complex C5b-9 that localizes to subepithelial deposits. Infectious
triggers should additionally be considered as potential etiologies
in children, especially hepatitis B in areas with low rates of
vaccination. Regardless, there is a large knowledge gap in our
understanding of pediatric MN.
AUTOANTIGENS IN MEMBRANOUS
LUPUS NEPHRITIS

Membranous lupus nephritis (MLN, or class V LN) is the most
common secondary etiology of MN and disproportionately
affects young females of African or Hispanic descent, as well as
other minority populations. There are some histopathologic
findings on kidney biopsy that increase suspicion for MLN
over primary MN (Figure 3). These include “full house”
staining on biopsy (all three immunoglobulin heavy chains -
IgA, IgG, IgM, and two complement components - C3, C1q),
extraglomerular immune deposits (TBM staining, vascular
deposits, or a ‘tissue ANA’ pattern of nuclear staining),
subendothelial electron-dense deposits, and the presence of
endothelial tubuloreticular inclusions. These findings have
variable sensitivity and specificity alone, however when three
or more of these five are present there is an 80% sensitivity and
95% specificity for a diagnosis of MLN over MN (83). Mesangial
electron-dense deposits are also common and nearly always
present in MLN, however, this finding has poor specificity as
they can also be seen in primary MN cases. Additional, although
non-specific, features suggestive of MLN are C1q positivity in
conjunction with the presence of more than one IgG subclass
TABLE 1 | Characteristics of the target antigens and biomarkers identified in membranous nephropathy.

Antigen Size
(kDa)

% Positivity (adjusted) Compartment (transmem-
brane, secreted)

Podocyte
expression

Circulating
antibodies

Mean age
(years)

Sex
(M:F)

Distinctive associations

PLA2R 180 65-70% Transmembrane Yes Yes 58 2-
2.5:1

No distinctive associations

THSD7A 250 1.3-2.6% Transmembrane Yes Yes 62 1.6:1 Malignancy 10%
NELL1 89 1.8-2% Secreted No Yes 67 1.6:1 Malignancy 33%
HTRA1 51 1.4% Secreted Yes Yes 67.3 1.3:1 No distinctive associations
PCDH7 116 1.0% Transmembrane No Yes 61 1.3:1 Autoimmune disease 14%,

Malignancy 21%
SEMA3B 83 <1% Secreted Yes Yes 6.9 pediatrics,

36 adults
1.7:1 Pediatrics, Potential familial

EXT1/2 86/82 2.3 -3.4% (primary) and
17 -38.4% (MLN)

ER transmembrane No/Yes No 39.6 0.19:1 Membranous lupus
nephritis

NCAM1 95 0.3-2% (primary) and
6.6% (MLN)

Transmembrane Yes Yes 34 0.4:1 Membranous lupus
nephritis

TGFBR3 94 0 % (primary) and 5.5%
(MLN)

Transmembrane Yes No 39.6 0.06:1 Membranous lupus
nephritis
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(particularly IgG1 and IgG3) within glomerular immune
deposits, consistent with activation of the classical complement
pathway. In primary MN, IgG4 often predominates, which is
uncommon in MLN. These histopathologic features are also
shared in patients with MN secondary to autoimmune diseases
other than systemic lupus erythematosus (SLE). Histopathologic
features described in primary or MLN are shown in Table 2.

While the antigenic targets involved in the majority of primary
MN cases have been discovered, the majority of autoantigens in
MLN are unknown. To date, three autoantigens have been
described in membranous lupus nephritis, which together
comprise approximately 1/3 of all MLN cases. These include the
Frontiers in Immunology | www.frontiersin.org 8
exostosin 1/exostosin 2 complex (EXT1/2) (21), neural cell
adhesion-molecule 1 (NCAM1) (32), and transforming growth
factor b receptor 3 (TGFBR3) (33). PLA2R positivity can be rarely
seen inMLN (in up to 5.3% of cases) (84). Contactin 1 (CNTN1) is
also described in the setting of autoimmunity, although not
specifically within membranous lupus nephritis.

Exostosin 1/2 (EXT1/EXT2)
The first biomarker to be described in MLN is the EXT1/EXT2
complex, identified by LCM-MS of kidney biopsies. The EXT1/
EXT2 complex represents a hetero-oligomeric glycosyltransferase
that requires both proteins for enzymatic function. It participates
FIGURE 3 | Representative histopathologic features of membranous lupus nephritis. (A) Glomerulus with mesangial expansion and prominent capillary loops,
PAS, 400x. (B) Glomerulus with prominent capillary loops and endocapillary proliferation, PAS, 400x. (C) Granular mesangial and capillary loop staining, C1q
immunofluorescence, 400x. (D) Electron photograph of subepithelial, intramembranous, and mesangial electron-dense deposits. (E) IgG immunofluorescence
showing granular staining along tubular basement membranes, 600x. (F) IgG immunofluorescence demonstrating staining of tubular epithelial cell nuclei (‘tissue
ANA’), 200x. Created with BioRender.com.
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in GBM homeostasis through regulation of heparan sulfate (85).
EXT1 mutant alleles have been previously described in familial
kidney disease, with loss of function mutations leading to
proteinuria (86).

Both the EXT1 and EXT2 components of the heterodimer are
present within deposits in all cases and therefore staining for
either component can be performed to identify positive cases.
EXT1/EXT2-positive MN appears tightly associated with
autoimmunity, with 70% of patients having a positive ANA,
35% having a clinical diagnosis of SLE and 12% of patients
having mixed connective tissue disease at the time of biopsy (21).
The frequency of EXT1/EXT2 positivity in MLN is 17.0-38.4%
(33, 87, 88). From the largest cohort of 374 patients with MLN,
32.6% had EXT1/EXT2-positivity. Of these patients, 75% were
‘pure’ MLN cases (ISN/RPS class V) and 25% had a concurrent
proliferative lupus nephritis component in addition to MLN
(ISN/RPS class III/IV + V) (87). Confocal microscopy studies
have confirmed the presence of EXT1/EXT2 immune complexes
along the subepithelial surface of the GBM and have
demonstrated co-localization with IgG. While accumulation of
this protein occurs in the subepithelial space, no autoantibodies
were identified within serum under reducing or non-reducing
conditions, questioning whether this represented a true
autoantigen or may merely represent a biomarker of disease (21).

Although unclear at this time whether the EXT1/EXT2
complex is a putative autoantigen or a biomarker, the finding
has prognostic significance. Two independent investigations
indicated its value as a biomarker of favorable outcome with
less progression of kidney disease in patients with MLN, when
compared to EXT1/EXT2-negative MLN (87, 88). Remarkably,
these studies also included patients with a concurrent
proliferative component and showed a similar prognostic
significance to EXT1/EXT2 status.

Neural Cell Adhesion Molecule 1
NCAM1 is an immunoglobulin superfamily cell surface
glycoprotein that is expressed within the central nervous
system, immune system, and within podocytes (89, 90). It is a
negative regulator of the expansion of T cells and dendritic cells
in the adaptive immune response (91). NCAM1 was identified to
be an autoantigen in membranous lupus nephritis through
tissue-based proteomic studies, utilizing both LCM and tissue
IP (32). NCAM1 co-localizes with IgG within glomerular
immune deposits and is present in 6.6% of all MLN biopsies
and 0.4-2.0% of primary MN cases (45). Of patients with MLN,
Frontiers in Immunology | www.frontiersin.org 9
25% had concurrent class III or class IV lupus nephritis (32).
Seroreactivity was identified by immunoblotting with NCAM1
recombinant protein exclusively under non-reducing conditions
and by indirect immunofluorescence (IFA) using a NCAM1-
overexpressing cell line.

Patients with NCAM1-associated MN were predominantly
female (70%), with a mean age of 34 ± 12.1 years. Interestingly,
40% of NCAM1-associated MN patients with SLE had an
increased frequency of neuropsychiatric manifestations at the
time of biopsy (8/20 patients), a rate 4-5 times higher than
reported in SLE overall (9% prevalence). There are limited data
to conclude whether NCAM1 may be a link between nephritis
and neuropsychiatric disease in patients with SLE, but the
question warrants further investigation to determine if such a
connection exists. Manifestations of SLE vary in time and it
could be helpful to determine if patients with NCAM1
autoantibodies are at future risk for neuropsychiatric disease
and therefore might benefit from closer monitoring.
TGFBR3

The type III transforming growth factor-beta receptor (TGFBR3)
was identified as a putative target in MLN by tissue-based
proteomics utilizing LCM and tissue IP (33). TGFBR3 is an
accessory receptor for TGF-b signaling and is involved in
negative regulation of T-cell dependent antibody responses
through reducing CD4+ T-cell specification to the Th1 lineage
(92). TGFBR3 is expressed within podocytes.

TGFBR3 is positive within 5.5% of MLN biopsies and is not
identified in primary MN cases (33). Patients with TGFBR3-
associated MN had a mean age of 39.6 ± 16.1 years and were
predominantly female. Nearly all patients had a history of
autoimmune disease with 82% having a diagnosis of systemic
lupus erythematosus (SLE) at the time of MN biopsy (33). A
concurrent proliferative (class III or IV) component was
identified in 29.4% of cases. Several different methods were
tried but failed to show seroreactivity against TGFBR3,
including immunoblotting patient sera against the recombinant
protein, use of a TGFBR3-overexpressing cell line in a cell-based
indirect immunofluorescence assay, and immunoprecipitation
with human glomerular extract. As circulating antibodies have
not yet been identified, we cannot determine whether TGFBR3
represents an autoantigen or a biomarker for MLN, similar to the
situation with EXT1/EXT2 (21, 33).
TABLE 2 | Typical histopathologic features associated with each subtype of membranous nephropathy.

Antigen Global or segmental Proliferative changes Predominant IgG subclass IgA IgM C3 C1q Mesangial Subendothelial TBM deposits

PLA2R Global No IgG4 10% 15% 91% 2% 10% 1% Absent
THSD7A Global No IgG4 40% 10% 80% 10% 40% 10% Absent
NELL1 Segmental or Global No IgG1 8% 10% 78% 0% 24% 0% Rare
HTRA1 Segmental or Global No IgG4 0% 0% 100% 7% 14% 0% Absent
PCDH7 Global No IgG4/IgG1 7% 0% 43% 29% 0% 0% Absent
SEMA3B Global No IgG1 9% 18% 91% 45% 0% 0% Present
EXT1/2 Segmental or Global Yes (27%) IgG1>IgG2>IgG3>IgG4 49% 46% 94% 48% 99% 20% Present
NCAM1 Segmental or Global Yes (25%) IgG1>IgG2>IgG3-IgG4 65% 68% 85% 55% 95% 55% Present
TGFBR3 Segmental or Global Yes (29%) All IgG subclasses 71% 88% 88% 59% 94% 35% Present
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Moreover, it conceivable that, despite the paradigm that
immune complexes in lupus form extra-renally in the
circulation, the pathogenesis of pure lupus nephritis may be
more similar to that of primary MN with antibodies targeting
intrinsic, induced, or planted podocyte antigens to form immune
complexes in situ, an argument that is supported by the lack of
mesangial or subendothelial deposits in some cases of MLN.
ADDITIONAL AUTOIMMUNE DISEASES
ASSOCIATED WITH MN

In addition to SLE, other autoimmune diseases have been
associated with MN, including sarcoidosis (38, 93, 94), urticarial
vasculitis (38, 95), ANCA-associated glomerulonephritis (38, 96),
rheumatoid arthritis (38, 97), Sjogren syndrome (38, 98, 99),
systemic sclerosis (38, 100, 101), thyroiditis (38, 102, 103),
chronic inflammatory demyelinating polyneuropathy (CIDP)
(104–106), autoimmune myositis (99, 106), and ankylosing
spondylitis (38). Therefore, patients with a positive ANA,
systemic manifestations, and MN should undergo a thorough
workup to exclude autoimmune disease.

Myeloperoxidase (MPO) is a target autoantigen associated
with MN in the setting of ANCA-associated disease. A
concurrent crescentic glomerulonephritis is frequent, but MN
can occur in its absence. These cases are PLA2R-negative and
MPO has been demonstrated in the epimembranous immune
deposits in glomeruli (96, 107, 108).

Membranous-like glomerulopathy with masked IgG kappa
deposits (MGMID) is an autoimmune disease that can exhibit a
membranous pattern on kidney biopsy and affects young women,
often with positive antinuclear antibodies (109). In most cases, IgG
deposits along the glomerular capillary loops are ‘masked’meaning
that they are not identified by routine immunofluorescence but are
seen by paraffin immunofluorescence after pronase digestion of
FFPE tissue. Evaluation by immunofluorescence after pronase
digestion is triggered when there are subepithelial electron-dense
deposits by electron microscopy, but no IgG staining on routine
immunofluorescence microscopy (109, 110). This glomerular
disease looks like membranous nephropathy on a kidney biopsy,
but is a separate disease entity, of which can be identified by
staining for the biomarker serum amyloid P (SAP) (29). It should
be considered in the differential diagnosis when MN has kappa
restriction (more specifically, IgG1-kappa restriction). Although
light chain restricted, it is not thought to be a paraprotein-
mediated disease and instead the antigen SAP interacts with
IgG1-kappa (111). Conversely, other forms of MN that are light
chain restricted should be investigated for an underlying
lymphoproliferative disorder, particularly if PLA2R negative (in
75% of cases) (112).

CNTN1 was recently identified as a target antigen in MN with
chronic inflammatory demyelinating polyneuropathy (CIDP)
and autoimmune myositis (105). It is a cell adhesion molecule
near the node of Ranvier of neurons. Anti-CNTN1
autoantibodies can be monitored by ELISA-based testing (104).
Patients with autoimmune neuropathy that is CNTN1-
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associated have an increased prevalence of nephrotic
syndrome, which is often found to be due to MN. Antibodies
were IgG4-subclass predominant (106). LCMD of glomeruli was
performed and confirmed the presence of CNTN1 in these
patients. Therefore, CNTN1 may represent a link between
autoimmune neuropathy and nephrotic syndrome. Very rare
cases of CNTN1-positive MN have also been identified in
patients without neurological symptoms (106).
MEMBRANOUS ANTIGENS ARE
PROTEINS SHARED BY THE
CENTRAL NERVOUS SYSTEM

Perhaps relevant to these links to neuropsychiatric disease or
autoimmune neuropathies, several MN autoantigens are proteins
expressed in both neurons and podocytes. There are similarities
in signaling between podocytes and neurons, both of which are
specialized cells with arborized processes supported by robust
cytoskeletal dynamics and an intercellular communication
utilizing similar proteins expressed at synapses and foot
processes, such as synaptopodin and dendrin (113, 114). Other
proteins with restricted expression within podocytes and
neurons include neurexin 1, NPHS1, SYNPO, and KHDRBS3,
among others (113, 114). Proteins required for axonal extension
and survival in neurons, polarity, and preservation of synaptic
connections are also expressed within podocytes and are crucial
to preserve the glomerular filtration barrier. This link has
recently culminated in identifying CNTN1 as the main antigen
involved in nephrotic syndrome in those with demyelinating
neuropathy (106). An additional potential target for CIDP-
related MN is neurofascin 155 (NF155) (104), a similar
paranodal protein. Other target antigens in MN expressed in
neurons include THSD7A (115), NCAM1 (116, 117), NELL1
(118), HTRA1 (119), PCDH7 (120), and SEMA3B (121).
SOURCES OF POTENTIAL
MEMBRANOUS AUTOANTIGENS

Antigens targeted in MN can be intrinsic podocyte proteins,
podocyte proteins that may be induced by certain stressors,
extrinsic non-podocyte proteins that become planted in a
subepithelial position, or those that precipitate from circulating
immune complexes. The concept that target antigens in MN are
often podocyte-expressed proteins is relatively recent. The
antigenic component of rat proximal tubular brush border is
megalin which, in a not-well-understood quirk of nature, is
universally expressed by the podocyte in the rat, but not so in
other species. PLA2R and THSD7A were identified as target
antigens in MN before they were found to be podocyte proteins.
Detailed scrutiny of the more-recently identified antigens may
reveal that they are expressed by podocytes in some cases,
including HTRA1, SEMA3B, NCAM1, and TGFBR3, but not
in others, including EXT1/2, NELL1, PCDH7, and CNTN1.
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However, our knowledge of what is or is not expressed by normal
human podocytes in the resting state is not comprehensive, and
new studies consistently reveal novel podocyte proteins. There
may also be age-related developmental changes in expression, or
induced expression by disease or environmental factors. Such an
induced expression may, for instance, explain the segmental
pattern of NELL1-associated MN, since NELL1 does not seem
to be normally expressed by the podocyte. In challenging the
prevailing paradigm in understanding MN, the presence of
antigens not inherently expressed in glomeruli, such as EXT1/2,
NELL1, and PCDH7, may suggest more than one pathogenic
pathway can lead to similar pathologic manifestations.
MEDICATIONS INDUCING
MEMBRANOUS NEPHROPATHY

Multiple medications are described to cause MN, comprising 6.6-
14% of total MN in prior studies (122–124). Drug-induced MN
was reported with therapy with gold salts, penicillamine,
bucillamine, captopril, non-steroidal anti-inflammatory drugs
(NSAIDs), selective COX-2 inhibitors, tiopronin, trimethadione,
and lipoic acid (74, 123). NSAIDs are currently the leading
offender and this form of MN is often reversible, remitting with
discontinuation of the offending drug (125). Some medications
associated with development of MN may act as weak reducing
agents and potentially modify protein folding. Alternatively, they
may serve as haptens.
INFECTIOUS TRIGGERS OF
MEMBRANOUS NEPHROPATHY

Some infections have been identified in association with MN and
in certain cases the microbial protein has been identified within
immune complexes. It is unclear whether microbial proteins are
true antigenic targets or are passively trapped within the
subepithelial space. Hepatitis B virus (HBV) infection can
induce MN with the hepatitis B e antigen (HBeAg) identified
within subepithelial deposits. Proteinuria persists with HBV
antigenemia and one-third develop progressive disease, despite
treatment (126, 127). In a recent study, the prognosis of HBV-
associated MN was similar to that of PLA2R-positive MN (128).
The incidence of HBV-associated MN may be even higher in
children, as children with nephrotic syndrome in endemic
regions commonly have HBV-associated MN (129). HBV-
associated MN has been described in the setting of PLA2R and
THSD7A positivity as well, which could be coincidental or
instead represent a viral trigger for autoimmunity (130).

Hepatitis C virus (HCV) infection has also been reported as a
secondary cause of MN which can remit with antiviral therapy
(131, 132). Membranous nephropathy can also be associated
with human immunodeficiency virus (HIV) infection; in one
study, 9% of HIV-infected patients with proteinuria had MN
(133, 134). Syphilis, which can be co-morbid with HCV or HIV
infection, is also associated with MN. Treponemal antigens have
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been identified within glomerular immune complexes (135) with
resolution of nephrotic syndrome following treatment of the
syphilis (136). Schistosomiasis can also trigger MN in endemic
regions (137, 138). Elution of immune complexes from kidneys
of patients with schistosomiasis identified reactivity against
Schistosoma mansoni by indirect immunofluorescence (139).
Recently in the COVID-19 pandemic, cases of MN have been
reported in patients with SARS-CoV-2 infection, or post-SARS-
CoV2 vaccination (140–146). There is an increased frequency of
PLA2R-negative MN than expected for primary MN, however it
is unclear whether this is due to molecular mimicry with a viral
component, such as the spike protein. It is possible that PLA2R-
positive MNmay be more likely to be empirically treated without
a biopsy in those with positive serology, particularly during the
COVID-19 pandemic where elective procedures which include
kidney biopsies have been halted during disease surges.

It is intriguing that only a few infections trigger MN. This
could be due to molecular mimicry with a limited subset of
microbial proteins found in these associated infections that
might induce autoreactivity to host proteins. A peptide
contained within the dominant epitope in the N-terminal
cysteine-rich domain of PLA2R also exists in D-alanyl-D
alanine carboxypeptidase, a cell wall enzyme in several
bacterial strains (147). No clinical evidence has yet been
produced to support this potential connection. Molecular
mimicry may also play a role in the case of HTRA1-associated
MN, in which bacterial form of the HTRA protein found in the
cell wall of Orientia tsutsugamushi is known to be antigenic and
has been used in a vaccine developed against scrub typhus,
demonstrating immunogenicity (148).

Toll-like receptor responses may also be involved through
interacting with microbial nucleic acids. Interferon regulatory
factor 4 (IRF4), a negative regulator of TLR signaling, was
identified in a large genome wide association study for MN as
a highly significant risk locus (149). IRF4 binds MyD88 (a
common signal transduction protein critical to TLR signaling)
and competes with IRF5. In murine lupus models, induction of
ligands to active TLR3, TLR7, and TLR9 (which interact with
dsRNA, ssRNA, and CpG DNA respectively) increase severity of
nephritis (150).
MALIGNANCY-ASSOCIATED
MEMBRANOUS NEPHROPATHY

Another secondary etiology of MN is hematologic or solid organ
malignancy, comprising approximately 10% of MN cases. MN is
the leading cause of nephrotic syndrome in patients with
malignancy and patients with MN have a three-fold increase in
the incidence of cancer compared to the general population (151,
152). Therefore, cancer screening is an initial step after MN
diagnosis (153). Concurrent MN and malignancy confer a poor
clinical outcome with a reduced rate of remission and a four-fold
increased risk of thromboembolic disease (153). When MN is
malignancy-associated, proteinuria can respond dramatically to
resection, chemoradiation, or other treatments. Likewise,
proteinuria may worsen with recurrence or metastasis.
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Because both MN and malignancies tend to occur in older
individuals, it can often be difficult to determine if the cancer is
causal or coincidental (39). To classify the MN as malignancy-
associated, three key factors may be present, although all may not
necessarily be known at the time of diagnosis. The patient’s
diagnosis of MN and cancer should be temporally associated,
proteinuria should resolve with cancer remission, and/or relapse
of the malignancy causes recurrence of the MN. Multiple tumor
types were identified in temporal association with membranous
nephropathy, including carcinomas (58), soft tissue tumors
(154), melanoma (155), thymoma (154), and lymphoma (68,
156, 157). Histopathologic clues for malignancy-associated MN
include PLA2R-negativity, a segmental pattern on IgG staining,
endocapillary hypercellularity (154), and IgG1 and IgG2-
predominant immune deposits (as most cases of primary MN
have IgG4-predominant immune deposits) (158). NELL1 is the
autoantigen in approximately one-third of malignancy-
associated MN cases while THSD7A is found in approximately
10% (68). Both NELL1 and THSD7A have been shown to exhibit
increased protein expression in certain human cancers (59,
64, 159).

The mechanisms underlying malignancy-associated MN are
largely unknown. It is possible that dysregulated expression of
immunogenic proteins by the tumor incites autoimmunity with
subsequent deposition of immune complexes within the
subepithelial space. Genetic mutations within the tumor may
alter the amino acid sequence to create neo-epitopes that are
immunogenic. Alternatively, there could be molecular mimicry
of a tumor antigen that shows sequence similarity to a podocyte
protein (39).

Increased expression within the tumor due to copy number
increases, as has been seen with THSD7A due to polysomy of
chromosome 7 (58), may also occur for other autoantigens.
Many cancers carry a high mutational burden (160),
particularly those with mismatch repair defects, of which could
create neo-epitopes that may elicit an autoimmune response.
Increased RNA transcript stability, protein stability, or epigenetic
modifications are other possibilities. Some tumors have a high
frequency of over-expression of a target protein, as seen in both
THSD7A and NELL1, yet a majority of patients with malignancy
do not develop kidney disease. It is possible that a second hit may
be required, which warrants further investigation.
ANTIGEN-BASED CLASSIFICATION OF
MN – ABANDONING PRIMARY
VERSUS SECONDARY

The categorization of MN as either primary or secondary was
based on the absence or presence of a detectable underlying
cause, such as systemic autoimmune disease, cancer, or infection,
as discussed above. Subsequently, after the identification of
PLA2R as target antigen in the majority of primary MN,
PLA2R-negative cases elicited an extensive workup to identify
a possible secondary etiology (37). Recently identified
autoantigens have been detected, commonly or more rarely, in
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settings that would more typically be associated with a potential
secondary etiology of the MN, calling into question whether MN
associated with a known antigen is necessarily primary. Due to
the inability to assign a particular target antigen as exclusively
representative of primary or secondary disease, the field has been
moving toward a more antigen-based classification system (45).

An overview of demographic, clinical, and histopathologic
characteristics for the MN subtypes associated with each of these
various antigens in MN is provided in Tables 1, 2. Given the
large number of autoantigens identified to date and extrapolating
from clinical experiences with PLA2R and THSD7A, such an
antigen-based classification system could result in development
of precision diagnostics for monitoring disease and has been
advocated by others (45, 161). The large number of MN antigens
thus far identified has also made it impractical to perform
antigen subtyping by immunostaining of the kidney biopsy for
each one. Instead, a mass spectrometric approach might instead
be considered in cases of PLA2R-negative MN, similar to what is
done for the typing of amyloidosis cases that are found to be
non-AL amyloid-associated (161).

However, as such an MS-based strategy for the typing of MN
is currently impractical for routine clinical practice, we propose a
staining algorithm for antigen subtyping based on clinical and
pathologic features (Figure 4). As PLA2R-positive MN
comprises the majority of MN cases, PLA2R staining should be
performed first as a high-yield diagnostic assay. For PLA2R-
negative cases, clinical considerations should be utilized to
inform further staining. For patients with known autoimmune
disease, or those with positive antinuclear autoantibodies that
lack a diagnosis of a particular rheumatologic condition, EXT1/2,
NCAM1, and TGFBR3 staining can identify approximately 40%
of cases, although our current knowledge gap of the remaining
antigens still leaves the majority of SLE patients untypeable. Age
can be a useful factor, as elderly individuals may have an
increased frequency of HTRA1- or PCDH7-associated MN
(23) and young children have an enrichment in SEMA3B
positivity (30). Histopathologic variables can be informative,
including low complement staining enriching cases of PCDH7-
associated MN, segmental or incomplete capillary loop staining
in NELL1-positive cases or patients with concurrent ANCA-
associated glomerulonephritis (71).
HOW DO ANTIBODIES
CAUSE PROTEINURIA?

Subepithelial immune complex formation is the hallmark of MN.
Complement pathway activation has been considered as the
paradigmatic mechanism leading to podocyte injury and
failure of the glomerular filtration barrier, resulting in the
nephrotic syndrome. However, other mechanisms inducing
podocyte injury have been postulated and the primacy of
complement as a pathomechanism in MN has been challenged.
In the passive Heymann nephritis model, proteinuria depends on
activation of the complement system with subsequent formation
of the membrane attack complex (C5b-9) (162, 163). Other
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studies, however, provide evidence that proteinuria can develop
in the absence of certain complement components (164, 165).
For example, in a mouse model of MN with passive transfer of
human anti-THSD7A antibodies, proteinuria developed without
C3 or C5b-9 deposits.

It is possible that any antigen-antibody complex at the
appropriate location can activate complement and thereby
induce MN. The immune deposits in human MN contain
substantial amounts of complement, including C3 and C5
cleavage products and the terminal C5b-9 complex, yet the
predominant IgG subclass in primary MN is IgG4, which is
incapable of activating complement via the classical pathway
(166). In addition, mass spectrometry of LCM-dissected
glomeruli revealed increased protein expression of complement
components C3, C4, C5, C6, C7, C8, and C9, as well as regulators
of complement pathway activation (76). The absence of C1q in
subepithelial deposits suggested that either the alternative
pathway or mannose binding lectin (MBL) pathway are
involved in disease pathogenesis. The presence of C4 in the
absence of C1q suggests a role for MBL pathway activation.
However, reported cases of MN in patients deficient in MBL
(167) and ficolin 3 (168) suggest involvement of alternative
complement pathway. Recent studies using the IgG4 subclass
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of anti-PLA2R have provided in vitro evidence of direct cytotoxic
effects on podocytes via the MBL pathway of complement
activation (169).

Additionally, antibodies may induce proteinuria by functional
interference with proteins critically involved with maintaining the
glomerular filtration barrier or podocyte health. Such a
mechanism was suggested by the impairment of cellular
adhesion to type IV collagen, a key matrix molecule in the
GBM, by PLA2R autoantibodies (170), although other studies
did not confirm this (171). Further evidence gleaned from amouse
model of MN suggested that THSD7A autoantibodies may
directly lead to cytoskeletal structural alterations that result in
proteinuria (172) possibly related to the fact that THSD7A
localizes directly beneath the slit diaphragm (173). HTRA1 is
involved in extracellular matrix (ECM) homeostasis (90), but
whether anti-HTRA1 antibodies interfere with podocyte-ECM
cross-talk has yet to be determined.

A prerequisite for circulating antibodies to interact with a
target podocyte antigen is the presence of one or more exposed
humoral epitope in an extracellular location, either within the
extracellular region of transmembrane protein or on a secreted
protein that associates with the podocyte basal surface or the
GBM.While many epitopes likely exist in accessible sites dictated
FIGURE 4 | Proposed staining algorithm for phenotyping of membranous nephropathy cases. For ‘all comers’ of MN cases without a known history of systemic
lupus erythematosus, we suggest staining for PLA2R, as it will identify the majority of cases (approximately 70%). For biopsies that are PLA2R negative, the clinical
history, demographics, and pattern of immune reactants on biopsy could guide which antigens to evaluate. For patients with an autoimmune history (positive ANA or
history of autoimmune disease), staining for EXT1/2, TGFBR3, NCAM1, and CNTN1 can together identify approximately 40% of MN cases secondary to autoimmune
disease or membranous lupus nephritis. Children with MN are most commonly PLA2R-positive as adults, although SEMA3B staining will pick up approximately 10%
of pediatric MN cases. In neonates, anti-neutral endopeptidase and cationic BSA are additional considerations. NELL1 and THSD7A may be enriched in patients
with malignancy. The IgG pattern on biopsy is useful to choose additional antigens for staining, as THSD7A, PCDH7, and HTRA1 typically have a diffuse and global
granular capillary loop pattern and NELL1 MN often shows segmental IgG staining. IgG4-related kidney disease, ANCA-associated glomerulonephritis (p-ANCA/MPO
antibodies), and LRP2-associated nephropathy also often show a segmental IgG pattern along capillary loops. When MN is restricted to one light chain, cases with
IgG kappa can be evaluated for SAP to identify membranous-like glomerulopathy with masked IgG kappa deposits (MGMID)*. If lambda light chain restricted or
negative for SAP, IgG subclasses are helpful to identify if the MN is restricted to one subtype, for which a hematologic workup can be indicated to evaluate for an
underlying lymphoproliferative disorder as a driver of disease. In patients with de novo MN following transplantation, infections, medications, graft-versus host
disease, or immunodeficiency, it is common to not identify a known autoantigen at this time. *In the setting of subepithelial electron-dense deposits by electron
microscopy, but no IgG staining by routine immunofluorescence microscopy, pronase digestion of FFPE tissue can ‘unmask’ immune deposits in MGMID and is
required in the majority of cases. Created with BioRender.com.
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by the native conformation of the protein, others may be cryptic
and require additional exposures or modifications, as has been
suggested for SEMA3B. Both THSD7A and PLA2R proteins are
transmembrane proteins with extracellular domains that are
exposed and accessible to the humoral immune system.
HTRA1 is a matrix modifying enzyme that is secreted in
conjunction with extracellular matrix molecules that serve a
substrate for its protease activity and thus can localize to the
GBM and be targeted by autoantibodies in this environment
(174–177).

Certain intracellular proteins, such as superoxide dismutase,
can be induced by oxidative stress by podocytes or other nearby
cells such as glomerular endothelial cells and may be accessible as
target antigens at the cell surface, subepithelial space, or
associated with the GBM (41, 178, 179). Prunotto et al. showed
the presence of IgG4-dominant antibodies against endothelial
proteins superoxide dismutase 2 (SOD2), aldose reductase, and
enolase in MN (179). The recent discovery of non-podocyte
proteins as MN antigens, including PCDH7, NELL1, and EXT1/
2, further established that non-podocyte proteins can indeed be
MN antigens. Moreover, the identification of microbial proteins
and tumor proteins within immune complexes supports the
concept that non-native podocyte proteins can be targeted
antigens. The pathophysiologic mechanisms through which
antibodies targeting antigens not expressed in podocytes
remain to be fully elucidated. One may argue that antigens
that become planted in a subepithelial position by virtue of
charge or other characteristics are also considered in situ
immune complex formation and does not necessarily indicate
that the antigen is an intrinsic podocyte protein.

Understanding how these non-native proteins become
planted can help us understand disease pathogenesis.
Treatment of podocytes, which have low baseline expression of
these intracellular proteins, with hydrogen peroxide to induce
oxidative stress resulted in SOD2 expression along the outer
plasma membranes of podocytes (179). This suggests that some
proteins may be induced as neoantigens under oxidative stress. It
was postulated the antigenicity starts at the podocyte level with
neo-epitope exposure triggering autoimmunity, with subsequent
in situ immune complex formation and nephrotic syndrome
(179–182).

Some environmental factors may also be involved in triggering
autoimmune responses that may occur outside of the kidney. MN
is more common in areas with high levels of microparticulate
(PM2.5) air pollution, potentially implicating this environmental
exposure as a risk factor for disease initiation (183). This has shed
light on a potential extrarenal site of antigenicity, as PLA2R is
known to be expressed within alveolar macrophages of the lung
and may be more highly expressed in the setting of airway
inflammation (184). It is possible that such induced protein
overexpression overwhelms the cell’s capacity to properly
translate and fold these highly-disulfide bonded proteins,
resulting in misfolding, perturbed protein trafficking, or
endoplasmic reticulum stress that could ultimately trigger an
immune response in genetically susceptible individuals. Extrinsic
protein overexpression as a trigger for antigenicity is also
Frontiers in Immunology | www.frontiersin.org 14
suggested by malignancy-associated THSD7A-positive MN in
which THSD7A is abnormally expressed in tumor tissue due to
polysomy of chromosome 7, providing a potential source of
antigen that can overwhelm host tolerance mechanisms (59).
GENETIC FACTORS PREDISPOSING
TO MEMBRANOUS NEPHROPATHY

Genetic predilection has also been implicated inMN pathogenesis.
Genome-wide association studies (GWAS) and whole exome
sequencing (WES) have revealed highly significant risk alleles
predisposing to MN. A single-nucleotide polymorphism (SNP) at
the HLA-DQA1 locus has been associated with higher risk of
developing PLA2R-associated MN (185), more so if concurrent
with a SNP in PLA2R1 (185). Most SNPs in PLA2R1 that associate
with disease risk are common in the normal population (186, 187),
so it is unclear whether there is multi-hit hypothesis leading to
development ofMN in only those with particular HLA haplotypes,
other genetic aberrations, or exposure to environmental factors. It
is possible that the PLA2R1 SNP drives abnormal expression of
PLA2R, while the HLA SNP more easily allows presentation of
PLA2R-derived peptides in the binding grooves of major
histocompatibility complex class II molecules. The most
significant SNPs in PLA2R1 are intronic and thus are not
expected to change protein structure (50, 188, 189), but rather
may alter protein expression level with consequent misfolding and
disturbed trafficking leading to antibody formation. The presence
of different transcript isoforms or altered expression levels
corresponding to the specific antigen remains to be investigated.
EPITOPE SPREADING

Epitope spreading is an immunologic phenomenon whereby an
initial antibody response to a given antigen may extend from one
particular location (epitope) on the antigen to involve other
region(s) of the same antigen (intramolecular spreading) or
nearby or related antigens (intermolecular spreading) (6).
Epitope spreading is a common phenomenon in autoimmune
disease (190–193). Initial experimental evidence that epitope
spreading occurs in MN and affects its severity was
demonstrated in Heymann nephritis using only N-terminal
domains of megalin to trigger subsequent humoral responses to
more distal portions of the molecule (7). Epitope spreading was
subsequently described in humans with PLA2R-associated MN. In
PLA2R-associated MN, patients first appear to develop
autoreactivity against an epitope within the cysteine-rich domain
(CysR). Epitope spreading to include the CTLD1 and CTLD7
domains (in addition to the CysR) is associated with poor
prognosis (55). Some studies suggested that in patients with
PLA2R-positive MN, epitope spreading during follow-up
associated with disease progression, whereas reverse spreading
back to only a CysR profile associated with favorable outcomes
(174, 194). However, this finding has been debated by other
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studies, which suggest that the correlation with epitope spreading
and worse prognosis is more related to overall PLA2R antibody
titers (195–197) and it remains unclear whether this truly reflected
spreading or concurrently target epitopes from disease initiation.

A better understanding of the evolution and repertoire
involved in epitope spreading to any MN target antigen may
help to guide prognosis, to understand the initial triggering
events in disease pathogenesis, and to allow development of
antigen-targeted therapies. While epitope spreading is important
in the initiation and progression of MN and other autoimmune
diseases (198–201) and carries potential prognostic value, it is
not yet utilized in routine clinical practice.

Intramolecular epitope spreading, as described above, may be
more common than intermolecular epitope spreading. Rare
reports of dual positivity for antigenic targets has been observed
with concurrent PLA2R and THSD7A-positive cases (202),
PLA2R and EXT1/2 co-positivity (203), THSD7A and EXT1/2
co-positivity (203), and dual NCAM1 and EXT1/2 staining (32).
However, no study has shown that one autoimmune reaction
predated the other, so the existence of intermolecular epitope
spreading (i.e., antibody-mediated cytotoxicity due to one antigen
resulting in exposure of the second protein to the immune system)
is only speculative. The incidence of PLA2R and THSD7A dual
positivity is approximately 1%, shown in a study where 2/258 cases
of primary MN shown dual positivity by immunostaining and
serologic testing (202). Insufficient data exists to determine
whether dual positive cases are associated with a worse prognosis.

In contrast to these infrequently-encountered dual responses,
most antigen-based MN subtypes are mutually exclusive. It is
unclear why, in the majority of cases, there is an autoimmune
response to only a single antigen. One possibility is related to an
individual’s class II HLA repertoire and the decreased likelihood
of possessing two or more HLA risk alleles that could support
initiation and propagation of an autoimmune response to both
antigens. If intermolecular epitope spreading were related only to
cell damage, we would expect more cases of dual reactivity due to
the universal expression of PLA2R and THSD7A by the
human podocyte.
SEROLOGIC MONITORING OF DISEASE

One of the most evident benefits of knowing the antigenic target
of a humoral immune response is the ability to detect and
measure circulating autoantibodies. Serologic testing (or
“immune surveillance”) offers the ability to monitor
immunologic disease activity and response to therapy in a
non-invasive manner. As demonstrated with anti-PLA2R,
autoantibody levels correlate with disease activity but with a
lag time, decreasing and often disappearing prior to a full
proteinuric response with treatment, or increasing after
remission to signal oncoming relapse of disease. As serologic
remission precedes clinical remission, it can be useful to adjust
immunosuppressive therapy accordingly and can inform
prognosis. Serologic diagnostic tests for PLA2R-associated MN
(51) and THSD7A antibodies (61) show a high sensitivity (70.6-
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78%) and specificity (91-94.6%) (52, 53), although are subject to
false negatives or false positives if used to screen all patients with
nephrotic syndrome.

As a proof of concept and extrapolating from the PLA2R
experience, a combination of IFA and ELISA-based testing
provided high specificity for disease. This has allowed
providers in some situations to avoid the need to perform a
kidney biopsy in patients who have with anti-PLA2R antibodies
and rather to monitor them according to anti-PLA2R titers (204,
205). This diagnostic strategy is now supported in the 2021
KDIGO Clinical Practice Guideline for the Management of
Glomerular Diseases in not mandating a kidney biopsy to
confirm PLA2R-associated MN in a seropositive patient (206).
This is supported by our experience in which we see a lower
frequency of PLA2R-positive kidney biopsies in our recent
cohort, compared to historical studies suggesting that clinicians
are already deciding not to biopsy patients diagnosed by the non-
invasive serological test (33).

The identification of new antigens in MN may also provide a
means for clinical monitoring when circulating antibodies are
detectable, yet there is a need for development of validated and
reproducible immunoassays directed towards these antigens for
use in the clinical setting. With such advances in serologic
testing, the diagnosis and monitoring of the recently identified
MN subtypes may be possible and more widely available.
However, some subtypes of MN, including EXT1/2- and
TGFBR3-associated disease, have yet to have autoantibodies
identified, creating a challenge for development of these assays.
Identifying autoantibodies directed against all distinct MN types
could alter treatment paradigms for MN by adding to the list of
treatment-specific biomarkers, identifying new therapeutic
targets, and providing tools to forecast impending MN flares.
This would allow for patients to be pre-emptively treated,
perhaps without the need for biopsy, shorten exposure to toxic
drugs by treating only to the point of immunologic remission
and limiting permanent kidney damage.
TREATMENT

Treatment of MN has so far focused on non-specific immuno-
suppressive therapy, similar to most other autoimmune diseases.
Treatment for six months alternating cyclophosphamide with
high-dose corticosteroids is still recommended for MN patients
that are at very high risk of progression. This ‘gold standard’ in the
treatment of MN of cyclic treatment with alkylating agents
(cyclophosphamide or chlorambucil) and methyprednisolone, is
described in the Ponticelli and ‘modified Ponticelli’ protocols
(207) and to date, is the most efficacious at inducing remission.
While effective, these cytotoxic drugs have multiple off-target side
effects. Rituximab, an anti-CD20 monoclonal antibody for B-cell
depletion, has been utilized to induce remission in place of the
Ponticelli regimen, with variable efficacy, assessed in various
studies comparing with other agents (208–211) and is now
recommended for moderate and high risk patients. Calcineurin
inhibitors are still a viable alternative to MN patients at moderate
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risk of progression, but are associated with an increased risk of
relapse (212) and dependence.

Corticosteroids, cytotoxic medications, B-cell depletion, and
calcineurin inhibitors lack specificity and are potently
immunosuppressive. Unraveling the complexity of this disease
might lead to more targeted therapy tailored to specific patient
needs. Moreover, therapies targeting specific antigens through
blockade with mimotopes or interference with synthesis can prove
to be beneficial. This may be accomplished through targeting a
certain antigen or targeting the epitope versus addressing a
stressed organelle such as endoplasmic reticulum, or disturbed
cytoskeleton, or other methods. Ideally, specific depletion of the
responsible clones may result in individualized medicine with
improved efficacy and reduced off-target toxicities.
DISCUSSION

Future Directions and
Unanswered Questions
One challenge to clinically identifying and characterizing MN is
the invasive nature of diagnosis by kidney biopsies. The current
practice of collecting a renal biopsy is invasive and expensive,
and it is impractical for physicians to closely monitor patients
using serial biopsies. Future studies will build upon serum and
tissue-based proteomic approaches to identify remaining specific
biomarkers, potentially enabling development of non-invasive
diagnostics and/or prognostic assays. Further characterization of
temporal changes in autoantibodies and reactive epitope profiles
throughout the different stages of MN is warranted.

Additionally, for some types of MN (EXT1/2 or TGFBR3), it
is not yet known whether autoantibodies exist or are these
proteins simply biomarkers of disease. The identification of
immune complexes eluted from frozen kidney biopsy
specimens by tissue IP suggests that a true antigen-antibody
interaction exists. Therefore, why are we unable to detect
autoantibodies in sera? Antibodies could have very low avidity
binding, may circulate in multi-molecular immune complexes
where epitopes are opsonized by complement and unavailable
for binding, or post-translational modifications in vivo are not
recapitulated in in vitro assays. There may be a mutation
resulting in altered protein structure inducing antigenicity,
which would not be re-capitulated through use of commercial
recombinant proteins. Further work and novel approaches may
yield autoantibody detection.

Further understanding of the etiopathogenesis of MN may
elucidate further treatment targets. Currently, there is a lack of
reliable preclinical models that recapitulate human pathology. To
address this issue, future studies will likely introduce mouse
models that might allow further investigation of the underlying
molecular events of pathological development in this disease.

Ideal therapy in MN should be more specific and tailored to
induce tolerance or deplete cells producing the pathogenic
antibodies. It is anticipated that future interventional trials will
employ two different approaches to target pathological
mechanisms in MN. For example, chimeric-antigen-receptor-
T-cell (CAR-T) technology will be leveraged to generate specific
Frontiers in Immunology | www.frontiersin.org 16
T cell clones that are able to recognize and destroy B cells
expressing antigenic receptors with epitope specificity for
target MN antigens (213, 214). Based on proteomic data
instigating complement in the pathogenesis of MN (76) and
with advances in the therapeutic use of complement inhibitors, it
is likely complement inhibition will play a role in the future
targeted therapy for MN (215). Peptide-based therapy could also
generate mimetics that are able to induce immunological
tolerance (216, 217). In this regard, in vitro studies of
tolerogenic peptides suggested several mechanisms of tolerance
induction, such as blocking of MHC class II presentation of the
pathogenic peptides by using excess amount of the peptide
mimetics or antagonism/partial agonism of TCR signaling and
subsequent inhibition of T cell activation (216, 218). This could
lead to dramatic improvements in the treatment of MN and
reduce drug toxicities.
CONCLUSION

In summary, multiple advances have been made in MN over little
more than a decade, with the discovery of PLA2R providing the
ability to monitor disease. Within only the past three years, a
plethora of autoantigens have been identified, reducing our
knowledge gap for the protein targets of MN. This could open
the door to precision classification through use of algorithmic and
multiplex immunostaining, or alternatively, a mass spectrometry-
based classification system. Knowledge of autoantigens also opens
the door to develop assays for non-invasive monitoring through a
serologic-based approach. Additionally, clinical associations of
specific antigens with secondary manifestations (malignancy,
lupus, and medications) can guide the clinician to evaluate for
underlying triggers of the disease. Our understanding of MN
pathogenesis is incomplete and further studies will be informative
to identify new potential treatment targets through precision
medicine. The journey of membranous nephropathy has already
reached a new avenue moving away from primary and secondary
MN to an antigen-based classification system, enabling diagnosis
and monitoring of all types of MN non-invasively, with novel
treatments developed from the discoveries.
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