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Abstract

Motivation: Dynamical models describing intracellular phenomena are increasing in size and

complexity as more information is obtained from experiments. These models are often over-

parameterized with respect to the quantitative data used for parameter estimation, resulting in un-

certainty in the individual parameter estimates as well as in the predictions made from the model.

Here we combine Bayesian analysis with global sensitivity analysis (GSA) in order to give better

informed predictions; to point out weaker parts of the model that are important targets for further

experiments, as well as to give guidance on parameters that are essential in distinguishing differ-

ent qualitative output behaviours.

Results: We used approximate Bayesian computation (ABC) to estimate the model parameters from

experimental data, as well as to quantify the uncertainty in this estimation (inverse uncertainty quan-

tification), resulting in a posterior distribution for the parameters. This parameter uncertainty was

next propagated to a corresponding uncertainty in the predictions (forward uncertainty propagation),

and a GSA was performed on the predictions using the posterior distribution as the possible values

for the parameters. This methodology was applied on a relatively large model relevant for synaptic

plasticity, using experimental data from several sources. We could hereby point out those parame-

ters that by themselves have the largest contribution to the uncertainty of the prediction as well as

identify parameters important to separate between qualitatively different predictions. This approach

is useful both for experimental design as well as model building.

Availability and implementation: Source code is freely available at https://github.com/alexjau/uqsa.

Contact: olivia@kth.se or alexandra.jauhiainen@astrazeneca.com

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Dynamical models describing intracellular phenomena, like the pro-

tein interactions of signalling pathways, are increasing in size and

complexity as more information from experiments is incorporated.

These models are built from qualitative knowledge about the inter-

action topology, inferred from experiments like e.g. gene knock-

outs, as well as from experimental quantitative data describing the

input-output relationship of the observed system (Le Novere, 2015).

The quantitative data are often sparse as compared to the size of the

system, and trying to estimate parameters based on this data often

results in large uncertainty in the parameter values, or that some

parameters cannot be constrained at all given the data and model

[i.e. are unidentifiable (Raue et al., 2009)]. Parameter estimation

from data (model calibration) rarely leads to precise point estimates

for the parameters. Rather, the calibration often gives possible

ranges for the parameters, and hence it is useful to provide distribu-

tions for the parameters, rather than to focus on single point esti-

mates, i.e. to quantify the uncertainty in the parameter estimates

(Vanlier et al., 2013). Of interest is also to investigate how the un-

certainty in the model parameters is transferred into uncertainty for

predictions from the model, and to study how this uncertainty in the

predictions can be mapped back and attributed to the different

model parameters.

In this paper we develop and combine established methods for

Bayesian inference and global sensitivity analysis (GSA) to show

that they, when applied together to a relatively large and complex

dynamical system involved in synaptic plasticity, give a comprehen-

sive evaluation of the system given an experimental context, and can

guide further experiments and modelling. Uncertainty analysis and

GSA have often been performed as separate methods in different

modelling studies, but here they are combined so that the GSA is

performed based on the posterior distribution of the parameters and

we consider system behaviors for which we have no data (i.e. predic-

tions). The sensitivity analysis thereby reveals which parts of the

model that are most unconstrained given a certain prediction. We

can also compare different hypotheses and draw conclusions about

parameters important for a certain model output.

1.1 Problem statement
We start from a mathematical model, experimental data and a prior

distribution of the parameters describing the prior knowledge (if

any), see Figure 1. The model is described by the nonlinear system:

_xðtÞ ¼ f ðxðtÞ;uðtÞ; pÞ

xðt0Þ ¼ x0

yðtÞ ¼ gðxðtÞ; sÞ

(1)

where xðtÞ corresponds to internal state variables (like protein con-

centrations in an intracellular model), uðtÞ to external input (e.g. an

external signal to the cell, or the total amount of a specific protein),

yðtÞ are the outputs, i.e. the observed variables (modelling counter-

parts to possible experimental readouts), p are system parameters

(e.g. kinetic rate constants) and s are parameters for the readouts,

like scaling factors. It can be noted that the parameters h ¼ ðp; sÞ to-

gether with the initial conditions xðt0Þ and the input uðtÞ fully spe-

cify the output from the system.

When experimental data are available corresponding to all or a

subset of the system outputs, we denote these data y exp
w , where the

index w indicates a specific experimental setup (for details see

Supplementary Section S1). The corresponding simulated data

points from the model (under the same setup) are denoted ysim
w .

Within this study we only consider steady state output, or output at

one specific time point, and therefore from here on we leave out in-

dication of time in the notation. If there are output variables for

which we do not have any corresponding experimental data, we de-

note them ypred
w .

The problem we would like to address is to describe the uncer-

tainty in the predicted output ypred given the model (1), the data

y exp , and the prior knowledge we have on the parameters (we drop

the index w for ease of notation). We would also like to map out

those parameters that contribute the most to the prediction uncer-

tainty, as well as those parameters which are important in order to

produce qualitatively different predictions (here corresponding to

different types of plasticity). To achieve this, we consider the param-

eters h to be stochastic variables (large letters will be used for sto-

chastic variables, e.g. H) and we use a three step workflow, as

illustrated in Figure 1. The workflow consists of (i) inverse uncer-

tainty quantification, (ii) forward uncertainty propagation and (iii)

GSA.

2 Background and existing methods

The purpose of inverse uncertainty quantification is to estimate un-

known parameters of a model from observed data, and at the same

time quantify the uncertainty in these parameter estimates. In a

Bayesian framework, this is most often done (see for example

Calderhead and Girolami, 2011; Kramer et al., 2010; Toni et al.,

2009) by characterizing the posterior distribution, fHjY exp ðhjy exp Þ, of

the parameters. Here Y exp and H are the stochastic variables corre-

sponding to the experimental data and the parameters, respectively,

but for ease of notation we will drop the subscript and refer to the

posterior as f ðhjy exp Þ. The posterior distribution describes the un-

certainty in a set of parameters of a specific model given observed

data. The posterior distribution can, by the use of Bayes law, be

deduced from the data likelihood f ðy exp jhÞ, which describes the like-

lihood of observing the data y exp from the model given that the

parameters h are used, and a prior distribution f ðhÞ, describing the

prior knowledge you have about the parameters. The posterior dis-

tribution corresponds to

f ðhjy exp Þ ¼ f ðy exp ; hÞ
f ðy exp Þ ¼

f ðy exp jhÞf ðhÞ
f ðy exp Þ (2)

Often the posterior distribution cannot be expressed analytically,

rather a sample from the distribution has to be retrieved in order

to characterize it. In most cases this is done by the use of Markov

chain Monte Carlo (MCMC) methods (Gelman et al., 2013).

Furthermore, the standard Bayesian framework is likelihood based,
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Fig. 1. An illustration showing the different parts of the workflow and how

GSA is applied on the prediction using the posterior distribution as a restric-

tion on possible model parameter values
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in the sense that we can deduce and compute the data likelihood

f ðy exp jhÞ. When this is not the case, it is possible to turn to

Approximate Bayesian Computation (ABC) (Marjoram et al., 2003;

Sunnåker et al., 2013; Toni et al., 2009) which relies on simulation

followed by a comparison of simulated and experimental data to as-

sess model fit. In ABC, samples from a prior distribution (or a pro-

posal distribution) are accepted if the experimental data are

reproduced by simulations from the model within a certain margin,

so that a distance measure qðSðysimÞ; Sðy exp ÞÞ is smaller than some

predefined cut-off d (S is a summary statistic of the data). The

accepted parameter sets h will form the approximate posterior distri-

bution f ðhjqðSðy exp Þ; SðysimÞÞ � dÞ. ABC can be used either together

with MCMC or with simple rejection sampling.

The parameter space corresponding to the uncertainty in the

parameters is related to what is also referred to as the viable param-

eter space of a system (Zamora-Sillero et al., 2011), i.e. the subset of

the parameter space where a model contains a desirable behaviour.

Further approaches to explore the viable space have been described

in the literature. In e.g. Gomez-Cabrero et al. (2011) particle swarm

optimization is used to investigate the viable space.

The extent to which it is possible to deduce values of model

parameters via inverse quantification is connected to the identifiabil-

ity of the parameters. If the true values of the parameters can be

deduced from unlimited data, the model is called identifiable. In

Raue et al. (2009), identifiability is explored via the so called profile

likelihood, and in Vanlier et al. (2012b), the profile likelihood meth-

odology is integrated with a Bayesian approach to deal with non-

identifiability.

Forward uncertainty propagation and global sensitivity analysis

The uncertainty in the model parameters can be propagated to the

model predictions, and here be quantified by e.g. the variance of

the predictions at a specific time point or steady state. It is of inter-

est to see how this uncertainty in the predictions depends on the

uncertainty of specific parameters; i.e. to perform a GSA on the

predictions based on the posterior distribution. It is not necessarily

the case that an uncertain parameter will give uncertain predictions

(Gutenkunst et al., 2007). In general when performing GSA, the in-

put factors (e.g. model parameters) are assumed to be independent

and the GSA is then performed by sampling the factors independ-

ently from some marginal distributions (Saltelli et al., 2008).

Subsequently, the sensitivities are calculated by e.g. decomposing

the output variance based on subgroups of input factors (Saltelli,

2002; Sobol, 2001). Dependencies between parameters make GSA

more complex. Methods based on the decomposition of variances

can still be used, but the calculation of sensitivities are more expen-

sive and harder to interpret (Saltelli et al., 2004). Another ap-

proach is to use so called Monte Carlo filtering, in which the

output is subdivided into different classes and the respective par-

ameter distributions are compared (Saltelli et al., 2004). Other

methods, some based on information theory, have also been pre-

sented in different studies (Lüdtke et al., 2008; Vanlier et al.,

2012a). More methods for different forms of GSA are reviewed in

e.g. Zi (2011).

3 Approach

The approach presented here combines Approximate Bayesian

Computation for the inverse uncertainty quantification with decom-

position of variance and Monte Carlo filtering for the GSA (Fig. 1).

We have made some developments to the standard implementations

of these methods in order to be able to combine them as well as to

make the workflow more efficient, as discussed below.

Inverse uncertainty quantification through ABC and efficient

merging of data The first step of the workflow consists of charac-

terizing the posterior distribution of the parameters. In order to

avoid assumptions of a normal likelihood we use simulation with

ABC to sample from the posterior distribution, as non-normal out-

put distributions easily can arise in non-linear systems (Weiße et al.,

2010).

We use several experimental datasets that are combined in se-

quence, where the posterior distribution after fitting to one dataset

is used as the prior for the fitting to the next, by means of multivari-

ate distributions called copulas (see below and Fig. 2). A Markov

Chain Monte Carlo (MCMC) approach is used for the ABC

sampling (ABC-MCMC) on each dataset in the sequence. In each

ABC-MCMC iteration, we use an adaptive acceptance threshold (or

margin) to more efficiently find the viable space where the actual

sampling can begin. This is similar to the particle approach pro-

posed by Secrier et al. (2009) where the acceptance region is

decreased in consecutive runs, although we make this adaption with-

in a single MCMC run.

Copulas are multivariate probability distributions with uniform

marginal distributions, which describe the dependence structure be-

tween the stochastic variables. Graphical models called vines can be

used to formulate copulas that are constructed in pairs in order to

describe the dependencies over multiple variables (Bedford and

Cooke, 2002) (see also further details in the Supplementary

Material). We use R-vines to model the multivariate posterior distri-

butions produced by ABC-MCMC runs. After each step of the fit-

ting sequence described above, a copula is fitted to the posterior

sample from that step and is next used as prior for the subsequent

step. To our knowledge, copulas have not been employed in this

way in inverse quantification previously, although they have been

used in hybrid proposal distributions in MCMC (Schmidl et al.,

2013). The proposed approach to inverse uncertainty quantification

is illustrated in Figure 2 and described in pseudocode in

Supplementary Section S2.5. A validation of the approach is also

presented in Supplementary Section S2.6. The inverse quantification

methodology was implemented in R with the use of the VineCopula

package (Schepsmeier et al., 2018).

Based on the posterior distribution, we characterize to what ex-

tent different parameters are constrained by the data and model by

the entropy of the marginal distributions. The entropy was approxi-

mated from the normalized sample histograms and calculated by

H ¼ �
Pn

k¼1 pk ln ðpkÞDb, where pk is the marginal probability dens-

ity value in the k:th bin, Db is the bin width and n the number of

bins. The reduction in entropy observed when updating the param-

eter distributions from the prior to the posterior is used as a measure

of the uncertainty decrease of the specific parameters,

Hdiff ¼ Hprior �Hpost. The posterior distribution is further charac-

terized by different standard statistical tools like clustered correl-

ation plots and parallel coordinate plots.

Forward uncertainty propagation and global sensitivity analysis

The next step of the workflow is to translate the uncertainty in the

parameters to uncertainty in predictions by performing simulations

based on all parameter sets in the posterior distribution sample. The

uncertainty of the predictions Ypred is next quantified by the vari-

ance of each vector element VðYpredÞ.
Finally, we perform a GSA to investigate from where the uncer-

tainty in the prediction stems. This is done in two ways with two

different aims. First, we investigate which parameters on average

reduce the uncertainty in the prediction the most if they were
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known more precisely. Second, we look into which parameters are

most influential in separating different qualitative behaviours of the

model.

In order to address the first aim we decompose the variance of

the output based on the contribution from different input factors

of the model (model parameters in our case). The first order

sensitivity index (Saltelli et al., 2004) quantifies the impact that a

model parameter has on a specific output, and is defined by

Si ¼ VHi
ðEH�i

ðYpredjHiÞÞ=VðYpredÞ. Here H�i stands for all parame-

ters of the vector H, except Hi. The expression EH� iðYpredjHiÞ is thus

the expected value of Ypred over all parameters except Hi when Hi is

conditioned on a specific value Hi ¼ h�i , and VHi
ð. . .Þ is the variance

over all specific values h�i . Well established and efficient methods to

calculate Si for distributions of independent input factors (Saltelli,

2002; Sobol, 2001) are available. However, since we are performing

the GSA using the multivariate posterior distribution, f ðhjy exp Þ,
which displays dependencies between possible model parameter val-

ues due to the inner structure of the model, these methods cannot

readily be applied. Instead, we perform a calculation inspired by

[Saltelli et al. (2004), chapter 5.10], but with modifications in order

to utilize the already existing posterior sample produced from the

ABC method. This computation is based on binning the posterior

space and results in an approximation of the sensitivity index Si

(details can be found in the Supplementary Material).

If the model is not sufficiently constrained by the experimental

data, a large variance can be seen in the prediction and qualitatively

different output behaviours can be observed. It is then of interest to

identify the parameters with the largest impact in separating these

behaviors. This is known as Monte Carlo filtering (Saltelli et al.,

2004). In order to do this we first group the predictions into classes

with different qualitative behaviour, and also divide the posterior

distribution sample according to the same grouping. Model parame-

ters that have a large influence on the model behavior in question

display different sample distributions in the different groups. We

consider marginal as well as pairwise parameter distributions, and

sort them based on the Kolmogorov-Smirnov test and Kullback-

Leibler divergence, respectively. The GSA methodology was imple-

mented using MATLAB.

4 Application

We have applied our approach to a previously constructed intracel-

lular model that in a simplified way exemplifies a molecular mech-

anism important for the strengthening (long term potentiation, LTP)

or weakening (long term depression, LTD) of neuronal synapses

(Nair et al., 2014). The modification of synapses through the pro-

cess of LTP or LTD is a complicated process including a number of

kinases, phosphatases and scaffolding proteins (Woolfrey and

Dell’Acqua, 2015). This process is, however, often assumed to be

effectuated by the balance between a few important kinase and

phosphatase enzymes, and in the model used in this study (Nair

et al., 2014), this balance is due to the interaction between calcium

(Ca), calmodulin (CaM), which contains four Ca-binding domains,

protein phosphatase 2B (PP2B, also known as Calcineurin),

Ca/CaM-dependent protein kinase II (CaMKII) and protein phos-

phatase 1 (PP1), as illustrated in Figure 3.

4.1 Model
The model consists of 25 species (corresponding to proteins, protein

complexes, the activated form of a protein or Calcium) and 34 reac-

tions, where all reactions except two are elementary reversible reac-

tions based on the law of mass action. This means that the reactions

are of the type: Aþ B !C, where A, B and C are different species,

where the right going reaction has a kinetic constant denoted kf and

the reaction in the opposite direction has a kinetic constant denoted

kr. We also use the equilibrium constants Kd ¼ kr=kf . All species

and reactions are listed in Supplementary Tables S1 and S2, respect-

ively. There are also thermodynamic constraints which apply when

there is more than one reaction path between a pair of species.

These are expressed by the so called Wegscheider conditions

(Gorban and Yablonsky, 2011; Wegscheider, 1911; Yablonskii,

1991) and link some Kd parameters of the model to other Kd param-

eters (Supplementary Table S3). We therefore decompose the Kd-

parameters in the model into two sets; free Kd-parameters that are

modified throughout the analysis, and thermo-constrained Kd-

parameters whose values are set by the values of the free parameters

via these rules. More information about the model can be found in

Supplementary Section S1.
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Simulated Experimental

Prior in 
next step

NO YES

X

Similar?
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Sampling process Sampling process
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Fig. 2. Sequential approach for mapping out the viable space when multiple experimental datasets corresponding to different experimental setups are available.

In this case we have two experimental setups available (used in each of the dashed boxes and exemplified by different parts of the model being active as indi-

cated by filled circles), and exemplify the approach for two parameters. The model calibration is done in steps, so that we start with a uniform prior for the first

dataset, which produces a posterior distribution used as the prior in the next step by fitting and sampling from a multivariate copula model of the distribution.

The process shown within the dashed boxes (draw from prior, simulate data, compare to experimental data and keep/not keep parameter set) is repeated many

times using MCMC
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4.2 Experimental data for parameter estimation
The parameter estimation was based on quantitative data collected

from a number of publications (Bradshaw et al., 2003; O’Donnell

et al., 2011; Shifman et al., 2006; Stemmer and Klee, 1994) as

described in Nair et al. (2014). The data correspond to different ex-

perimental setups describing different, experimentally engineered,

phenotypes of the system. The phenotypes correspond to a subpart

of the system, i.e. only a subset of the species was used in that ex-

periment, e.g. only CaM and Calcium for phenotype 1 (see

Supplementary Table S2). Each phenotype is characterized by steady

state (or close to steady state) input-output curves, i.e. in each ex-

periment, a given input (like [Ca]) is varied in value in order to ob-

tain the curve for the output (e.g. Mol bound Ca per Mol CaM). In

the model, the experimental phenotypes are recreated by applying

different model inputs u. The different phenotypes, and the subparts

of the model that are active under the different settings, are

described in detail in Supplementary Section S1 and Supplementary

Table S2.

4.3 Prior distributions
We obtained default values for the free parameters from Nair et al.

(2014), with a few updates, and used them as the centers li for log-

uniform prior distributions. The range of the prior was set as li � 3

to li þ 3 in log-space. We did not sample the thermodynamically

constrained parameters, nevertheless, we can assign implicit prior

distributions to them via the thermodynamic constraint rules

(Supplementary Table S3). By sampling the free parameters and

propagating these through the rules, we can obtain prior samples for

the constrained parameters as is shown in Supplementary Figure S8.

4.4 Model reduction
The different phenotypes correspond to situations either very close

to steady state or with slow dynamics, and we have utilized this fact

in order to reduce the model. For some of the phenotypes (pheno-

types 1–4 in Supplementary Table S2) the output could be

approximated with steady state. Steady state reduction was hence

performed to the model in order to speed up calculations, resulting

in analytical steady state solutions for subparts of the model. The re-

duction was based on the principle of detailed balance (Yablonskii,

1991), which has the consequence that steady state only can occur

at an equilibrium and thereby all reaction fluxes are zero. Since the

reaction fluxes are of the form kf ½A�½B� � kr½C�, it follows that the

equilibrium concentrations of the species depend only on kr=kf

¼ Kd (using that the equilibrium equations can be rewritten as

log½A� þ log½B� � log½C� ¼ logðkr=kf Þ ¼ logðKdÞ. In this way, the

equilibrium equations were solved analytically, while making use of

the mass conservation laws of the system (i.e. that the total amount

of each elementary species remains the same during the experiment).

This enabled us to express the equilibrium concentrations as func-

tions of the Kd parameters and the total amounts of the species.

More information about the analytical solutions can be found in the

Supplementary Section S7.

For the remaining phenotypes (phenotypes 5–6 in

Supplementary Table S2) we utilized the fact that they have semi-

steady state dynamics, and that the output therefore mainly should

depend on the Kd parameters. The problem was thereby reduced to

first finding the posterior for the Kd parameters, based on constant

kf, and then expand this posterior to kf : s by simple rejection

sampling.

4.5 Results
Inverse uncertainty quantification and characterization of the viable

space Given the prior distributions, experimental data and model

structure, a sample from the posterior distribution was retrieved

through the sequential ABC-method that had a good fit to the ex-

perimental data (details on the distance measure and normalization

procedures used can be found in the Supplementary Material). The

sampling was performed on a parameter log-scale and the multivari-

ate posterior distribution was characterized by looking at single

parameters as well as pairs of parameters.

The marginal posterior distributions of all Kd parameters are

summarized in the parallel coordinate plot of Figure 4, where the

prior distribution and reduction in entropy also are indicated. The

forward kf and backward kr parameters are not included in the fig-

ure since these had, as expected since we use mainly steady state

data to fit the model, a posterior distribution very similar to the

prior (and a corresponding low reduction in entropy). The parame-

ters corresponding to reactions 33 and 34 of Figure 3 are also not

included since this part of the model is only used for the prediction

(see Supplementary Table S2). It can be noted that some parameters

are very constrained by the model and currently used data,

with the two most prominent examples being Kd*CaM*PP2B

and Kd*CaM_Ca4*PP2B, which both have a narrow distribution

and a large reduction in entropy. Other parameters instead

occupy the parameter space up to the edge of the prior, e.g.

Kd*CaMKII_CaM_Ca1*Ca and kautMax (see Section 5). This

could be a sign of the prior being too small to include the full viable

space or a sign of non-identifiability, which is (artificially) resolved

by imposing a prior.

Most parameters that have a narrow posterior distribution (like

Kd*CaM*PP2B) display a corresponding large reduction in entropy

and vice versa. Parameters can however have a wide posterior distri-

bution and at the same time have a large reduction in entropy, e.g.

kautMax which displays a prominent bimodality in the marginal

distributions (Fig. 4 and Supplementary Fig. S8). Bimodal distribu-

tions can contain a lot of information about the parameter, despite

Fig. 3. A graphical representation of the intracellular model used to illustrate

the proposed approach to model characterization. The numbers indicate the

corresponding reactions in Supplementary Table S2. The small black filled

circles correspond to Ca domains that have bound a Ca and the X in CaX cor-

respondingly denotes Ca,. . ., Ca4 (Ca0 is simply referred to as Ca in

Supplementary Table S2). Reactions colored in orange correspond to param-

eters that would be the best targets to identify in order to reduce prediction

uncertainty, and correspond to the parameters in the legend of Figure 6
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possibly having a wide spread. Histograms of the marginal posterior

distributions and their characteristics, such as model-based credibil-

ity intervals, are given in Supplementary Figure S8 and Tables S4

and S5.

We also examined possible couplings between parameters by a

clustered correlation plot (Fig. 5), where the parameters are clus-

tered into groups based on their correlation profile. Some parameter

pairs show large correlations, while most others appear to be uncor-

related or only weakly correlated. The pattern of correlations be-

tween the parameters of the model also have a tendency to follow

the model structure, so that parameters with a high value in the cor-

relation plot are close in the graph of Figure 3. It can also be noted

that the parameters with a bimodal distribution are clustered into

two groups as illustrated by blue frames in Figure 5. This is probably

an indication that if one parameter is bimodal this can result in

bimodality of the correlated parameters as well.

Forward uncertainty propagation We next analyzed how the un-

certainty in the parameters is propagated to uncertainty in the pre-

diction that we would like to make from the model. The prediction

used here to demonstrate the workflow corresponds to the relation-

ship between the active form of the kinase, CaMKIIact, and the ac-

tive form of the phosphatase, PP2Bact, and how this relationship

depends on the frequency of Ca transients given as input [for details

on input and output functions see Supplementary Section S1 and

Nair et al. (2014)]. For higher frequency the Ca summates into

increased amplitudes. The presence of a large amount of activated

CaMKII relative to activated PP2B is assumed to give long term po-

tentiation (LTP) with the reverse relationship instead resulting in

long term depression (LTD).

For all parameter sets of the posterior distribution we calculated

the corresponding CaMKIIact-PP2Bact relationship at different Ca

frequencies (Fig. 6). There is a large variation in the prediction given

a certain Ca frequency, showing that the model, with currently used

data, is not sufficiently constrained to give a precise prediction of

this behavior. In order to investigate the best way to reduce this un-

certainty and to learn more about the system we next performed a

GSA.

Global sensitivity analysis First we analyzed how the uncertainty

in the different parameters contributes to the uncertainty of the pre-

diction by decomposing the variance of the prediction based on the

different single parameters (see Approach). The single parameters

that, if known, on average would give the largest reduction in the

uncertainty of the prediction are shown in the legend of Figure 6

and are also indicated in Figure 3. Dissociation constants corre-

sponding to the binding of CaM to CaMKII (reactions 14, 15, 17

and 18 in Fig. 3 and Supplementary Table S2), as well as the

Fig. 4. Illustration of the marginal posterior distribution and reduction in en-

tropy for all parameters. The numbers indicated to the far right correspond to

the reduction in entropy (Hdiff ) when going from prior to posterior distribu-

tion, and the light grey numbers correspond to the pairwise correlations.

Each sample in the posterior distribution is connected across the parameters

by a thin grey line, the darkness of which reflects to the posterior probability

density at that sample point (the kernel density estimate). The prior of the

free parameters is indicated by green bars (showing the range of the log-uni-

form distribution), and the prior of the thermo-constrained parameters (calcu-

lated through the equations of Supplementary Table S3) is indicated by blue

bars (showing one standard deviation of the, lognormal-looking,

distributions)
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Fig. 5. Correlation plot of model parameters based on the samples from the

posterior distribution. The parameters are clustered based on their correl-

ation profile, i.e. the array of correlation coefficients (using absolute values)

for each parameter, via hierarchical clustering with an Euclidean distance

metric and average linkage. The blue lines frame the arrays with correlations

related to the bimodal parameters
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CaMKII-CaM complex binding the first two Ca (reactions 19 and

20) are important. Also the maximal autophosphorylation rate (re-

action 32), and CaM bound to PP2B binding the third and fourth

Ca (reaction 12 and 13) would give a large reduction in uncertainty.

It can be noted that several of these parameters are correlated within

the posterior distribution (Fig. 5). This means that knowledge about

one parameter would automatically decrease the uncertainty in the

other correlated parameters as well. One possible approach for fur-

ther investigation would therefore be to identify the most sensitive

parameter of each cluster of correlated parameters and try to experi-

mentally determine its value. The remaining parameters in each clus-

ter would then likely also show a large decrease in uncertainty.

The next part of the GSA was to analyze qualitatively different

types of output behaviors via Monte Carlo filtering. We show the

output corresponding to the prediction as well as the output for

phenotype 5 in Figures 7 and 8. Phenotype 5 corresponds to an ex-

perimental setting including CaM, CaMKII and Ca, with different

levels of constant [Ca] as input and the amount of bounded Ca as

output (Supplementary Table S2). It was included since it exhibits a

somewhat peculiar behavior. Both outputs were divided into two

different classes (Figs 7 and 8, top panels) depending on whether, in

the case of phenotype 5, the output was monotonic or not, and for

the prediction, whether or not the output agreed with a hypothe-

sized behaviour for synaptic plasticity. The sample from the poster-

ior distribution was also subdivided according to the same classes

and analyzed both at the individual parameter level and by investi-

gating all parameter pairs. (Figs 7 and 8, bottom panels). The

individual parameters as well as the parameter pairs were sorted

based on the distance between the distributions when comparing the

two classes. A Kolmogorov-Smirnov test was used for the marginal

distributions for the individual parameters, and the Kullback-Leibler

divergence (KLD) was employed for the joint distribution of param-

eter pairs.

For phenotype 5, an interesting example is the parameter

kautMax (Fig. 7, bottom left), corresponding to reaction 32. For

large values of this parameter only monotonic output curves

are observed, but for smaller values we have both types of curves.

When pairs of parameters are considered, the scatterplot
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PP2B at different Ca frequencies. Top panel: The different outputs (grey lines)

correspond to different sample points from the posterior distribution. A large

uncertainty in the prediction can be observed. Bottom panel: First order sensi-

tivity index (Si) for all parameters at different input (Ca frequency) values.
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corresponding to the pair with the largest KLD distance,

Kd*pCaMKII_CaM*Ca versus Kd*CaMKII_CaM_Ca3*Ca, shows

an interesting separation between classes (Fig. 7, bottom right).

Further histograms and two dimensional projections of top scoring

parameters and pairs are shown in Supplementary Figures S9 and

S11.

For the prediction, the hypothesized output behaviour for synap-

tic plasticity describes a specific relationship between Ca level and

kinase-phosphatase activity (denoted CaMKIIact-PP2Bact, in

Fig. 8). This relationship is as follows. At very low levels of Ca there

is a balanced kinase-phosphatase activity, for low levels there is a

negative balance (i.e. phosphatases dominate), and for larger levels

of Ca there is a positive balance (i.e. kinases dominate). The classifi-

cation criterion, which was based on whether this behavior is shown

or not, is formalized mathematically in Supplementary Section S3.3.

Similarly, for this output we observe differences between the two

classes with respect to the marginal parameter distributions (see

Supplementary Fig. S10 for histograms of top scoring parameters),

but for this output, the number of parameters with a clear separ-

ation between the two class distributions are much fewer than in the

earlier case with phenotype 5. The bottom left panel of Figure 8

shows the histogram of the parameter with the largest distance be-

tween the classes. For kf*PP2B_CaM_Ca3*Ca there is a larger prob-

ability of receiving the hypothesized behavior for higher values.

Looking at the top scoring KLD-pairs (Supplementary Fig. S13)

does not provide any extra information as compared to the histo-

grams. One of the highest scoring pair is shown in the bottom right

panel of Figure 8.

The goal of the GSA approach is first of all to give information

about parameters that are important to restrict, in order to reduce

the uncertainty in the prediction. Secondly, for parameters that we

know little about, to evaluate how they affect the output. Using this

approach, we will not obtain much information on possible bio-

logical mechanisms for parameters that are already well constrained.

Nevertheless, it is interesting to see why different parameters show

up in the sensitivity analysis, and we discuss possible mechanisms in

some detail in the Supplementary Section S5.

5 Discussion

We have here presented a workflow for analyzing the viable space

of biochemical models. We assume a certain model structure (i.e.

the set of reactions) and a particular dataset for constraining the

model. This workflow was tested on a previously constructed model

of CaMKII and PP2B activation. By combining Bayesian analysis

with GSA we can quantify the uncertainty in the model parameter

estimates and model predictions, as well as pinpoint where this un-

certainty stems from. This is useful both for experimental design as

well as model building.

Biochemical models are generally uncertain (Geris and Gomez-

Cabrero, 2016) with a large viable space. Performing an a-priori

GSA, e.g. based on a product space of posterior intervals, would

lead to model behavior far outside the bounds set by the data and

lead to errors. When GSA is performed based on the posterior distri-

bution it takes the correlations between parameters into account

and only investigates data fitting parameters.

Analyzing the viable space of complex models with many param-

eters is, however, computationally expensive. By the use of model

reduction as well as integrating datasets sequentially with copulas

we could reduce the computational cost to the point where an exten-

sive analysis could be performed. Using copulas in this setting means

that we make an approximation of the posterior space. We have

done a thorough study on how good this approximation is for

the smaller part of the LTD-LTP model corresponding to pheno-

types 1–3 (Supplementary Section S2.6). The approximation works

well for most instances, but seems somewhat less accurate for parts

of the posterior space with very low density, especially when a high

density mode is present. If the posterior distribution for a parameter

pair displays disjoint parts, it is likely advantageous to divide the

parameter space for the parameter pair into different regions and fit

a copula to the samples of each region separately.

A Bayesian approach together with GSA is of course more rigor-

ous than a manual parameter search, since it accounts for the vari-

ability in parameter space. It thereby provides more accurate and

extensive predictions. It also offers predictions on parameter regions

(e.g. levels of kinetic constants) which are correlated with desired

behaviours. An additional value is that the formulation of a prior

distribution makes the model assumptions more explicit, which is

more useful when sharing and comparing models than a single,

seemingly working parameterization.

There are other workflows of model analysis described in the lit-

erature which e.g. focus on fast optimization and statistical classifi-

cation and clustering techniques (Gomez-Cabrero et al., 2011),

while the procedures presented here focus on handling uncertainty

quantification and propagation in a consistent statistical setting for

all parts of the analysis. On the other hand, several similar, statistic-

ally embedded experiment design methods (e.g. Liepe et al., 2013;

Weber et al., 2012) focus on maximizing information in planned

experiments, whereas this analysis workflow assigns roles to model

constituents and measures of importance to parameters.

We have chosen large prior bounds in order to capture as much

of the models behaviours as possible and to avoid biases and assump-

tions. More narrow bounds are reported in literature (e.g. Pepke

et al., 2010; Stefan et al., 2008) and we could have used this informa-

tion to exclude parameter regions from the prior. It is not trivial,

however, to directly include results of other groups parameter estima-

tion efforts. The methodologies and model complexity often differ

enough to make the mapping of parameters from literature models

onto another model difficult and especially the notion of what a

range is differs from one methodology to another. However, as a test

case, we used some of the reported parameter ranges to filter our pos-

terior sample retrospectively, see Supplementary Section S6, and per-

formed a new sensitivity analysis. Filtering of parameters already

determined not to be sensitive did, as expected, not have much of an

effect in the retrospective analysis. When we instead restricted the

most sensitive parameter to the literature range and repeated

the sensitivity analysis within that range, there was a large change in

the sensitivity profile, even though a large uncertainty in the predic-

tion remained (see Supplementary Fig. S7).

Even though we used a large prior, some of the parameters had a

marginal posterior distribution that reached the edge of the prior,

with kautMax being the most prominent example. We tested a

wider prior for this parameter, which resulted in a slightly wider

posterior distribution beyond the original prior. The characteristics

of the posterior distribution for kautMax, with two modes, were

however similar under both priors.

We have so far only spoken about the viable space in terms of

model uncertainty due to missing data. Another reason that a viable

space is a better description than a single parameter vector is bio-

logical variability, because biological measurement techniques often

target cell populations rather than single cells. Biochemical pathway

models, on the other hand, often correspond to a generic individual

cell or cell compartment. With a Bayesian approach it is possible to
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capture (smoothly) varying biological properties, even though it can-

not distinguish between uncertainty due to missing data and bio-

logical variability.
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