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Introduction
The transcriptome is the momentary sum of all DNA transcribed 
in a cell. Classically, the transcriptome included the measure-
ment of each of the ribosomal RNA, messenger RNA (mRNA), 
and transfer RNA. These include a relatively small portion of 
the whole genome.1 The rest of the DNA was considered, until 
recently, not to be transcribed.1 The accumulation of data in the 
last decade or so has provided vast evidence that most, if not 
all, of the DNA is actually transcribed.1 The transcribed DNA 
that does not belong to the three types of RNA listed above 
is termed noncoding RNA.2 There is an increasing number of 
different noncoding RNAs. Among these, the first to be dis-
covered and the first to have a clearly defined function are the 
micro-RNAs (miRNA).3

The miRNA are short RNAs (average 22 nucleotides) 
involved in posttranscriptional gene silencing.3 They are actively 
transcribed by the cells, and the regulation of their transcrip-
tion is an active area of research. The miRNA are transcribed as 
pre-miRNA and undergo a multistep maturation process, pro-
viding a fully mature (and active) miRNA.3 The gene-silencing 

activity of the miRNA is based on complementarity with 
specific transcribed mRNA. If the complementarity is perfect, 
the miRNA binds to the mRNA, forming a double strand 
that induces faster mRNA degradation. If the complementar-
ity is not perfect, the translation is inhibited, but the speed of 
mRNA degradation is not affected.4

The regulation of the expression of genes (ie, mRNA 
coding for proteins) is a complex and multifactorial phenom-
enon, including posttranscriptional regulations.5–7 The first 
and long-term level of regulation is carried out by epigenetic 
factors determining which part of the DNA is available for 
transcription, and the second and medium-length level of 
regulation is determined by transcriptional regulators or fac-
tors. The transcription regulators are proteins with the main 
purpose of regulating the expression of genes. This is done 
by interacting directly with short DNA sequences, termed 
response elements, in general present in regions upstream of 
the transcription start site of the gene.8 Therefore, the expres-
sion of genes in the short/medium term is determined by the 
abundance of the transcription factors (TFs) and by their 
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activity. The latter is determined by compounds that directly 
or indirectly interact with the TFs, ie, upstream regulators. 
The concept of upstream regulators can include a relatively 
large diversity of compounds, ranging from lipids to proteins.

By knowing the change in the expression of downstream 
genes using transcriptomic analysis, it is possible, through bio-
informatics means, to infer the upstream regulators responsible 
for the observed changes. The inference of upstream regulators 
is an important information to reveal the causes of the observed 
changes at the transcriptomic level9,10; however, the analysis of 
the transcriptome can only measure the abundance of mRNA 
available in the instant when the tissue or cells were harvested. 
The mRNA available for translation is not equal to the mRNA 
expressed by the DNA due to the presence of active posttran-
scriptional regulation. Therefore, the inference of upstream 
regulators is biased by posttranscriptional regulation. One of 
the most important posttranscriptional regulatory factors is 
miRNA. For this reason, our objective was to provide a more 
realistic analysis of upstream regulators by accounting for the 
effect of miRNA via a bioinformatics approach.

Materials and Methods
ethics statement. All animal use was carried out in strict 

accordance with the Directions for Caring of Experimen-
tal Animals from the Institute of Animal Science, Chinese 
Academy of Agricultural Sciences. All efforts were made to 
minimize suffering.

tissue sample preparation. Both liver and mammary 
gland tissue samples were obtained by biopsy from 10 prim-
iparous lactating Holstein cows (body weight, 558 ± 10 kg; 
days in milk, 136 ± 37 days; daily milk yield, 21.1 ± 2.3 kg) as 
previously described.11,12 Briefly, throughout the experiment, 
cows were housed in a tie stall barn, and diet was formulated 
to meet the requirements according to the National Research 
Council.13 The cows were fed two different diets (n = 5/group) 
as previously described.14 The diets were prepared daily and fed 
ad libitum as total mixed ration. The diets were supplied twice 
a day at 07:00 and 19:00 hours in an equal amount that allowed 
for 10% residuals. Cows were milked twice daily at 07:00 
and 19:00 hours and had free access to water. The liver and 
mammary biopsies were performed simultaneously (ie, within 
40 minutes) at approximately 07:00 hours (post-AM milking).

Prior to the biopsies, the cows received a small dose of 
xylazine (0.05 mg/kg body weight (BW)) before applying a 
local anesthetic. Prior to the incision, 3–4 mL of lidocaine 
hydrochloride (2% solution) was injected subcutaneously as 
the local anesthetic. For the mammary biopsy, an incision 
using a sterilized scalpel blade was performed on the mid-
section of the left rear quarter. The parenchyma tissue was 
removed, and the mammary epithelium was exposed. Once 
the parenchyma was visible, a biopsy was performed using 
Bard® Magnum® Reusable Core Biopsy Instrument MN1213 
(Bard Peripheral Vascular). Immediately after removal of the 
biopsy instrument, we applied pressure to stop bleeding using 

sterile gauze. Approximately 400 mg of mammary tissue was 
obtained from the biopsy. The liver tissue (approximately 
300 mg) was collected via puncture biopsy. The large hepatic 
blood vessels were identified using a 3.5 MHz ultrasound 
probe and used to identify the site for biopsy. A 1.5-cm inci-
sion using a sterile scalpel blade was done between the 11th 
and 12th ribs on the right side of the cow. Following the skin 
incision, proper pressure using the sterile gauze was applied 
to the wound until visual signs of bleeding were absent. The 
biopsy of the liver was performed using a Rhone Merieux liver 
biopsy needle (9.5 mm diameter; Rhone Merieux). The tissue 
obtained through biopsy was immediately washed with phos-
phate buffer saline (PRS) buffer prepared with RNAase-free 
water and hydrated and stored in liquid nitrogen until RNA 
extraction. For both biopsies, the skin incision was closed with 
four or five Michel clips (11 mm; Henry Schein). The inci-
sion site was sprayed with topical antiseptic (10% povidone-
iodine ointment; Taro Pharmaceutical Industries). Health was 
monitored postsurgery by recording rectal temperature, milk 
yield, and feed intake daily for seven days. Surgical clips were 
removed seven days postbiopsy.

rNA extraction and microarray. Total RNA was 
extracted using the TRIzol reagent (Cat# 74106; Life tech-
nologies) according to the manufacturer’s protocol. The total 
RNA was purified using the RNeasy Mini Kit (Cat# 74106; 
QIAGEN) and the RNase-Free DNase Set (Cat# 79254; 
QIAGEN). The concentration was measured by NanoDrop 
1000 (Thermo Fisher Scientific). The OD260/OD280 values 
were $1.9. Integrity of the purified total RNA was assessed 
using 2100 Bioanalyzer (Agilent Technologies) and the RNA 
6000 Nano Kit (Agilent Technologies). The RNA integrity 
number values were considered as satisfactory when the value 
was $8.0.

The mRNA transcriptomic analysis was performed using 
a 4 × 44 K bovine microarray chip (design ID: 023647; Agilent 
Technologies). Total RNA was amplified and labeled using 
the Low Input Quick Amp Labeling Kit, One-Color (Cat# 
5190–2305; Agilent Technologies) according to the manufac-
turer’s instructions. Each slide was hybridized with 1.65 µg of 
Cy3-labeled cRNA using the Gene Expression Hybridization 
Kit (Cat# 5188–5242; Agilent Technologies) in a hybridiza-
tion oven (Agilent Technologies). After 17 hours hybridiza-
tion, slides were washed in staining dishes (Thermo Fisher) 
using the Gene Expression Wash Buffer Kit (Cat# 5188–5327; 
Agilent Technologies).

Slides were scanned using an Agilent Microarray Scanner 
(Agilent Technologies) with default settings (ie, dye channel:  
green, scan resolution = 5 µm, photomultiplier tubes (PMT), 
100%, 10%, 16 bit). Data were acquired using the Feature 
Extraction Software 10.7 (Agilent Technologies). The microar-
ray data presented in this article have been deposited at NCBI’s 
Gene Expression Omnibus (accession number GSE73980).

The miRNA profile was performed using the Agilent 
8 × 15 K miRNA array V17.0 (Agilent Technologies) customi zed 
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for bovine miRNA based on the miRBase (17.0). One-hundred 
nanograms of total RNA and a Labeling Spike-In solution 
(MicroRNA Spike-In Kit; Agilent Technologies) under-
went a phosphatase treatment with calf intestinal alkaline 
phosphatase, and the dephosphorylated RNA was subjected 
to denaturing and labeling reactions with dimethyl sulfox-
ide (DMSO) and cyanine 3-pCp (Complete Labeling and 
Hybridization Kit; Agilent Technologies). Subsequently, the 
labeled RNA was desalted with spin columns (MicroBioSpin 
6 Columns; Agilent Technologies), and the desalted labeled 
RNA was then hybridized to the microarray. After 20 hours 
of hybridization, slides were washed in staining dishes using 
the Gene Expression Wash Buffer Kit following the manufac-
turer’s instructions.

Slides were scanned using an Agilent Microarray Scan-
ner with default settings. The presence or absence of a given 
miRNA was determined according to the difference between 
signal of the probe and the background. The Feature Extrac-
tion Software 10.7 was used to obtain the raw data.

JMP Genomics analysis. Agilent miRNA microarray 
data were analyzed using the JMP Genomics software (SAS 
Institute). Total gene signal, as calculated by the Agilent soft-
ware, provides the mean of background-corrected expression 
across all probes for a given miRNA. A table with the total 
gene signal for each miRNA across all microarray runs was 
compiled for use in the JMP Genomics basic miRNA work-
flow. Shifted (+1) log2 transformation of the data was used 
for both quality control analysis and before normalization. 
Transformed expression values were normalized by standard 
deviation (STD; mean of zero, variance of one), interquartile 
range (IQR), or kernel density quantile (KDQ ) methods. 
We observed best data distribution using the KDQ. The 
KDQ-normalized set was therefore used for the analysis 
of variance.

We originally analyzed the miRNA dataset for the tissue, 
diet, and tissue × diet effect, but we found only a few miRNA 
affected by diet or tissue × diet with a false discovery rate 
(FDR) of ,0.05, and none were a large change. In comparison, 
we found a large amount of miRNA significantly affected by 
tissue. Therefore, we continued our analysis considering only 
miRNA different between liver and mammary tissue.

Significant changes in miRNA expression were tested 
for tissue models in a pairwise fashion, adjusting for random 
effects due to the subject animal, and with a multiple test-
ing method of FDR # 0.05. After JMP Genomics analysis, 
one of the samples (L8496) was an outlier; therefore, the 
analysis was rerun with the L8496 sample removed from 
the data set. Agilent mRNA microarray data were also 
analyzed with JMP Genomics as stated earlier, with three 
exceptions. The basic expression workflow was used, only 
the STD normalization method was run, and none of the 
samples were excluded. The analysis was run independently 
on the original dataset and on miRNA-corrected datasets 
(described below).

mirNA target prediction databases. Four separate 
target prediction databases were queried with the signifi-
cant miRNA determined using the JMP Genomics analysis. 
TargetScan15,16 was the primary database used as it housed 
Bos taurus-specific information with target scores predicted 
as the probability of conserved targeting (PCT) or the prob-
ability that the listed miRNA targeted and affected the listed 
mRNA. These values were used to calculate the relative effect 
of each miRNA on its predicted target mRNA. If a given 
miRNA:mRNA pair did not have a high PCT value, then the 
calculated effect of the miRNA was reduced for the overall 
mRNA correction calculation (described further below). Only 
miRNA and mRNAs listed in the TargetScan database were 
used for the correction calculation, therefore contributing to 
it being a conservative correction as not all miRNA:mRNA 
effects were able to be estimated.

The miRanda (http://microrna.org), DIANA17 version 3.0 
(http://diana.cslab.ece.ntua.gr/microT/), and PicTar (http://
pictar.mdc-berlin.de/cgi-bin/PicTar_vertebrate.cgi) were also 
queried to make lists for comparison analysis of coverage to 
the TargetScan list. The TargetScan database lists miRNA–
mRNA pairs with a wide range of target scores, including near-
zero values. For this analysis, we used the absolute value of the 
target score. For our dataset, the miRNA–mRNA pair scores 
ranged between 0.0 and 1.3. When binned by 0.1, roughly 
25% of the pair scores were greater than 0.3, with each lower 
bin containing another 25% of the pairs. We, therefore, broke 
the TargetScan data into four files: all data for the selected 
miRNA, the top 75%, 50%, or 25% scoring pairs. These lists 
were then reduced to nonduplicate mRNA targets and com-
pared with nonduplicate mRNA target lists from the other 
three database source lists. When these lists were compared, 
31.7% of the overall TargetScan-predicted mRNA targets 
were also predicted in the other three databases (92.1% in at 
least one other database), with 32.3% (92.4%), 33.9% (92.9%), 
and 36.4% (93.4%) shared in the top 75%, 50%, and 25% scor-
ing pair lists, respectively. It appeared that the top 50% scoring 
pairs captured the majority of the fully overlapping data, but all 
four binned datasets were used for further analysis.

mirNA correction of mrNA expression. To calculate a 
better estimation of gene transcription levels and therefore to 
estimate which TFs are acting on the mRNA, we combined 
the calculated levels of mRNA and miRNA in combination 
with predicted target scores between miRNA:mRNA pairs. 
This is a rough estimation, as the levels of mRNA and miRNA 
were not accurately quantified and were only relative levels, 
and their ratio and the ratio of the impact of miRNA on the 
mRNA are unknown, which can change the overall effect.

In a typical animal cell, mRNA and miRNA concentra-
tions can vary greatly, and miRNA levels are often higher than 
mRNA levels.18 In fact, one study shows that a large miRNA 
concentration is required to see a significant effect on mRNA, 
and only 30% of miRNA is significantly active.19 In one study 
by Ragan et al.18, the effects of various input miRNA and 
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mRNA concentrations were tested, and they found that the 
absolute concentration of the miRNA had a greater effect on 
the mRNA than did the ratio between the two. In another 
study by Subkhankulova et al.20, the mRNA content of a 
single mammalian cell was analyzed. Over 85% of genes are 
expressed at less than 100 copies per cell, with an average of  
10 copies per cell and a log–log-normal distribution. In a study 
by Liang et al.21 where the levels of miRNA in mammalian tis-
sue were analyzed, they detected an average of approximately 
500 copies per cell (ie, 5 × compared to the average copy per 
cell of mRNA20), which lends further support to the need for 
a higher miRNA concentration to have a posttranscriptional 
effect on mRNA. In the study by Ragan et al.18, where a set 
of known mRNA:miRNA pairs were assessed by an in silico 
approach, when the miRNA and mRNA were expressed at 
a level of 500 copies per cell, only 72% of the mRNAs were 
reduced by .30%. Using numbers from these experiments, 
we created a table of values to be used for linear regression 
analysis in an attempt to find a rough, conservative estimate 
for calculating the actual transcribed mRNA levels from the 
observed miRNA and mRNA levels (Table 1). The relation-
ship between the concentration of miRNA and the fraction of 
significantly reduced (at least 30%) mRNA determined from 
their data was

 Estimated_fraction_significant = 0.1096 × ln(miRNA nM)

The KDQ-normalized expression value for each miRNA 
or mRNA is reported by JMP Genomics in log2. For this 
analysis, we took the base-2 exponential of the JMP Genomics 
values to convert back to the normalized expression values. 
The normalized miRNA values were used as an estimate of 
molarity for the miRNA as they were comparable to the typical 
nanomolar range in a cell.18 Target scores were also accounted 
for in the analysis, and all miRNAs that were predicted to tar-
get a particular mRNA had their normalized value multiplied 
by their respective target score and summed together to arrive 
at an estimated fraction of significant gene reduction. For each 
sample, therefore, we took the normalized expression value for 
each miRNA targeting a particular mRNA, converted it out 
of the log2 scale (=2 JMP value), multiplied by the target score, 
and summed all miRNAs together for a final overall level of 
miRNA for each mRNA target. We compared the results 
obtained by considering the top 25%, 50%, and 75% or all pre-
dicted miRNA:mRNA pairs. This was then converted as above 
to an estimated fraction of significant gene reduction, and this 
was used to calculate the transcribed mRNA level as follows:

 Transcribed_mRNA = Normalized_mRNA_observed/ 
                     (1-Est_frac_sig * 0.3)

This correction adds back additional mRNA to account 
for the estimated fraction that was significantly reduced, in this 
calculation 30% (ie, 0.3). We also estimated the transcribed 
mRNA levels using the 50%, 75%, or 83% mRNA reduction 

for comparison, as many of the mRNAs in the previous work 
were reduced much more than 30%. This correction method 
does not use the difference between samples for any corrective 
calculation but only uses the level of miRNA in a given sample 
to predict the transcribed level of mRNA before posttran-
scriptional regulation in that sample. The new mRNA levels 
were rerun through JMP Genomics and compared against the 
original dataset. The complete script for the analysis and the 
guideline are provided in Supplementary File 1.

Analysis of upstream regulators by Ingenuity Pathway 
Analysis. In order to test the effect of the miRNA on the pre-
diction of upstream regulators, especially TFs, the upstream 
regulator analysis was performed using the Ingenuity Pathway 
Analysis (IPA; QIAGEN). The whole dataset with the Entrez 
Gene ID, FDR, and expression ratio of the original transcrip-
tomic dataset and the datasets corrected by miRNA were used. 
The annotated microarray was used as background in all analyses. 
The comparison analysis feature in IPA was used to visualize 
and download the results. The analysis of upstream regulators 
by IPA allows identification of the upstream regulators of dif-
ferentially expressed genes using information in the Ingenuity® 
Knowledge Base. The analysis provides a predicted activation 
Z-score and an overlap P-value for each upstream regulator.

The activation Z-score is an estimate of the status of the 
upstream regulator using the level of gene expression of known 
target genes. Either a prediction of activation or inhibition 
(or no prediction) also accounts for the chance that random 
data generate significant predictions. Z‐scores greater than  
2 or smaller than -2 can be considered as significant.

The overlap P-value identifies transcriptional regulators 
that are able to explain the observed gene expression changes. 
The overlap P-value measures whether there is a statistically 
significant overlap between the dataset genes and the genes 
that are regulated by an upstream regulator. It is calculated 
using Fisher’s exact test, and the significance is generally 
attributed with P-values ,0.01.

Upstream tFs analysis using the dynamic Impact 
Approach. The Dynamic Impact Approach (DIA) is a new 
bioinformatics approach for the analysis of transcriptomics 

Table 1. Values used for the correction of mrna using mirna based 
on transcribed mrna levels from input mirna and mrna levels.

miRNA (nM)a 30% INTERCEPTb fRAC_SIGc EST_fRAC_SIGd

10 54 0.37 0.25

50 74 0.50 0.43

100 84 0.57 0.50

500 101 0.69 0.68

1000 107 0.73 0.76

2000 109 0.74 0.83

Notes: ainput mirna concentration. data from ragan et al.18 bnumber 
of mrna reduced at least 30%. data from ragan et al.18 cfraction of 
mrna reduced at least 30% (out of 147 total). data from ragan et al.18 
dEstimated fraction of mrna reduced at least 30% based the on mirna level 
[0.1096 × ln(mirna)].
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data that substantially differs from the classical enrichment 
analysis tools.22 The main difference is that the DIA is not a 
statistical tool and uses the expression ratio and the statistical 
results (in this case obtained by JMP Genomics) to calculate 
the impact of any condition on several databases, including 
pathways. Different than the classical enrichment analysis 
is also the output. The DIA provides an absolute number of 
the impact and the direction of the impact (either induced or 
inhibited) of the condition(s) studied, allowing a quantitative 
comparison between results from different datasets. For this 
reason, it can allow for a more precise discovery of differences 
in upstream TFs due to correction by miRNA.

In order to have the DIA able to uncover the impact 
of upstream regulators, the human transcriptional regula-
tory interaction database (HTRIdb)23 was uploaded in the 
DIA, and the database was summarized using the TFClass, 
a classification of human transcriptional factors.24 The bovine 
orthologs of the human Entrez Gene IDs in the HTRIdb 
were obtained through bioDBnet.25 Data output from the 
JMP Genomics analyses were condensed for input into the 
DIA tool. The whole annotated Bovine (V2) Gene Expression 
Microarray 4 × 44 K was used as background. The selection 
criteria in DIA were FDR , 0.05.

correlation analysis. Spearman’s correlation analysis was 
performed using the SigmaPlot software (version 11; Systat 
Software Inc.). The correlation was performed for expression 
ratio, FDR, and P-value between liver and mammary for all 
levels of miRNA corrections. In addition, a correlation between 
all comparisons of IPA and DIA outputs was performed.

results and discussion
overall difference in mirNA expression between liver 

and mammary tissue in dairy cows. The statistical results of 
the 670 unique bovine miRNA detected in our analysis are 
reported in Supplementary File 2. Approximately 27% of 
all measured miRNAs were significantly different between 
the two tissues at an FDR , 0.05. Among these, 86 dif-
ferentially expressed miRNAs were more expressed in liver 
vs. mammary (with a geometrical mean expression ratio of 
2.2), and 101 differentially expressed miRNAs were more 
expressed in mammary vs. liver (with a geometrical mean 
expression ratio of 2.3; Supplementary File 2). Twenty dif-
ferentially expressed miRNAs with the largest differences 
between the two tissues are reported in Table 2. The miRNA 
miR-122 had extremely large expression in liver vs. mam-
mary. This is not surprising considering that this miRNA is 
liver specific in mouse (making up to 70% of liver miRNA) 
and human,26,27 and it is involved in the regulation of lipid 
metabolism28 and circadian rhythm29 in this organ. Also 
miR-192 and miR-194 had .70-fold higher expression in 
liver vs. mammary; miR-192 is among the most abundant 
miRNA in human liver,27 while miR-194 was proposed  
to be a marker of hepatic epithelial cells in mice.30 miR-205 
was expressed .150-fold in the mammary tissue compared to 

liver (Table 2). This miRNA is associated with the mammary 
stem cells31 and the regulation of epithelial-to-mesenchymal 
transition32; however, miR-205 is not affected by lactation in 
bovine mammary,33 and a role in lactation has not been clearly 
defined. In addition, miR-10b is associated with the induction 
of metastatis in breast cancer,34 miR-141 controls the expres-
sion of STAT5 in bovine mammary cells,35 and miR-200a is 
associated with the formation of mammary epithelial cells.36 
Several miR-200s and miR-10a and miR-10b are associated 
with normal regulation of human mammary cells.37 Overall, 
the comparison with the literature supports a consistency of 
our findings with what was previously known. Furthermore, 
the large difference in miRNA between the two tissues is con-
sistent with the large difference in biological functions.

mirNA target prediction. Four methods were com-
pared for miRNA target prediction, including TargetScan, 
miRanda, DIANA, and PicTar. TargetScan data were used 
as it had the best overlap between the different databases, 
and it had the best B. taurus-specific information as well as 
target scores predicted between the mRNA and miRNA pairs 
(Supplementary Fig. 1).

effect of mirNA correction on mrNA dataset. The 
main aim of this work was to propose a method to correct 
for the posttranscriptional effects of miRNA on the measured 
mRNA expression and, thus, better estimate the real DNA 
transcription levels. This is important when considering the  
in silico analysis of upstream regulators using the transcrip-
tomic datasets. The elimination of the miRNA effect can 
allow seeing a more real picture of the mRNA being expressed 
and can allow uncovering with higher precision the upstream 
transcription regulators partly responsible for the observed 
change on the transcriptome. The mRNA dataset before and 
after miRNA corrections is reported in Supplementary File 3.  

Table 2. Twenty miRNAs with the largest significant (FDR , 0.05) 
difference in expression between liver and mammary in lactating 
dairy cows.

miRNA LIvER/ 
MAMMARY

miRNA MAMMARY/ 
LIvER

bta-mir-122 6038.6 bta-mir-205 160.8

bta-mir-192 77.0 bta-mir-10b 89.9

bta-mir-194 75.3 bta-mir-200c 54.4

bta-mir-365-3p 7.1 bta-mir-141 53.8

bta-mir-101 6.1 bta-mir-375 45.3

bta-mir-30e-5p 5.1 bta-mir-200a 16.4

bta-mir-455* 4.9 bta-mir-200b 17.3

bta-mir-874 5.4 bta-mir-96 16.5

bta-mir-455 4.9 bta-mir-429 11.6

bta-mir-22–3p 4.8 bta-mir-196a 12.6

Note: the top 10 mirnas with the largest expression ratio in either liver vs. 
mammary (liver/mammary) or mammary tissue vs. liver (mammary/liver) are 
reported.
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The overall effect of miRNA correction can be deduced  
from Figure 1.

The effect of miRNA on mRNA increased as the target 
score bin increased (ie, from 25 to all), and the magnitude 
of change increased as the hypothetical mRNA reduction by 
miRNA increased (ie, magnitude of miRNA effect or ME; 
from 30% to 83%), as expected. More than 6000 genes (35.6% 
of annotated genes measured) were affected by the miRNA 
correction when all miRNAs were used, and most of them 
were differentially expressed genes (DEG) between liver and 
mammary tissue (Fig. 1A and Supplementary File 3); this 
number was reduced to approximately 3700 genes (21.5% of 

annotated genes measured) when only the miRNA with the 
top 25% score was used. As expected, the number and per-
centage of mRNA affected were dependent only on the target 
bin used but not on the ME.

The expression ratio was affected by a combination of 
target score bin and ME (Fig. 1A). The change in the expres-
sion ratio of mRNA due to miRNA correction increased as 
the ME became larger but decreased as the target score bin 
increased, likely due to the higher target score miRNA:mRNA 
pairs being diluted out by the more prevalent lower score pairs. 
The variation in expression ratio was .15% with 83% ME and 
25% target score bin (Fig. 1A), indicating that the miRNA had 
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a substantial effect on the expression of genes; however, when 
a more conservative approach was taken (ie, 30% ME), the 
effect on expression ratio was ,5% (Fig. 1A). When consider-
ing only the genes that were differentially expressed between 
liver and mammary (FDR , 0.05) in the original dataset, the 
correction with miRNA tended to increase the expression 
ratio of liver over mammary tissue, especially when consider-
ing the more liberal miRNA effect (ie, 83% ME and 25% top 
target score or 83–25) indicating that most of the miRNAs 
measured had an overall larger effect on liver transcriptome 
(23.5% variation at 83–25) compared to mammary tissue 
(approximately 13.3% variation at 83–25). This is not simply 
due to the number of differentially expressed miRNA between 
the two tissues, as in fact mammary tissue had a larger number 
of differentially expressed miRNA more expressed compared 
to liver than vice versa (101 vs. 86). In addition, the data indi-
cated that the effect of the miRNA was larger on mRNA that 
were differentially expressed compared to the ones that were 
not affected in the original dataset between liver and mam-
mary tissue (Fig. 1A), indicating that the miRNA correction 
was more important on genes that participate to determine the 
difference between the two tissues, thus capturing the biologi-
cally relevant genes.

The combination of miRNA:mRNA target score 
and ME also affected the number of DEG. In general, 
we observed an increase in the absolute number of DEG 
with FDR , 0.05 and FDR , 0.01, as the target score bin 
increased and the ME increased, with almost 200 more 
DEG compared to the original dataset with the combi-
nation 83–all. When a FDR , 0.001 was considered, we 
observed a smaller change in the number of DEG, and there 
was a decrease in the number of DEG compared to the orig-
inal dataset as the target score bin increased, which was vis-
ible for up to 50% ME. The number of DEG increased with 
higher ME. In all cases, the combination 83–all provided 
the largest change in the number of DEG with a maximum 
of 179 more DEG (Fig. 1B).

Furthermore, we have analyzed the percentage of varia-
tion in expression ratio between liver and mammary tissue in 
genes that were equally significant (FDR , 0.05) and equally 
nonsignificant (FDR . 0.05) in the original dataset and 
in the miRNA-corrected datasets (Fig. 2A). The trend was 
similar in both comparisons with an overall increase as the 
ME became larger. We detected an overall higher change in 
expression ratio in genes that were equally significant in the 
original dataset and in the miRNA-corrected dataset with 
almost 16% variation with the 83–25 combination compared 
to the equally nonsignificant genes (Fig. 2A). The genes that 
gained significance after miRNA correction had large increase 
in expression ratio as the ME increased with a tendency for 
a reduction as the target score bin increased. An increase in 
expression ratio up to 50% was detected with the higher ME 
(Fig. 2A). There were also more genes that acquired a statistical  
significance difference in expression ratio between liver and 

mammary tissue compared to the ones that lost significance 
after miRNA correction (Fig. 2B).

The above data support an overall large effect of miRNA 
correction on the mRNA expression. The data indicated a 
larger effect of miRNA on the liver transcriptome compared 
to the mammary tissue as there was a larger increase in the 
expression ratio of liver vs. mammary tissue compared to 
mammary tissue vs. liver (Fig. 2A).

The correction with the miRNA did not largely change 
the absolute number of DEG (Fig. 1B); however, the number 
of genes that gained or lost significance was relatively high with 
a peak of approximately 800 genes that change their statisti-
cal outcomes either gaining or losing significance (Fig. 2B). 
Thus, an important effect on the downstream bioinformatics 
analyses is expected.

The change in statistical outcomes can be better visuali-
zed by the correlation analyses of the FDR (ie, results of the 
statistical analysis; Fig. 3) and the expression ratio between 
liver and mammary (Supplementary Fig. 2) of each corrected 
dataset with the original transcriptomic dataset. The statisti-
cal analysis of the dataset was more affected by the miRNA 
correction than the overall expression ratio. Minimal corre-
lations were observed between the 83–all and the original 
dataset for the FDR (Fig. 3) and for the expression ratio 
(Supplementary Fig. 2).

effect of mirNA correction on the analysis of 
upstream regulators by IPA. The upstream regulator analysis 
was performed using the IPA and the DIA. The difference 
between the two approaches is quantitative with the IPA that 
provides an activation Z-score based on the significance and 
the expression ratio of the downstream genes plus an overlap-
ping P-value (ie, statistical approach) and the DIA providing 
an impact and direction of the impact of the TF based on the 
significance and magnitude of expression ratio and proportion 
of differentially expressed target genes.22

An overall view of the effect of the miRNA correction 
on the activation Z-score is available in Figure 4. Overall, 
we observed a large correlation (.0.95) between the results 
of miRNA-corrected dataset vs. the original dataset with the 
lowest correlations detected with the ME of 83%. When the 
overlap P-value was considered (Supplementary Figure 3),  
the correlation was less, with minimum correlation of r = 0.905 
detected for the 83–all combination. In the original dataset, 
55 upstream regulators were identified to have an activation 
Z-score more than 2 (in absolute term, ie, both activated and 
inhibited). The correction with the miRNA identified from 1 
(30–75 combination) to 10 (83–75 and 83–all combinations) 
upstream regulators that had passed the threshold of abso-
lute Z-score of $2 in either the original dataset but not the 
corrected dataset or vice versa (Supplementary File 4). The 
correction with the miRNA identified up to seven upstream 
regulators in the combinations 75–all and 83–all that had a 
Z-score absolute value of $2 but were not identified in the 
original dataset to be relevant (ie, Z-score absolute value 
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of ,2; Supplementary File 4). Similarly, using the overlap 
P-value of #0.01, the correction with miRNA identified up to 
six upstream regulators that were not captured by the analysis 
of the original dataset (Supplementary File 4).

The purpose of this work was to identify, by eliminating 
the posttranscriptional effect of miRNA, the genes whose tran-
scription is really affected by the condition(s) studied. All genes 
are regulated by upstream regulators. Thus, the identification of 
upstream regulators estimated to be significantly perturbed in 

the miRNA-corrected dataset but not in the original dataset (or 
vice versa) is likely the upstream regulators that are hidden by 
the effect of miRNA. Among the hidden upstream regulators, 
some are of biological interest (see below). Figure 5 shows the 
upstream regulators that were identified as dissimilar between 
the original dataset and the miRNA datasets by the Z-score 
absolute value of $2 or the P-value of #0.01.

Z-score. Using the Z-score, we identified estrogen recep-
tor 1 (ESR1), v-myc avian myelocytomatosis viral oncogene 
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 homolog (MYC), sphingosine-1-phosphate receptor 2 
(S1PR2),  and platelet-derived growth factor beta polypeptide 
as the most affected upstream regulators by the miRNA cor-
rection (Fig. 5A).

Estrogen is known to play a major role in mammary tissue 
development and function38,39 but also in liver, especially in 
females as observed in humans.40 In human liver, estrogen can 
play a role in metabolism and cancer prevention.41 Our data 
indicated that estrogen had a more important role in liver than 
mammary at the transcriptomic level and may have played a 
role in the difference between mammary tissue and liver.

MYC was identified to be highly relevant in the original 
dataset but not significant (Z-score absolute value of ,2) or 
not relevant at all (Z-score = 0) in miRNA-corrected datasets. 
MYC is a very important TF involved in a plethora of func-
tions, chiefly cell cycle, apoptosis, cell differentiation, and can-
cer.42,43 In liver, MYC can also play a role in the inflammatory 
response,44 while in the mammary tissue, it is involved in devel-
opment42 and apoptosis.45 The ubiquitous presence, including 
the roles in the mammary tissue and liver, and the multitude 
of functions46 make MYC an unlikely candidate to drive the 
transcriptomics difference between liver and mammary tissue. 
The correction with the miRNA seems to confirm this.

The S1PR2 is a G-protein-coupled receptor involved in 
1-phosphate-induced cell proliferation. The correction of the 
original dataset with miRNA uncovered an important role 
of this receptor in the mammary tissue compared to the liver 
(Fig. 5A). This finding appears to contrast with the scien-
tific literature, where an important role of S1PR2 has been 
identified in liver, such as a key role in the regulation of gene 
expression and lipid metabolism by bile acid,47,48 but to our 
knowledge no roles have been clearly identified in the mam-
mary tissue.

For the other upstream regulators, the difference was about 
the magnitude of the Z-score. The angiotensinogen (AGT), 
prolactin (PRL), tumor necrosis factor (TNF), and vitamin 
A were detected to play an important role in the miRNA- 
corrected dataset but a less than significant role (Z-score 
absolute value of ,2) in the original dataset, ie, they would 
have been likely disregarded in the discussion of the results. 
Among the four upstream regulators, the PRL was induced in 
liver vs. mammary tissue. The PRL has a clear role in mam-
mary gland49; however, a role in liver has been detected in rat 
as reviewed more than 20 years ago.50 Among the function 
of the PRL in the liver, there is an effect on ESR1 expres-
sion,51 indicating a connection between the higher activation 
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of ESR1 and PRL in our study. Overall, the higher activation 
of estrogen (through ESR1) and PRL in liver than in the 
mammary tissue appears contradictory considering the larger 
importance of the two in the mammary tissue vs. liver. How-
ever, our data might indicate unknown major roles of the two 
upstream regulators in liver, which is partly supported by the 
relatively few studies cited earlier. The AGT, TNF, and vita-
min A were more induced in the mammary tissue vs. liver 
(Fig. 5A). The AGT is a hormone produced by the liver with 
vasopressor function. Roles of AGT in mammary gland was 
reviewed52 and recently been detected to be important in mam-
mary development in mice.53 The TNF is a proinflammatory 
cytokine known to play roles in the response of the mammary 
gland to mastitis.54 Vitamin A helps to prevent mastitis in 
mouse mammary gland,55 but it also increases the apoptosis 
of mammary epithelial cells during lactation in cows fed with 
enhanced vitamin A during the dry period.56

Overlap P-value. Different than the activation Z-score, the 
interpretation of the overlap P-value is more difficult because 
it only indicates that an upstream regulator is important but 
does not indicate for which tissue is more important. The asso-
ciation with the Z-score results can provide such information 

(Supplementary File 4). The use of the overlap P-value of 
#0.01 (or log10 P-value = 2) indicated that insulin, methionine 
adenosyltransferase I alpha, Niemann–Pick disease type C1,  
and progesterone receptor are important upstream regulators 
when the dataset was corrected by the miRNA but not in the 
original dataset, while lysine (K)-specific demethylase 8 was 
only important in the original dataset. All the above were 
more induced in the mammary tissue than in liver (Z-score 
in Supplementary File 4). PPARGC1B was not important 
when the original dataset was corrected with 75% and 83% 
ME with the all miRNAs or the top 75% of miRNA:mRNA 
pairing (Fig. 5B), but the Z-score analysis indicated a higher 
activation in liver than in the mammary tissue in the original 
dataset (Supplementary File 4).

Overall, we know that insulin and progesterone are very 
important regulators of lactation in the mammary gland.57,58 
Methionine adenosyltransferase I alpha, a methionine adeno-
syltranferase, involved in epigenetic regulation and Niemann–
Pick disease type C1 involved in the control of cholesterol 
trafficking are likely important for the liver rather than 
mammary tissue,59,60 although the Z-score indicated other-
wise (Supplementary File 4). Lysine (K)-specific demethylase 
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8 plays a role in controlling the cell proliferation in a human 
mammary epithelial cell line61 via epigenetic regulation. Our 
analysis indicates that this upstream regulator would have 
been a false positive if the original dataset was not corrected 
by miRNA.

In summary, the correlation analysis suggested a relatively 
modest effect of the correction with miRNA on the upstream 
regulator analysis using the IPA. However, the effect was 
substantial upon specific upstream regulators. The correction 
with miRNA allowed identification of several new upstream 
regulators that were not identified by using the original dataset 
that may have important biological functions. Also, it allows 
the elimination of some upstream regulators that in reality are 

not important in the transcription regulation determining the 
difference between mammary tissue and liver.

Even though an effect of the miRNA correction on the 
upstream regulator was observed, when the upstream regula-
tors with the highest Z-score are considered (eg, $[3], encom-
passing .30 upstream regulators; Supplementary File 4), the 
difference between the datasets was negligible, and overall, it 
would not have affected the final interpretation of the data. The 
lack of effect was likely due to the very large transcriptomic 
difference between liver and mammary tissue. It is plausible 
that the transcriptomic difference between the two tissues is 
mostly due to other epigenetic factors besides miRNA, such as 
methylation and histone modifications. The effect of miRNA 
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on the transcriptome and the effect on the interpretation of 
upstream regulators would likely be larger if the analysis is 
carried out in a dataset with less drastic differences, such as 
an experiment performed in the same tissue under differ-
ent conditions, where the effect of other epigenetic factors is  
likely minor.

effect of mirNA correction on the analysis of 
upstream tFs by dynamic Impact Approach. Complete 
results from the DIA analysis of upstream TFs are reported 
in Supplementary File 5. Limitations exist for the use of the 
human-annotated database with bovine: 130 out of 280 TFs 
(46.4%) have one annotated downstream target gene and 233 
TFs (83.1%) have ,10 downstream target genes. When con-
sidering the one annotated in the microarray used in the pres-
ent experiment, we had 17.5% of TF without downstream 
target genes, 33% of TF with only 1 downstream target 
gene, and 14% of TF with only 2 downstream target genes. 
In addition, the target genes of the TF might be very differ-
ent between the two species; however, a similar database for 
bovine is not available.

In order to partly account for the above, we did not apply 
any cutoff criteria in the DIA analysis regarding the number 
of downstream target genes, but we discussed in more detail 
the TF with $2 annotated downstream target genes in the 
microarray. We have, however, reported the total number of 
annotated downstream target genes and the one differentially 
affected in each comparison in Supplementary File 5.

The correlation between using the original dataset and 
the miRNA-corrected dataset from the impact obtained by 
DIA is available in Figure 6 and that from the direction of the 
impact is available in Supplementary Figure 4. The miRNA 
correction had a minimal effect on the overall results of DIA 
analysis of upstream TFs with a correlation of .0.99 with the 
original dataset.

Even though the overall effect was minor, the effect 
on specific TFs was relatively large (Supplementary File 5). 
Figure 7 shows the results for the 12 TFs with at least two 
annotated downstream target genes in the microarray and 
with the largest change in the direction of impact due to 
miRNA correction.

Cut-like homeobox 1 (CUTL1) is a TF involved in 
morphogenesis and differentiation. Based on the literature, 
this TF appears to play a more important role in liver than 
in the mammary tissue.62,63 The correction of the dataset 
with the miRNA indicated a prominent role of this TF in 
liver over mammary (Fig. 7), supporting the findings from 
the literature.

Upstream TF 1 (USF1) is ubiquitously expressed and 
associated with hyperlipidemia and metabolic syndrome, par-
ticularly in liver.64 Our data indicated that this TF was more 
activated in liver than in the mammary tissue in the origi-
nal dataset, and the correction by all miRNAs disregarding 
their target score revealed an even higher activation in liver vs. 
mammary tissue (Fig. 7).

The cAMP responsive element-binding protein (CREB1) 
1 is a TF involved in glucose homeostasis, cell survival, and 
neurological functions.65 The importance of CREB1 in mam-
mary tissue appears minor, with some role in breast cancer,66 
while it is known to play more important roles in liver, such 
as in hepatic glucose metabolism.67 The impact of this TF 
decreased as the correction of the miRNA heightened, but a 
higher activation in the liver was revealed (Fig. 7).

The impact of the member of ETS oncogene family 
(ELK1) in participating to the transcriptomic difference 
between liver and mammary tissue was very large in the 
original dataset but decreased with the miRNA correction at 
75% and 83% with the higher target score bins (Fig. 7). The 
effect was due to a single gene, the early growth response 1 
(EGR1; Supplementary File 3), which was more expressed 
in mammary tissue vs. liver. Its level of expression ratio 
decreased in mammary tissue vs. liver after miRNA correc-
tion. This is the reason for the increase in the direction of the 
impact observed (Fig. 7). ELK1 plays an important role in 
liver regeneration,68 while its role in mammary tissue is not 
as clear.

The Spi-1 proto-oncogene (SPI1) plays a pivotal role in 
hematopoiesis. It is unclear why there is a higher activation in 
liver vs. mammary tissue; however, the liver is hematopoietic 
during the fetal stage. The correction with miRNA revealed 
an even larger activation of this TF in liver vs. mammary 
tissue despite the decrease in total impact (Fig. 7).

ESR1, as well as the DNA-damage-inducible transcript 
3 (DDIT3) and the POU class 2 homeobox 1, (POU2F1) 
had a larger activation in the mammary tissue than in liver 
in the original dataset. For ESR1, the data from DIA (Fig. 7) 
appear to contrast with the Z-score data obtained through IPA 
(Fig. 5); however, as discussed earlier, ESR1 is known to play 
a more prominent role in the mammary tissue than in liver. 
Thus, the data from DIA are more supported by the literature. 
The data in the present analysis indicate that ESR1, with a 
large number of downstream target genes, likely plays an even 
more important role in the difference between liver and mam-
mary tissue, as indicated by the larger activation in mammary 
after the miRNA correction (Fig. 7). DDIT3 and POU2F1 
had a decreased activation in mammary after miRNA cor-
rection (Fig. 7). DDIT3 (a.k.a. CHOP) is known to play a 
proapoptotic role with, among others, an important role in the 
endoplasmic reticulum stress in liver.69 Endoplasmic reticulum 
stress also appears to be important for the lactating mammary 
tissue in bovine partly driven by an increase in the expres-
sion of CHOP70 during lactation. DDIT3 is more expressed 
in the mammary tissue than in liver (Supplementary File 3). 
The correction with the miRNA indicated that the activation 
of DDIT3 in mammary tissue is likely less pronounced than 
what is observed in the original dataset.

The importance of the nuclear receptor subfamily 3 group C  
member 1 (NR3C1; glucocorticoid receptor) as an upstream 
TF increased in liver vs. mammary tissue due to the miRNA 
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correction (Fig. 7; see also NR3C2 in Supplementary File 5). 
Glucocorticoids play a major role in liver, especially in glu-
cose homeostasis.71 In mammary tissue, their roles are not as 
prominent. However, these hormones are important in milk 
protein synthesis, especially for the mRNA stability of casein 
genes.72 Furthermore, a role of glucocorticoids in breast cancer 
has been established by recent data.73 Overall, more important 
active role of glucocorticoids should be expected in liver than 
in the mammary tissue.

The ligand-dependent nuclear receptors, such as retinoid-
X-receptor beta (RXRB) and peroxisome proliferator-activated 
receptor gamma (PPARG), and the sterol response element-
binding factor 1 (SREBP1), were among the most affected TF 
by the miRNA correction. All three had a higher activation in 
liver vs. mammary tissue and a similar decrease in activation 
as the percentage of scoring pair increased (Fig. 7). This is due 
to the high miRNA correction of one common target gene, 
the LOC533894, or low-density lipoprotein receptor-related 
protein 1 (Supplementary File 4). All three TFs are some-
what involved in lipid metabolism. In bovine, PPARG and 
SREBP1 have been studied in more detail in the mammary 
tissue than in liver.74 Expression of all the genes coding for 
these TFs is higher in the mammary tissue than in liver (Sup-
plementary File 3), but most of the differentially expressed 
target genes of these TFs in the HTRIdb were related to liver 
functions (eg, LRP1 and MMP1). Even though the correc-
tion with the miRNA did not reverse the activation status of 

the three TFs, it decreased their activation in liver than in the 
mammary tissue.

overlap of tF results between dIA and IPA. Between 
IPA and DIA, 285 TFs were deemed to be partly respon-
sible for differences in the transcriptome between liver and 
mammary tissue (ie, with a Z-score and/or an impact differ-
ent than 0; Supplementary File 6). Among these TFs, only 
38 (13%) TFs were present in the results of both bioinformat-
ics approaches, likely due to the difference in databases used. 
When considering the estimated activation among the over-
lapping TFs, more than 65% were estimated to be activated 
in the same manner by both bioinformatics tools with a slight 
increase in concordance as the correction by the miRNA 
became more aggressive (65.8% in the original and 68.4% in 
83–all; Supplementary File 6). Overall, the concordance of 
the upstream TF results between the two bioinformatics tools 
can be considered modest and tended to increase by the cor-
rection of the miRNA. Our data support the importance of 
using more than one bioinformatics tool to analyze the data 
and make conclusions, as previously suggested.75

summary and conclusions
The liver and the mammary tissue have very specialized 
functions that are supported by the large difference in the 
transcriptome observed, including the miRNA transcriptome. 
The differentially expressed miRNA detected in this work  
was highly tissue specific and known to be related to either 
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figure 6. Effect of mirna correction on the impact of tfs. spearman’s correlation analysis was performed on the impact values of tfs obtained 
through the dynamic impact approach between the original dataset and each mirna-corrected dataset using a combination of targetscan score (top 25, 
50, and 75 target scores or all mirnas) with the proportion of hypothetical mirna effect on mrna (30%, 50%, 75%, or 83% mrna reduction).
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liver or mammary tissue. We have attempted to provide a  
bioinformatics method to correct the mRNA using the 
miRNA in order to improve the reliability of the upstream 
regulator analysis.

Our analysis indicated that the effect of miRNA was rel-
atively large on the transcriptome, especially using the larger 
theoretical effect of the miRNA on the mRNA. The correction 
with the miRNA affected the statistical outcomes, revealing a 
larger number of DEG compared to what was observed in the 
original dataset. The change in the number of DEG had an 
effect on the upstream regulator analysis. The effect was more 
pronounced in the liberal miRNA:mRNA target score bins 
compared to the conservative approach (ie, top 25%) and in 
the higher assumed effect of miRNA on reducing the mRNA 
(ie, 83% mRNA reduction). The use of different criteria to 
correct the mRNA by the miRNA had a substantial effect 
on the dataset but did not have a large effect on the upstream 
regulator analysis.

The use of an enrichment analysis approach, yielding the 
activation Z-score and the overlap P-value, or DIA, which 
is not a statistical approach, revealed modest changes in the 
overall interpretation of upstream regulators. However, the 
effect on specific upstream regulators was substantial, ulti-
mately affecting the interpretation of the data. Contrary to 
DIA outputs where the results were largely supported by the 

scientific literature, the results from the enrichment approach 
were not always supported by the scientific literature. We also 
detected a relatively modest overlap between the results of the 
two bioinformatics tools.

In conclusion, our approach allowed for a correction of 
the mRNA using the miRNA, and we demonstrated that this 
can affect the results of the upstream regulator analysis, par-
ticularly for specific upstream regulators.

The large transcriptomic difference between liver and 
mammary tissue observed might be resilient to miRNA 
effect, minimizing the possibility of observing large effects 
on the upstream regulator analysis. However, despite this, our 
approach was able to reveal the importance or reveal the lack 
of importance for several upstream regulators. For this reason, 
we expect the approach to have a larger effect in datasets where 
the differences between samples are not as large.
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figure 7. top tfs affected by the mirna correction in the dynamic impact approach. the top 12 tfs with at least two downstream target genes in the 
annotated microarray affected by the various combinations of mirna correction of the original mrna dataset (ie, targetscan top 25%, 50%, and 75% 
target scores or all mirnas with 30%, 50%, 75%, or 83% mrna reduction). shown are the impact (in the left Y-axis) and the direction of the impact 
(in the right Y-axis). the three numbers inside each graph denote the number of annotated target genes in the microarray, the number of differentially 
expressed target genes between liver and mammary, and the number of target genes affected by the mirna correction, respectively.
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supplementary Material
supplementary File 1. Scripts used to correct the mRNA 

using the miRNA.
supplementary File 2. Complete statistical results for 

the miRNA dataset. Reported are the miRNA symbol, the 
FDR, the expression ratio between liver and mammary, and 
the number of calculated differentially expressed miRNA 
with two levels of FDR cutoff.

supplementary File 3. Complete statistical results for 
the mRNA data for the original dataset (ie, not corrected with 
miRNA) and the dataset corrected with the miRNA using a 
combination of TargetScan score (top 25, 50, and 75 target 
scores or all miRNAs) with the proportion of hypothetical 
miRNA effect on mRNA (30%, 50%, 75%, or 83% effect on 
reducing the mRNA abundance).

supplementary File 4. Complete results of upstream 
regulators from IPA. Reported are the results for the activation 
Z-score and for the overlap P-value for the original dataset (ie, 
not corrected with miRNA) and the dataset corrected with 
the miRNA using a combination of TargetScan score (top 25, 
50, and 75 target scores or all miRNAs) with the proportion 
of hypothetical miRNA effect on mRNA (30%, 50%, 75%, or 
83% effect on reducing the mRNA abundance).

supplementary File 5. Complete results of upstream 
TFs from dynamic impact approach. Reported are the sum-
mary and detailed results for the impact and direction of the 
impact of the upstream TFs for the original dataset (ie, not 
corrected with miRNA) and the dataset corrected with the 
miRNA using a combination of TargetScan score (top 25, 50 
and 75 target scores or all miRNAs) with the proportion of 
hypothetical miRNA effect on mRNA (30, 50, 75, or 83% 
effect on reducing mRNA abundance). Shown are also the 
number of differentially expressed downstream target genes 
for each TF and the calculation of the percentage of variation 
in impact and direction of the impact of the upstream TFs for 
all corrected dataset vs. the original dataset.

supplementary File 6. Concordance of upstream analy-
sis results between DIA and IPA.

supplementary Figure 1. Venn diagram of target predic-
tion for four databases. The Venn diagram reports the number 
of target genes that were identified by TargetScan, miRanda, 
DIANA, and PicTar and their overlap.

supplementary Figure 2. Effect of miRNA correction 
on expression ratio between liver and mammary. Spearman’s  
correlation analysis was performed on the expression ratio 
between liver and mammary between the original data-
set and each miRNA-corrected dataset using a combina-
tion of TargetScan score (top 25, 50 and 75 target scores or 
all miRNAs) with the proportion of hypothetical miRNA 
effect on mRNA (30%, 50%, 75%, or 83% effect on reducing 
mRNA abundance).

supplementary Figure 3. Effect of miRNA correc-
tion on overlap P-value. Spearman’s correlation analysis was 
performed on the -log10 overlap P-value of the upstream 
regulators obtained by IPA between the original dataset 
and each miRNA-corrected dataset using a combination of 
TargetScan score (top 25, 50 and 75 target scores or all miR-
NAs) with the proportion of hypothetical miRNA effect 
on mRNA (30%, 50%, 75%, or 83% effect on reducing the 
mRNA abundance).

supplementary Figure 4. Effect of miRNA correc-
tion on direction of the impact of transcriptional factors. 
Spearman’s correlation analysis was performed on the direc-
tion of the impact values of transcriptional factors obtained 
through the dynamic impact approach between the original 
dataset and each miRNA-corrected dataset using a combi-
nation of TargetScan score (top 25, 50, and 75 target scores 
or all miRNAs) with the proportion of hypothetical miRNA 
effect on mRNA (30%, 50%, 75%, or 83% effect on reducing 
mRNA abundance).
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