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Kolaviron, a biflavonoid isolated from the edible seeds of Garcinia kola, lowers blood glucose in experi-
mental models of diabetes; however, the underlying mechanisms are not yet fully elucidated. The objec-
tive of the current study was to assess the effects of kolaviron on islet dynamics in streptozotocin-
induced diabetic rats. Using double immunolabeling of glucagon and insulin, we identified insulin-
producing b- and glucagon-producing a-cells in the islets of diabetic and control rats and determined
the fractional b-cell area, a-cell area and islet number. STZ challenged rats presented with islet hypopla-
sia and reduced b-cell area concomitant with an increase in a-cell area. Kolaviron restored some islet
architecture in diabetic rats through the increased b-cell area. Overall, kolaviron-treated diabetic rats pre-
sented a significant (p < 0.05) increase in the number of large and very large islets compared to diabetic
control but no difference in islet number and a-cell area. The b-cell replenishment potential of kolaviron
and its overall positive effects on glycemic control suggest that it may be a viable target for diabetes
treatment.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Diabetes, a disease characterized by hyperglycaemia, increases
the risk of developing micro-and macro-vascular complications
including atherosclerosis, cardiovascular disease, neuropathy,
nephropathy, and retinopathy (Forbes and Cooper, 2013). Blood
glucose homeostasis is regulated primarily by two antagonistic
hormones: insulin and glucagon produced by beta (b) - and alpha
(a)- cells in the pancreatic islets. Insulin is secreted in the fed-
state to normalize blood glucose and, glucagon is secreted during
a fasted state to raise blood glucose concentrations (Aronoff
et al., 2004). Absolute or relative insulin deficiency and/or impaired
insulin function contributes to the hyperglycaemic state in type 1
and 2 diabetes. The insulin deficiency in type 1 diabetes is caused
primarily by autoimmune responses leading to the infiltration and
destruction of pancreatic cells by mononuclear cells (Rothe et al.,
1999). In type 2 diabetes, a progressive loss of b-cells is caused
by increased gluco-, lipo- or glucolipotoxicity, endoplasmic
reticulum-induced stress, oxidative stress, inflammation (systemic
and islet), and b-cell death (e.g. apoptosis) (Cerf, 2013; Galicia-
Garcia et al., 2020). These events converge and contribute and/or
exacerbate insulin resistance, b-cell dysfunction, and failure (Oh,
2015, Lankatillake et al., 2019).

The two main mechanisms for b-cell replenishment (b-cell
regeneration) are replication (proliferation) of existing b-cells (b-
cell self-replenishment or b-cell replication) and differentiation
of new b-cells from non-b islet cells, pancreatic and extra-
pancreatic cells including stem/progenitor cells (i.e. b-cell neogen-
esis from non-b-cells) (Xia et al., 2009, Demeterco et al., 2009, Lysy
et al., 2012). Self-replenishment (self-renewal or self-duplication)
is the ability of a cell to repeatedly divide without loss of identity
or functional potential (Chambers and Smith, 2004). In rodents,
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Fig. 1. Chemical structure of the bioactive compounds in Kolaviron – a Garcinia
biflavonoid complex.
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new b-cells are derived mainly from existing b- cells; i.e., b-cell
self-replenishment, which is the dominant mechanism for normal
b-cell turnover under physiological conditions (Tavana and Zhu,
2011). b-cell populations comprise the individual b-cell (i.e., b-
cell numbers) that constitute the b-cell mass in organisms and
respond to variable insulin demand governed by physiological
and pathological states (Cerf, 2013). b-cell populations are bal-
anced, to a large extent, by b-cell replenishment and death (Cerf,
2013).

Type 1 diabetes is mainly treated with exogenous insulin injec-
tion to improve glycemic control (American Diabetes Association,
2011). Management strategies for type 2 diabetes involve adminis-
tration of insulin alone or with oral or injectable hypoglycemic
agents such as; biguanide, thiazolidinediones, SGLT2 inhibitors,
GLP-1 agonists and DDP-4 inhibitors. These drugs are also under
investigation as adjunctive to insulin therapies for T1D patients
(Bacha and Klinepeter Bartz, 2016). Although these drugs have
demonstrated benefits in diabetes management, a robust, sus-
tained glycemic control over time has not been achieved and, some
associated adverse effects remain unresolved (Borse et al., 2021).
Also, non-adherence to the insulin treatment regimen (Doggrell
and Chan, 2015), risk of hypoglycemia, low insulin availability
and affordability (Li et al., 2019), failure of insulin to achieve glyce-
mic targets (Cohen et al., 2016; Harris et al., 2017), and recent find-
ings of insulin resistance following intensive insulin treatment
(Okamoto et al., 2011; Karras et al., 2019) limits the benefits of
intensive insulin therapy. Despite the progress in diabetes therapy,
maintaining near-normal metabolic control remains a challenge,
and the rate of morbidity and mortality from vascular complica-
tions is still high (Bertoni et al., 2002; Groop et al., 2018; Lee
et al., 2019). Therefore, an imperative need for better glycemic con-
trol persists.

The crucial role of the pancreas in glucose homeostasis has
prompted investigations targeting the pancreatic b-cell as a
promising strategy for treating diabetes. Also, hyperglucagonemia
contributes to hyperglycemia by increasing hepatic glucose output.
Therefore, a-cells are also potential targets in diabetes (Gaisano
et al., 2012, Marroqui et al., 2014). Several natural compounds,
including those derived from plants, have received research atten-
tion as potential adjuvant or as alternative agents for diabetes
management (Yonamine et al., 2016; Shirpoor, 2017; Borse et al.,
2021). Some natural compounds and herbs exert regenerating
and protective effects on b-cells, thus improving b-cell function
and glycemic control. Among these are plant-derived flavonoids
(e.g. resveratrol, quercetin, rutin, fisetin and epicatechin), single
herbs (Nigella sativa, Artemisia dracunculus L and Vernonia amyg-
dalina) and polyherbal formulations (e.g. Diabecon�, a well-
marketed formulation containing herbs and naturally occurring
minerals) (Modak et al., 2007; Oh, 2015; Choudhury et al., 2018,
Ghorbani et al., 2019; Wickramasinghe et al., 2021).

Garcinia kola Heckel (family; Guttiferae) is a highly valued tree
largely cultivated in West and Central Africa for its edible nuts. In
traditional medicine, regular consumption of Garcinia kola nuts
(commonly called bitter kola) is believed to lower blood glucose
levels and is used in the treatment of inflammation and viral infec-
tions (Adaramoye and Adeyemi, 2006). Kolaviron is a bi-flavonoid
complex (Fig. 1) extracted from Garcinia kola (Ayepola et al., 2014)
and is reportedly known as the most active phytochemical present
in these nuts (Iwu, 2014). Previous studies from our laboratory
revealed a reduction in blood glucose concentrations and an
increase in insulin concentrations in diabetic rats treated with
kolaviron, suggesting an ameliorative effect on b-cells (Ayepola
et al., 2013). However, in the present study, using immunohisto-
chemical and morphometric analysis, we sought to determine
whether kolaviron (i) affects new islet formation (islet number),
(ii) alters b-cell area, and (iii) alters a-cell area.
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2. Material and methods

2.1. Plant materials

Fresh seeds of Garcinia kola were purchased from a local market
in Ibadan, Oyo State, Nigeria and authenticated by Professor E. A
Ayodele at the Department of Botany, University of Ibadan. A vou-
cher specimen (FHI-109777) is available at the herbarium of the
Forestry Research Institute of Nigeria (FRIN), Ibadan.

2.2. Extraction of kolaviron from Garcinia kola seeds

Fresh seeds of Garcinia kola were peeled, sliced and air-dried.
Kolaviron was isolated from these seeds according to the method
of Iwu and colleagues (Iwu et al., 1990). Briefly, Garcinia kola seeds
were grounded to powdered form and extracted with light petro-
leum ether (bp 40–60 �C) in a soxhlet for 24 hr. The defatted dried
product was repacked and extracted with acetone. The concen-
trated extract was then diluted twice its volume with water and
extracted with ethyl acetate. The resulting concentrate yielded
kolaviron, a well-characterized bioflavonoid complex (Ayepola
et al., 2013).

2.3. Animals

Forty healthy male Wistar rats (11–12 weeks) weighing
270 ± 25 g (g) were used for the study. The animals were bred at
the animal facility of the South African Medical Research Council
(SAMRC), with strict adherence to all standard operating proce-
dures. The rats were housed in individual plastic cages at the ani-
mal facility of the SAMRC at room temperature (22 ± 2 �C) with
55 ± 5% humidity and an automatically controlled light–dark cycle
(12 h/12 h). Standard rat diet (supplied by the SAMRC) and water



Fig. 2. The effect of kolaviron on glucose level in diabetic and non-diabetic rats over
a 6-week treatment period. Data are presented as means ± S.D. Confirmation of
diabetes (COD); Non-diabetic control (C), control treated with kolaviron (C + KV),
untreated diabetic rats (D), diabetic rats treated with kolaviron (D + KV). * p < 0.05
compared to non-diabetic control rats, # p < 0.05 compared to diabetic control rats.
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were provided ad-libitum, and rats were acclimatized to the exper-
imental conditions one week before experimentation. The animal
study was approved by the Research Ethics Committee of the Fac-
ulty of Health and Wellness Sciences, Cape Peninsula University of
Technology (Ethics number: CPUT/HW-REC 2012/AO4).

2.4. Experimental design and sample collection

At the start of the experiment (before STZ administration), 40
healthy Wistar rats free, from specific pathogens were randomly
distributed into four experimental groups (n = 10 per group) using
a stratified randomization procedure considering the body weights
(�270 ± 25 g) and fasting (�18 h) blood glucose levels (�5.6 ± 1.
14 mmol/L). The groups were:

Group 1: Non-diabetic control (C)
Group 2: Kolaviron-treated non-diabetic control (C + KV),
Group 3: Untreated diabetic (D), and
Group 4: Kolaviron-treated diabetic (D + KV).

Afterwards, diabetes was induced in overnight fasted rats in
groups 3 and 4 by a single intraperitoneal injection of a freshly pre-
pared solution of streptozotocin (STZ; 50 mg kg�1 body weight) in
citrate buffer (0.1 M, pH 4.5). Control rats in Groups 1 and 2 were
injected with citrate buffer vehicle only. Random blood glucose
was measured weekly throughout the study period with a glu-
cometer (Accu-Chek, Roche, Germany) using blood obtained from
the caudal vein. Kolaviron, at a dose of 100 mg/kg/day, was dis-
solved in a vehicle [dimethylsulphoxide (DMSO)] and administered
orally (5 days/week; Monday - Friday) for six weeks. Control (C)
rats also received vehicles five times a week for six weeks. At the
end of the study (6 weeks after confirmation of diabetes in groups
D and D + KV), the rats were euthanized with sodium pentobarbital
(60 mg/kg). Pancreatic tissues were immediately excised and fixed
in 10% (v;v) neutral buffered formalin and embedded in paraffin
wax.

2.5. Immunodetection of insulin and glucagon in the pancreas

Fixed pancreatic tissues were cut into 5 mm sections for double
immunolabeling of glucagon and insulin. Briefly, each section was
dewaxed and immunolabeled for a-cells using a polyclonal gluca-
gon antibody (Dako, Carpinteria, CA) and incubated for 30 min at
room temperature. A secondary biotinylated anti-rabbit link anti-
body (Vector Laboratories, Burlingame, CA, USA) was applied at a
1:1000 dilution, and positive immunolabeling was visualized using
the peroxidase diaminobenzidine and substrate chromagen system
(Dako Corporation, Carpinteria, CA, USA). Thereafter, b-cells were
immunolabeled with a monoclonal insulin antibody (1:10000;
Sigma Immunochemicals St. Louis, MO, USA) using the alkaline
phosphatase method. This was followed by a separate incubation
with a rabbit/mouse link, AP Enzyme Enhancer, and substrate
working solution (Envision G/2 System/AP, Rabbit/Mouse Kit).
The light microscope was interfaced with a computer via Leica
Qwin image analysis software (Leica, Wetzlar, Germany). Stained
pancreatic sections were viewed with an X20 objective and images
were analysed with an Olympus BX60 light microscope comprised
of a mounted Nikon DS-Fi1 digital camera.

2.6. Measurement of a-cell, b-cell area and islet size distribution

The whole section area was measured, and the total islet areas
were estimated by adding the tissue area measured in each field of
view using the interactive measurement option of the Leica soft-
ware. The total islet area and areas of a-cell and b-cells were deter-
mined with the aid of colour segmentation and thresholding on
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immunofluorescence-stained pancreatic sections. Afterwards, the
ratio (%) of the immunoreactive a-cell area and b-cell area to the
whole area of islet cells were calculated. The islets were counted
and classified as small, medium, large and very large according
to the different sizes and numbers of islets in each size group
was expressed as a percentage of the total number of islets. All
morphometry studies were conducted in a blinded fashion.

2.7. Statistical analysis

The data were expressed as mean values (±SD). Significant dif-
ferences between glucose levels were determined by two-way
repeated analysis of variance (ANOVA) (Treatment � Time as
repeated measures) followed by post-hoc Dunnett test for multiple
comparisons. Each islet measurement, i.e., total islet number, b-cell
and a- cell area, were separately analysed with one-way ANOVA to
compare mean differences between groups. Differences were con-
sidered significant at p < 0.05.

3. Results

Fig. 2 shows the baseline blood glucose levels in non-diabetic
and diabetic rats and glucose levels after treatment with kolaviron.
Injection of streptozotocin stimulated a diabetogenic response evi-
dent by a significant increase (p < 0.05; about 300 % higher than
non-diabetic controls) in blood glucose level by day 5 of STZ injec-
tion. The elevation in glucose level was maintained through the
study duration. By the 6th week of treatment, kolaviron (100 mg/
kg) significantly (p < 0.05) lowered blood glucose level in diabetic
rats by � 40 % compared to diabetic controls.

Immunohistostaining of the pancreas of normal control rats (C)
revealed the peripheral location of a-cells (glucagon) while b-cells
(insulin), which are numerous, were centrally located (Fig. 3). Also,
the insulin-positive islet area comprised about 90% of the whole
islet. However, untreated diabetic rats (D) showed distorted islet
architecture (Fig. 3) and a depleted number of islets (Fig. 4a). Islet
degeneration post STZ induction was evident by irregularly shaped
islets and depleted immunopositive b-cells. Also, most of the b-
cells in diabetic rats (Fig. 3; D and D + KV) were very lightly stained
compared to non-diabetic rats. On the other hand, the glucagon-



Fig. 3. Pancreata immunostained for glucagon-positive a-cells (brown staining) and insulin-positive b-cells (pink staining). Non-diabetic control (C), control treated with
kolaviron (C + KV), untreated diabetic rats (D), diabetic rats treated with kolaviron (D + KV). Magnification X20.
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producing a-cells were strongly expressed and centrally localized
in the islets. A decrease in b-cell area and a reciprocally increased
a-cell area were observed in diabetic rats (Fig. 4b and c). In addi-
tion, a lower number of large and very large-sized islets in diabetic
rats versus control suggest beta cell deterioration (Fig. 5).

The staining intensity of immunoreactive b-cells also increased
in kolaviron-treated diabetic rats (Fig. 3). As shown in Fig. 4b,
injection of STZ caused a �43% decrease in b-cell/islet area (35.9
1 ± 2.68) compared with non-diabetic control rats (61.44 ± 3.18).
Kolaviron treatment of diabetic rats resulted in an increased b-
cell area (45.83 ± 1.12) compared to control rats (35.91 ± 2.68).
Although treatment of diabetic rats with kolaviron did not affect
islet number and a-cell area, the pancreata of kolaviron-treated
diabetic rats contained more large islets (in the range of 12,500–
20,000 mm2) and very large islets (>20,000 mm2) and lower num-
bers of small and medium islets compared to diabetic control rats
(Fig. 5).
4. Discussion

Kolaviron administration to diabetic rats lowered blood glucose
and showed a potent effect on the islets, as demonstrated by
immunohistochemical observations and morphometric results of
the islet area. The glucose-lowering effect of kolaviron has been
previously reported (Adaramoye and Adeyemi, 2006, Adaramoye,
2012, Ayepola et al., 2013, Tchimene et al., 2016). Furthermore,
several mechanisms of the antidiabetic effect of kolaviron have
been proposed, including glucose utilization in extrahepatic tis-
sues, direct reduction of macrophage infiltration, the improvement
of b-cell function (Ayepola et al., 2013), and increased functional
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activity of glucose transporters. Previous investigations including
studies from our laboratory clarified some mechanistic aspects of
the kolaviron beyond its glucose-lowering effect such as antiapop-
totic action (Ayepola et al., 2014), the inhibitory effect of liver
microsomal glucose-6-phosphatase (Adaramoye and Adeyemi,
2006), anti-inflammatory activity (Ayepola et al., 2013), and
antioxidant effect. (Oyenihi et al., 2015).

The findings presented herein support the hypothesis on the
stimulating action of kolaviron on b cells. Many studies have doc-
umented the direct benefits of phytotherapy on the pancreas
through different mechanisms, which include: increased islet (i.e.
islet hyperplasia) via regeneration of new islets, increased b-cell
number and density, reduced lymphocyte infiltration in the islets
and reduced oxidative stress indices (Hosseini et al., 2015;
Wickramasingh et al., 2021). A strong correlation exists between
the b-cell area and established indexes of b-cell function and glu-
cose control (Meier et al., 2009, Meier et al., 2012). The present
findings showed an increase in b-cell area and marked insulin
staining in kolaviron-treated diabetic rats despite no change in
islet number. The higher number of large islets in kolaviron-
treated diabetic rats suggest that the extract could stimulate
regeneration or exert protective effects on residual b-cells in STZ
challenged rats, thereby improving b-cell function (Hafizur et al.,
2015). In kolaviron-treated diabetic rats, there were no effects on
a-cell area or islet number, which suggest that kolaviron is b-cell
selective.

Most of the b-cells in diabetic rats were very lightly stained
compared to non-diabetic rats - this may reflect low insulin con-
tent (Brereton et al., 2014). The increased a-cell area relative to
the islet area suggests an increase in the secretory activity of
a-cells to maintain islet size, a compensatory response to the loss



Fig. 4. Total islet number, b-cell and a- cell area. Data are presented as means ± S.D. * p < 0.05 compared to non-diabetic control rats, #p < 0.05 compared to diabetic control
rats. Non-diabetic control (C), control treated with kolaviron (C + KV), untreated diabetic rats (D), diabetic rats treated with kolaviron (D + KV).

Fig. 5. Size distribution of islets in rats. Size distribution of small-medium islets (0–
12,500 mm) and large-very large islets (12,501 – >20,000 mm) in normal and diabetic
rats. Data are presented as means ± S.D. * p < 0.05 compared to non-diabetic control
rats, # p < 0.05 compared to diabetic control rats. Non-diabetic control rats (Black),
non-diabetic control rats treated with kolaviron (Grey), untreated diabetic rats
(Deep blue), diabetic rats treated with kolaviron (Light blue).
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of b-cells (Bru-Tari et al., 2019, Zhang et al., 2019). A reduction in b-
cell mass would subject b-cells to an increased functional load,
which may eventually exhaust insulin release (Leahy, 1990). The
ability of kolaviron to improve b-cell degeneration may be due to
its stimulating and rejuvenating effects on residual b-cells and
other extra-pancreatic action such as modulation of hepatic glu-
cose output and reduced glucotoxicity, modulation of altered cellu-
lar redox status, and its anti-inflammatory action (Adaramoye and
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Adeyemi, 2006, Ayepola et al., 2014, Oyenihi et al., 2015). DNA
alkylation and hyperglycemia-mediated oxidative damage by free
radicals (reactive oxygen or reactive nitrogen species) have been
implicated in b-cell toxicity by STZ (Wu and Yan, 2015). Also, there
are reports that hyperglycemia can cause b-cell degeneration by
inducing apoptosis (Chang-Chen et al., 2008, Anuradha et al.,
2014). The survival of b-cells in kolaviron-treated rats may be
partly due to its antioxidant effect (Olayinka et al., 2014), its mod-
ulatory effect on the altered inflammatory state (Ayepola et al.,
2013, Abarikwu, 2014), and a reduction of b-cell death.

5. Conclusion

The synthesis and release of insulin by the b-cells maintains
glucose homeostasis and prevents metabolic diseases. Stressed
and inflamed b-cells are functionally compromised and do not
effectively respond to increased insulin demand which aggravates
b -cell dysfunction resulting in b-cell failure and diabetes (Cerf,
2020). In the present study, we showed that treatment with kolavi-
ron has an ameliorative effect by replenishing the b-cell area. The
findings from the present study suggest that kolaviron elicits a
direct action on b-cells and enhances b-cell survival. The b-cell
replenishment potential of kolaviron and its overall positive effects
on glycemic control indicates that it may be a viable target for dia-
betes treatment.
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