
HYPOTHESIS AND THEORY
published: 22 September 2021

doi: 10.3389/fncom.2021.739515

Frontiers in Computational Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 739515

Edited by:

Germán Mato,

Bariloche Atomic Centre (CNEA),

Argentina

Reviewed by:

Alessandro Treves,

International School for Advanced

Studies (SISSA), Italy

Thomas Wennekers,

University of Plymouth,

United Kingdom

*Correspondence:

Fangwen Yu

yufangwen@tsinghua.edu.cn

Received: 11 July 2021

Accepted: 20 August 2021

Published: 22 September 2021

Citation:

Gong Z and Yu F (2021) A

Plane-Dependent Model of 3D Grid

Cells for Representing Both 2D and

3D Spaces Under Various Navigation

Modes.

Front. Comput. Neurosci. 15:739515.

doi: 10.3389/fncom.2021.739515

A Plane-Dependent Model of 3D Grid
Cells for Representing Both 2D and
3D Spaces Under Various Navigation
Modes
Ziyi Gong 1,2 and Fangwen Yu 1*

1Center for Brain Inspired Computing Research, Tsinghua University, Beijing, China, 2Department of Neurobiology, School of

Medicine, Duke University, Durham, NC, United States

Grid cells are crucial in path integration and representation of the external world. The

spikes of grid cells spatially form clusters called grid fields, which encode important

information about allocentric positions. To decode the information, studying the spatial

structures of grid fields is a key task for both experimenters and theorists. Experiments

reveal that grid fields form hexagonal lattice during planar navigation, and are anisotropic

beyond planar navigation. During volumetric navigation, they lose global order but

possess local order. How grid cells form different field structures behind these different

navigation modes remains an open theoretical question. However, to date, few models

connect to the latest discoveries and explain the formation of various grid field structures.

To fill in this gap, we propose an interpretive plane-dependent model of three-dimensional

(3D) grid cells for representing both two-dimensional (2D) and 3D space. The model

first evaluates motion with respect to planes, such as the planes animals stand on and

the tangent planes of the motion manifold. Projection of the motion onto the planes

leads to anisotropy, and error in the perception of planes degrades grid field regularity. A

training-free recurrent neural network (RNN) thenmaps the processedmotion information

to grid fields. We verify that our model can generate regular and anisotropic grid fields,

as well as grid fields with merely local order; our model is also compatible with mode

switching. Furthermore, simulations predict that the degradation of grid field regularity

is inversely proportional to the interval between two consecutive perceptions of planes.

In conclusion, our model is one of the few pioneers that address grid field structures

in a general case. Compared to the other pioneer models, our theory argues that the

anisotropy and loss of global order result from the uncertain perception of planes rather

than insufficient training.

Keywords: grid cell, space representation, path integration, navigation, two-dimensional space, three-

dimensional space

1. INTRODUCTION

Navigation is crucial for animals to survive in nature. Animals have to navigate for
foraging, exploring environments, and mating. During navigation, animals need to be aware
of their allocentric self-positions by integrating their self-motion and other somatosensory
information, a process known as path integration (Darwin, 1873; Etienne and Jeffery, 2004;
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McNaughton et al., 2006). Grid cells in mammalian medial
entorhinal cortex (mEC) are crucial for this process, representing
space like a coordinate system (McNaughton et al., 2006; Fiete
et al., 2008; Horner et al., 2016; Gil et al., 2018; Ridler et al.,
2020). The spatial firing fields of grid cells, called grid fields, form
hexagonal lattice during horizontal planar navigation (Hafting
et al., 2005; Fyhn et al., 2008; Doeller et al., 2010; Yartsev et al.,
2011; Killian et al., 2012; Jacobs et al., 2013). It is then natural to
inquire about the grid fields beyond planar navigation, as animals
live in a three-dimensional (3D) world and carry multiple modes
of navigation–planar, multilayered, and volumetric (Finkelstein
et al., 2016). Because hexagonal lattice is the most efficient
packing in two-dimensional (2D) space, a reasonable prediction
is one of the maximally efficient 3D structures: face-centered
cubic (FCC) or hexagonal-close-packed (HCP) (Gauss, 1840;
Mathis et al., 2015).

However, recordings of grid cells on sloped, multilayered
and volumetric environments (Hayman et al., 2011, 2015; Casali
et al., 2019; Kim and Maguire, 2019; Ginosar et al., 2021;
Grieves et al., 2021) challenge the theoretical prediction of
isotropic 3D grid fields. Hayman et al. (2011) uncovered that
when navigating on a pegboard and a helix, rats manifest
vertically elongated grid fields; this anisotropy suggests columnar
fields (COL) in 3D. In the subsequent research, rat grid fields
on slopes (Hayman et al., 2015) and a vertical wall (Casali
et al., 2019) could fit less-organized hexagonal lattice, instead
of oblique slices of FCC or HCP. In other words, grid cell
computation is projected onto the 2D arenas. During volumetric
navigation, grid fields at least preserve local order. Two latest
studies on rats navigating in a cubic lattice and bats flying in
a rectangular room report that the volumetric grid fields do
not fit into HCP, FCC, or COL, but are more regular than
a random organization of fields (RND) (Ginosar et al., 2021;
Grieves et al., 2021). On the contrary, another study implies that
FCC could explain the fMRI activities of the entorhinal cortex
of human subjects navigating in a 3D virtual reality paradigm
(Kim and Maguire, 2019). Together, the available reports point
to the presence of multimodality in grid codes, corresponding
to the various and complicated forms of navigation in reality
(Finkelstein et al., 2016).

A theoretical study is crucial to summarize the findings and
explicate how grid cells represent the space during different
navigation modes. To date, there lacks an interpretive model
that encompasses all the latest experimental observations, despite
the theoretical efforts predicting the neural basis of hexagonal
lattice during planar navigation (Kropff and Treves, 2008;
Burak and Fiete, 2009; D’Albis and Kempter, 2017; Banino
et al., 2018; Cueva and Wei, 2018; Soman et al., 2018;
Gao et al., 2019, 2021; Zeng et al., 2019). Previously, three
volumetric grid cell models were raised. One of them does
not require training; it contains ring attractors that generate
stripes, and the combination of them gives rise to spherical
fields (Horiuchi and Moss, 2015). But this approach does not
account for the loss of global order. On the contrary, Stella
and Treves (2015) and Soman et al. (2018) proposed two
plasticity-based models, where training is necessary. In both of
the works, the training is massive, while it is undetermined

whether regular grid fields need the training to a comparable
degree. More importantly, they attribute the loss of grid field
regularity to insufficient training. Yet, insufficient training
may be overcome by the dynamic learning capacity of the
nervous system (refer to Discussion). As such, we alternatively
focus on perception and cognition, another possible source of
regularity degradation.

To explain the observed grid field structures, we propose
an overarching theory on the grid cell computation in 3D,
and implement the theory with a training-free recurrent neural
network (RNN) extended from (Gao et al., 2021). The model is
capable of representing both 2D and 3D spaces during various
navigation modes. Specifically, it contains a representational
model of motion and an RNN generating grid cell activities. The
representational model interprets navigation with respect to real
or virtual planes. For instance, the planes can be the supportive
planes that navigators stand on or the tangents planes of the
motion manifold. At each small time window, the displacement
is decomposed in to two components: one on the corresponding
plane, and the other is perpendicular to the plane. Then, the
RNN updates itself with the weights dependent on the two
components. We prove that the recurrent update is rotational
and gives rise to spatial periodicity. With a proper biologically
meaningful choice of the basis of the recurrent connection
matrices, regular grid fields in 2D and 3D spaces can emerge.

While generating regular grid fields is a basic requirement,
the plane dependency of our model further presents biologically
plausible interpretations of the experimental observations. First,
during the computation, motion can be projected onto the
planes. The projection may happen when path integration is
on a manifold rather than a volumetric space. As a result,
path integration is anisotropic, as observed in Hayman et al.
(2011), Hayman et al. (2015), and Casali et al. (2019). Second,
the perception of planes could be uncertain. A perceptual error
occurs due to the limitation in the sensors, cognitive errors,
to name a few. The error could perturb the RNN updates and
explain why grid fields lose global order in volumetric navigation
reported by Grieves et al. (2021) and Ginosar et al. (2021). Third,
the model allows switching among navigation modes categorized
by plane definition, grid cell periodicity, perceptual error, etc.
This capacity makes our model more biologically plausible than
other models that merely work on a single regular arena because,
in nature, navigation is a combination of various simple modes
(Finkelstein et al., 2016).

We test our model with simulated trajectories in 2D and 3D,
and investigate how the uncertain perception of planes influences
grid field regularity. Simulated grid fields in hexagonal lattice
directly emerge during planar navigation. During multilayered
navigation and navigation onmanifolds, the projection of motion
leads to anisotropic grid fields. Grid fields during volumetric
navigation ideally fit FCC, but the uncertain perception of planes
diminishes global order. The simulations further predict that the
degradation of regularity increases as the time interval between
two consecutive perceptions decreases. Finally, we compare our
model with two interpretive models considering special 3D cases
(Horiuchi and Moss, 2015; Wang et al., 2021) and two training
models in 3D space (Stella and Treves, 2015; Soman et al., 2018),
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FIGURE 1 | (A) A Schematic of the screw axis system. (B–D) Plane-dependent computation. (B) The motion is projected onto a single plane, such as the horizontal

plane defined by gravity and is a special case of (C). (C) The motion is projected onto instantaneous planes, such as the tangent planes to the motion manifold. (D)

Path integration depends on the local cylindrical systems with respect to the planes. (E) Plane-independent computation; the path is interpreted as a curve in the

static Euclidean space R
3.

and provide suggestions on experiments and possible extensions
to our model.

2. METHOD

Path integration maps egocentric motion information to
allocentric position information. The egocentric motion
information can be represented with 6-degree-of-freedom
(6-DoF) motion. In 6-DoF motion, a rigid body rotates and
translates about three orthogonal axes with origins at the body,
thus necessitating six variables to represent the changes. The two
egocentric velocities should undergo a cognitive process before
becoming the direct input to grid cells.

The first component, section 2.1, is a model of the
possible cognitive representation of the 6-DoF motion. We put
forth that the egocentric velocity information is represented
with respect to perceived planes. Next, a von Mises-Fisher
random process is introduced for the uncertain perception
of planes. In section 2.3, we describe and derive a weight-
variable RNN model for generating grid cell spiking from the
perceived motion. Finally, trajectory generation, prototypical
structure generation, and analytical metrics are described in the
sections 2.4–2.6.

2.1. A Representational Model of 6-DoF
Motion in 3D Space
Denote the 3D position of an animal at time t by xt . The
animal has rotational velocity ωt and translational velocity vt . Let
‖ωt‖ = θt .

For θ 6= 0, as per Chasles’ theorem (Chasles, 1830), the
motion is identical to simultaneous rotation about a screw axis
and translation along that axis. This is called the screw axis
representation (ut , ht , qt).

• ut = ωt/θt is the unit vector along the screw axis.
• ht = vt · ωt/θ

2
t is the screw pitch, i.e., the ratio of the linear

speed to the angular speed.
• qt = ut × vt/θt is a point on the screw axis, marking the

displacement of the axis from the origin.

In this study, we assume that the animal performs egocentric-
allocentric transformation (Finkelstein et al., 2016; Bicanski

and Burgess, 2020) on either the velocities or the screw axis
representation. Either way produces the same allocentric neural
encoding of motion based on the screw axis. To avoid ambiguity,
in the following content, right superscript w stands for vectors in
the reference frame with respect to the 3D world or gravity, Fw

t .
We assume that within a short time window 1t, the animal is

performing a uniform helical motion. We are able to decompose
the displacement 1x into two components: 1x = 1x⊥ +
1x‖ (refer to section 1, Supplementary Material). 1x⊥ is the
displacement on the plane defined by uwt (equivalently, the
displacement perpendicular to uwt ) and1x‖ is the elevation along
uwt (the displacement parallel to uwt ). Figure 1A illustrates the
screw axis system and ‖1x⊥‖, ‖1x‖‖.

For convenience, let r = ‖1x⊥‖ and b = ‖1x‖‖. Define a
cylindrical coordinate system with respect to ut : (r,φ, b). Here, φ
is the direction of planar displacement. The representation of 1x

in this coordinate system is given by Equation 1:

1x = M̂u





rt cosφt

rt sinφt

bt



 = rtM̂
u





cosφt

sinφt

0



+ btM̂
u





0
0
1





= rtM
uγ t + buwt

(1)

Where, M̂u is a rotational mapping R3 → R
3 dependent on uwt ,

Mu is the first two columns of M̂u, and γ t = [cosφt , sinφt]T .
Therefore, a spatial displacement1x as a result of rotation and

translation can be interpreted in three distinct ways:

A1 b = 0, r 6= 0
The animal is performing a circular motion. If the motion
is internally represented as 2D, the dimensionality can be
reduced by clamping Mu ← I. This case is identical to B1 in
terms of computation (see below), either as a planar circular
motion or a parameterization of a 3D path. This mode could
exist in the planar navigation experiments (Hafting et al., 2005;
Fyhn et al., 2008; Doeller et al., 2010; Yartsev et al., 2011;
Killian et al., 2012; Jacobs et al., 2013; Hayman et al., 2015).

A2 b 6= 0, r 6= 0
The animal is performing a helical motion. The path can be
projected onto the plane defined by uwt and the computation
along the vertical axis is degraded or discarded. This mode can
explain multilayered navigation: for instance, navigation on
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a supportive helix (Hayman et al., 2011). The projected path
integration is identical to A1 and B1.

A3 b 6= 0, r = 0
The animal is performing a spatial translation with self-
spinning, such as a spinning bullet. Currently, there is no
strong evidence that clearly demonstrates how self-spinning
acts on the entorhinal representation of space. Hence, the
computation might be the same as B3 (see below).

Now, consider the case θ = 0, i.e., no rotation. A spatial
displacement1x can also be described by this coordinate system,
with three particular interpretations:

B1 b = 0, r 6= 0; uwt is the normal vector of the plane of navigation
The animal is performing a planar (2D) translation, e.g.,
navigating on a surface;Mu ← I. This is expected to be in the
experiments on horizontal planar navigation (Hafting et al.,
2005; Fyhn et al., 2008; Doeller et al., 2010; Yartsev et al., 2011;
Killian et al., 2012; Jacobs et al., 2013), slope (Hayman et al.,
2015), and vertical wall (Casali et al., 2019).

B2 b 6= 0, r 6= 0
The animal is performing a spatial translation with a reference
to a plane, which is real (supportive) or imaginary. The path
can be projected onto the plane and the dimensionality is
reduced. For example, rats navigating on a vertical pegboard
jump vertically most of the time, and the grid fields seem to be
projected onto the horizontal plane (Hayman et al., 2011).

B3 b 6= 0, r = 0; ut is parallel to the displacement at t
The animal is performing a pure spatial (3D) translation
without referring to a plane. This case is divergent from all
above in that it does not require perceiving a plane, i.e., plane-
independent. It is ergo accurate and does not give rise to plane
perception error (refer to section 2.2 for more).

To summarize, we hypothesize that the entorhinal representation
of the space during navigation at any time is either anchored
on a plane defined by uwt (A1, A2, B1, and B2; Figures 1B–D)
or pure 3D (B3; Figure 1E). In cases of A1, A2, B1, and B2, the
navigation can be projected onto the instantaneous plane(s) and
the dimensionality is thus reduced (Figures 1B,C).

2.2. Uncertain Perception of the Changing
Axis
The previous section establishes a plane-based representation of
motion. The perception of planes should naturally be uncertain,
or stochastic: perceptual error could arise from multiple sources,
such as the limitation of sensors, illusion, transmission error,
and cognitive error. The probabilistic perception is expected
to happen in the rotational mapping M̂u. However, instead
of having a joint distribution of the elements of the matrix,
stochastic rotational mapping can be modeled by a random
variable based on the rotational axis uwt . One way to define M̂u

that satisfies Equation 1 is a rotation of 180◦ about the axis
along the average of uwt and [0, 0, 1]T . The average is denoted by
zt = (uwt + [0, 0, 1]T)/2.

M̂u
t+τ = 2

ztz
T
t

zTt zt
− I for

t

τ
∈ Z
+ (i.e., t is a multiple of τ ) (2)

FIGURE 2 | (A) Probability density heatmap of a three-dimension (3D) von

Mises-Fisher distribution (the axes are arbitrary, so not marked in the figure).

The probability is defined on the surface of the sphere only (no probability

inside or outside the sphere). The distribution is radially symmetric and

centered at the direction defined by u. The area of high probability (bright

color) is controlled by κ. (B) A schematic of the recurrent neural network (RNN)

is described by Equations (4, 5). The elements of a(x) have two pathways,

implemented as variable weight matrices Wu
b and Wu

r (φ).

The derivation is in section 2, Supplementary Material. In this
study, we assume that the rotation is discrete-time variable,
changing with period τ . Larger τ indicates that less attention,
or computation resource, is allocated for such planes. It reduces
computation, but may lead to the accumulation of perceptual
errors. τ is referred to as “refresh interval” below, because the
assumed discrete process is analogous to a monitor that refreshes
at a certain rate.

Now, the deterministic variable uwt is replaced with a
continuous random variable ξ , i.e., the perceived uwt . ξ is
also a directional vector and follows a 3D von Mises-Fisher
distribution, which is a continuous probability distribution
defined on the surface of a unit 2-sphere (Fisher, 1953). It is
optimal for Gaussian-like distribution of 3D direction vectors. In
other words, the probability of perceiving a tilted plane relative
to the actual plane is the same for all directions, if the angle
between ξ and the actual uwt is the same; at the same direction,
the probability of perceiving a tilted plane decreases as the
angle between ξ and the actual uwt increases (Figure 2A). The
von Mises-Fisher distribution of a direction ξ ∈ R

3 has the
probability density function

P(ξ |u, κ) = C3(κ) exp(κξTu) (3)

where C3 is the normalizing factor. u anchors the center of the
distribution, and the concentration parameter κ controls the
width or spread of the distribution. However, different from the
variance of a Gaussian distribution, the variation is reversely
proportional to κ . Perception is accurate as κ → ∞. Thus, we
term κ “perceptual certainty” in the following content.

Finally, for animals performing 2D navigation or navigation
projected onto 2D, the third axis could be perceptually neglected,
i.e., M̂u ← I. The perception of the projection plane is P(ξ |u0, κ),
where u0 = [0, 0, 1]T . For animals performing 3D navigation,
it is beneficial to have the 3D allocentric reference frame. The
perception model is, therefore, P(ξ |uwt , κ).
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2.3. 3D Grid Cell Model Based on a RNN
In the end, there needs a model that generates spikes from
motion information. We adopt the model from Gao et al.
(2021) and extend it to 6-DoF motion in 3D. Starting from
a generic framework, we add more conditions for 3D and
derivations for the computation in the vertical direction, and find
a biologically meaningful decomposition of recurrent connection
matrices. The procedures from which the generic framework is
developed are presented in section 3, Supplementary Material.
The generic functions in the framework can be implemented
with different models, among which the simplest is the linear
model. Implementing the framework with linear models results
in a RNN, which is presented in this section.

The mEC activities are defined as a vector dependent on its
current position, a(x). Notice that we use the termmEC activities
instead of grid cell activities, because each element of a does not
necessarily stand for a single neuron. It instead could represent a
subpopulation of neurons. As we will discuss later, a could be the
read-out of a few interconnecting ring attractors.

First, we consider an infinitesimal update δx. Let an update on
the neural activities be the product between a weight matrix and
the original neural activities. The weight matrix is a variable that
depends on u and φ. Moreover, let the weight matrix be the sum
of an identity matrix and two variable matrices, Wu

r (φ) and Wu
b
.

Wu
r (φ) controls the update related to1x⊥, whileWu

b
controls the

update related to 1x‖. We can write Equation 4 as follows:

a(x+ δx) = (I +Wu
r (φ)δr +Wu

b δb)a(x) (4)

The model, with infinitesimal updates, is an RNN, because
the elements of a form an interconnected graph that meets
the descriptions of RNN (Figure 2B). However, this model
essentially differs from a typical RNN in that the weight matrix in
this study is a dependent variable, while the weights of a typical
RNN are constant after parameter tuning.

Because the update is recurrent, the weight matrix is left-
multiplied N times for a finite displacement 1x. If we let δx =
limN→∞1x/N, the product of matrices approaches a matrix
exponential as N →∞, resulting in another RNN.

a(x+1x) = lim
N→∞

(I +Wu
r (φ)r/N +Wu

b b/N)Na(x)

= exp(Wu
r (φ)r +Wu

b b)a(x)
(5)

The weight matrices Wu
r (φ) and Wu

b
do not require training

when they can meet the ideal conditions. That is, the model
should be stable given different u, φ, and b, and the neurons
should be complimentary for all x so as to encode the entire
space in scope. We can diagonalize the matrices such that they
are linearly based on Mu, γ t , and u. The derivation is in section
4, Supplementary Material.

Wu
r (φ) = Udiag(iBMuγ t)U

∗

Wu
b = Udiag(iBu)U∗

(6)

The matrix B is the basis, since it represents u and Muγ t

in another set of axes that are encoded in the weights

internally. Furthermore, both B and U can have static solutions
that can satisfy the ideal conditions (refer to section 4,
Supplementary Material). One of the solutions of B and the
corresponding U is

B = b0R0









2
√
2/3 0 −1/3

−
√
2/3

√
6/3 −1/3

−
√
2/3 −

√
6/3 −1/3

0 0 1









,

U = 1

2









1 1 1 1
1 exp(−2iπ/3) exp(iπ/3) −1
1 exp(iπ/3) exp(−2iπ/3) −1
1 −1 −1 1









(7)

In this study, b0 6= 0 is a constant finite scale and R0 is a constant
rotation matrix. b0 and R0 can be arbitrary. In our simulation,
for better visualization, we set b0 = 10 and R0 correspond to the
rotation of 8 degrees.

The specific solution of the basis B in Equation 7 is biologically
meaningful in ideal cases. With proper phase differences between
neurons, periodic activities along the row vectors of B ought
to form either HCP or FCC in 3D navigation, as predicted by
Mathis et al. (2015). In 2D navigation, periodic activities along the
three vectors of its planar projection form the hexagonal lattice
(Gao et al., 2021). Preliminary experiments suggest that a good
initialization of neural phases is [1, eiπ , 1, ei3π/2]T .

Note that a is a complex vector. The benefit is that complex
values efficiently encode periodicity. On the one hand, each
complex element can be considered as the “read-out” of a 1D
ring attractor network. The absolute value of a complex element
is proportional to the peak of the neural activities in the attractor.
The phase of the complex element indicates where the peak
locates in the ring attractor. On the other hand, each complex
element can be considered as a single neuron whose subthreshold
regime is periodic. These neurons are mediated by perception
and cognition in a complicated manner.

Ultimately, each element of a(x) spikes according to a Poisson

random process with rate λ =
[

λ0 + exp(−c(a′ − λ1))
]−1

where a′ is the normalized real part of an element in a. The
normalization eases the comparisons to find the appropriate scale
b0. λ0, c, and λ1 are the shape parameters of the logistic mapping.
The shape parameters do not affect the results qualitatively as
long as the curve of the function remains in an “S” shape and
the sharp changing part of the curve is >0.5, i.e., midpoint of
the range of a′. In all of our simulations, λ0 = 1.1, c = 15, and
λ1 = 0.7.

2.4. Trajectory Generation
Trajectories are limited in a [−1, 1] × [−1, 1] × [−1, 1] cube. At
each time step t,1xt,i is first sampled from a uniform distribution
U(ai, bi), where

ai = max{xt−1,i −1xmax,i,−1} (8)

bi = min{xt−1,i +1xmax,i, 1} (9)

For 3D navigation, the algorithm draws uwt from a von Mises-
Fisher distribution after every interval τ of refreshing the
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perception and calculates φt , rt , and bt accordingly. For 2D
navigation, the altitudes (Z-axis values) are simply discarded. For
navigation onmanifolds, the altitudes are replaced by the outputs
of the functions that describe the manifolds. The trajectories for
the results are generated with constant parameters 1xmax,i =
0.08, κtraj = 200 (3D only), and total number of steps T = 105.

2.5. Prototypical Structure Generation
For FCC and HCP structures, the vertices that fall into the
[−1, 1] × [−1, 1] × [−1, 1] cube are located. A comparative
amount (≈ 100) of RND vertices is drawn uniformly from the
cube afterward. For COL structure, layers of a hexagonal lattice
with the same offset are stacked with 1/10 inter-layer distance
of FCC or HCP. All the vertices are rotated by 8 degrees along
the vertical axis, to be aligned with the simulation. For every
vertex of a prototypical structure, 500 points are generated from
a 3D normal distribution centered at that vertex. We confirm
both visually and via MeanShift clustering algorithm that the
generated FCC, HCP, and RND have well-separable spherical
clusters, while COL has columns.

2.6. Metrics to Analyze the Spatial
Distributions of Spikes
To date, no single measure perfectly describes the spatial
distribution of spike locations from all aspects. We use an array
of measures to maximize the comprehensiveness of our analysis
on the distribution, involving sparsity index, spatial information,
inter-field distance (IFD), structure scores, and modified radial
autocorrelation (MRA). Spatial information and sparsity are
used widely to describe the regularity of spikes in space. IFD,
structure scores, andMRA are adapted to compare the 3D spatial
distributions specifically. IFD is based on the spike locations;
spatial information and sparsity index are based on the 3D spike
distribution of each neuron in each trial; and structure scores
and MRA are based on the discrete autocorrelation of the 3D
spike distribution.

2.6.1. Sparsity Index and Spatial Information
The spatial information and sparsity index measures the bit per
spike and compactness of the firing fields (Skaggs et al., 1993;
Jung et al., 1994). Specifically,

Spatial Info. =
∑

i

pi
λi

〈λ〉 log2
λi

〈λ〉

Sparsity Index = 〈λ〉
2

〈

λ2
〉

(10)

where λi is the firing rate in bin i and pi is the probability of
animal location in bin i.

In addition to the typical calculation of the two metrics, we
perform standardization similar to Grieves et al. (2021). First, the
spatial information and sparsity index of the original spike train
of each neuron in each trial is achieved. Then, the means and SDs
of spatial information and sparsity index are measured from 50
random shuffles of the original spike train. Using the means and
SDs of the shuffled spike trains, the Z-scored spatial information
and sparsity index of the trial can be achieved.

2.6.2. Inter-field Distance
Given the spike locations, we apply the MeanShift clustering
algorithm (Cheng, 1995) provided by the scikit-learn package
(Pedregosa et al., 2011) to identify clusters. The bandwidth is
0.25, and the minimal bin frequency is 25. To reject noise, the
cluster_all tag is set to false and clusters with sizes smaller
than 30 are removed. Lastly, there are fields that only have small
portions inside the cube, so the means of those portions are not
the real centers. We tentatively eliminate the clusters with means
that are too close to the boundaries (distance < 0.05). The IFD
are finally calculated from the remaining clusters.

2.6.3. Structure Scores
We follow the method specified by Stella and Treves (2015)
and Grieves et al. (2021) to perform planar symmetry analysis
on the prototypical structures and adjust the HCP, FCC, and
COL scores (χHCP, χFCC, and χCOL, respectively) based on the
heatmaps of hexagonal grid scores and squared grid scores
(Supplementary Figure S1A). Each pixel of the heatmap is the
grid score of an oblique slice of the 3D autocorrelation. To
calculate the structure scores, first, the local maxima of hexagonal
grid score maps, {αi}i, and of squared grid score maps, {βi}i, are
located for HCP, FCC, and COL (Supplementary Figure S1A);
then, χFCC, χHCP, and χCOL scores equal median{αi}i +
median{βi}i. χFCC, χHCP, and χCOL of their structures are
significantly higher than of the others; χFCC and χHCP of
COL are significantly lower (Supplementary Figure S1B). The
averaged scores of their corresponding prototypes will be used
for comparisons in the analysis of simulation results.

2.6.4. Modified Radial Autocorrelation
Radially averaged autocorrelation indicates the presence of
repeated radial-symmetric patterns. Yet the number of visited
bins at a specific radius, N(r), grows quadratically with the
radius, vanishing the mean of autocorrelation especially when
the patterns are widely spaced. Hence, to better reveal the
spatial patterns, the radial sum of autocorrelation is divided by√
N(r) instead of N(r). That is, the modified autocorrelation is

calculated as Â(r) = 1√
N(r)

∑√
i2+j2+k2∈(r−1,r] Aijk, where A is

the autocorrelation and max r is the half of the edge length of the
cube A.

3. RESULTS

Experiments are done to verify and investigate the following:

1. Our model is capable of generating regular grid fields during
different navigation modes (section 3.1).

This is the foundation of our hypothesis that perceptual
error degrades grid field regularity (investigated in 2) and
compatibility with mode switching (investigated in 3). We test
the model with trials on planar, multilayered, manifold, and
volumetric navigation.

2. Uncertain perception reduces grid field regularity, especially
in volumetric navigation where grid fields lose global order
and only preserve local order (sections 3.2, 3.3).
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FIGURE 3 | An example of the spike locations in trials with accurate

perception, colored by Z-axis intervals, of one of the neurons during (A)

volumetric navigation, (B) navigation on a manifold formed from four Gaussian

surfaces, and (C) Two-dimensional (2D) navigation or navigation projected

onto the horizontal plane. (D) Trial with perceptual uncertainty, colored by the

refresh intervals. The blue curve in (B,C) show the trajectories.

Our simulations support this hypothesis. We further
analyze how the grid field regularity is manipulated by two
perceptual parameters: perceptual certainty, κ , and refresh
interval, τ (refer to section 2.2). We found that decreasing
refresh interval gradually deprives the global order of grid
fields. κ , on the other hand, has a non-linear influence on the
grid field regularity.

3. The model allows switching among modes (section 3.4).
We simulate the trajectories in a half-flat, half-tilted

arena to demonstrate compatibility of our model with mode
switching. Mode switching is stable as long as a neural phase
restoring mechanism exists.

3.1. Numerical Simulation of the Grid Field
We numerically simulated enough trials of grid cell spiking with
different perceptual certainty κ and refresh interval τ . Eight
trajectories of 105 time steps are first generated, evenly covering
the [−1, 1] × [−1, 1] × [−1, 1] cube multiple times. For each
trajectory, the plane-dependent modes (A1, A2, B1, and B2)
are run with b0 = 10, κ ∈ {300, 400, 500, 600,∞}, and τ ∈
{1, 5, 10, 50, 102, 5× 102, 103, 5× 103, 104, 5× 104, 105}. The four
neurons of the same network share similar characteristics, but
have different phases. This has a minor effect on the following
analyses, all of which are shift-invariant. Hence, we achieve 32
samples for each (κ , τ ).

Visually, the locations of the simulated spikes agree with
our theoretical prediction. For plane-dependent modes, spike
locations of trials with both accurate (κ → ∞) and uncertain
perception form clusters (Figure 3). During volumetric

navigation, the structures of the trials with accurate perception
resemble FCC structure from observation (Figure 3A),
while those of trials with perceptual uncertainty are not
visually identifiable (Figure 3D). Planar navigation shows
hexagonal lattice (Figure 3C), confirming with the experimental
observations (Hafting et al., 2005; Fyhn et al., 2008; Doeller et al.,
2010; Yartsev et al., 2011; Killian et al., 2012; Jacobs et al., 2013).
Navigation on some simple manifolds is simulated as well with
τ = 10 and case B1 (Figure 3B), and the grid fields are similar
to those predicted by Wang et al. (2021). The grid fields form
hexagonal lattices when projected onto the horizontal plane.
The plane-independent mode (section 2.1, B3) only has trials
with accurate perception since it does not incur plane perception
error. The trials with accurate perception have little difference
compared with those of the plane-dependent modes in terms of
any metrics used.

3.2. Grid Fields Gradually Lose Global but
Not Local Order as Refresh Interval
Decreases
To begin with, the regularity, measured by the Z-scored spatial
information and sparsity index, changes monotonically with
decreasing refresh interval for trials with perceptual uncertainty,
but not trials with accurate perception. The mean Z-scored
spatial information (sparsity index) of the trials with perceptual
uncertainty of different κ ≪∞ decreases (increases) rapidly for
τ ∈ {103, 5 × 103, 104, 5 × 104}, and converges for lower τ . In
contrast, both the spatial information and sparsity index of trials
with accurate perception remains high and nearly constant for
all τ (Figure 4, purple curves; Pearson correlation, r = −0.042
and r = 0.031, respectively). Finally, the magnitudes of Z-scores
of all trials are significantly larger than 2.58, indicating that they
are more compact and carry more spatial information than those
random shuffles.

After getting a sense of the regularity of the spatial distribution
of spikes, we measure how similar the distributions are to the
prototypes, given different τ and κ . There does not exist a
single measure that perfectly describes the similarity, so multiple
methods are used, including IFD distribution, structure scores,
and MRA.

Trials with accurate perception show obvious global order.
The structure scores (Figure 5A), the spike locations of the trials
with accurate perception (Figure 3A), and the shapes of themean
MRA (Figures 5D,E) together manifest that the ideal grid fields
of the model fit into FCC. All the three structure scores of the
trials with accurate perception for all τ remains nearly constant
(Pearson correlation, rFCC = −0.007, rHCP = 0.023, and rCOL =
0.006), whereas χFCC remains significantly higher and close to the
ideal value.

For trials with perceptual uncertainty, as the refresh interval
decreases, χFCC decreases in general, indicating that the field
structures gradually deviate from FCC with decreasing τ

(Figure 5A). Nevertheless, though the corresponding χHCP and
χCOL increase, their maxima are still qualitatively lower than the
reference values (black dashed lines). The shapes of the mean
MRA curves also differ from that of HCP or COL. Thus, as
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τ changes, the structures resemble neither HCP nor COL. The
gradual change of IFD distribution shape when τ reduces also
reinforces the argument (Figure 5B).

FIGURE 4 | The Z-scored spatial information (top) and Z-scored sparsity index

(bottom) of trials with variable refresh interval τ and perceptual certainty κ.

Black dashed lines mark Z = 2.58.

Trials with lower τ still preserve local order to some degree.
In addition to the analysis that all trials have significantly higher
spatial information and sparsity index than random shuffles,
both the IFD distribution and MRA of the RND prototype
reject that the fields are completely randomly distributed.
Specifically, the IFD distribution of RND is unimodal, narrow,
and right-skewed (Figure 5C), for RND fields are allowed to be
much closer. Yet, the distributions of the trials with small τ

are wider and less skewed, possibly as an outcome of a higher
minimal IFD. Furthermore, the MRA of the simulated fields
still maintains a small second peak or a shoulder (Figure 5E).
Hence, weak repeats of radially symmetric patterns could
exist locally.

3.3. The Perceptual Certainty Affects the
Structure in a Complex, Subtle Manner
Spatial information (sparsity index) and κ seem to have a non-
linear relationship. Trials with perceptual uncertainty with all κ

have no significant differences when τ ∈ {5, 10, 50, 5 × 104, 105}
(t-tests, p > 0.05). With the other τ values, at least one of
the distributions corresponding to κ ≪ ∞ significantly differs
from one of the others (t-tests, p < 0.05). However, these
distribution means do not manifest a constant sequence as τ

changes, indicating a non-linear mapping. Similar observations
exist in structure scores and MRA.

Moreover, κ does not interfere with the progress of losing
global order. For κ ≪ ∞, the IFD distributions do not differ
qualitatively at a certain τ (Figure 5D). Similarly, the MRA
always loses the farther peak first as τ decreases. The locations
of the three peaks in the MRA do not change with κ as well, even
though the peak heights vary (Figure 5E).

FIGURE 5 | (A) The structure scores of the simulation results with variables τ and κ. The black dashed lines indicate the mean scores of the corresponding

prototypes. (B,C) The IFD distributions of the simulation results and prototypes, respectively. The distributions for τ ∈ {1, 5, 10} are not shown, for they are almost the

same as that of τ = 50. (D) The mean curves of the MRA of RND (grey dashed line), HCP (blue), FCC (orange), and COL (green). (E) The mean curves of the MRA of

the simulation results, respectively.
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FIGURE 6 | (A) Simulation of an animal starting on a flat region (orange),

entering the slope for the first time (red), returning (green), and entering the

slope again (purple). Left: without phase correction, the firing pattern is

translated after return to either side. Right: with phase correction at the time of

re-entering either of the regions, the new pattern has the same phase as the

old one. (B) A 1D illustration of the occurrence of a phase shift due to mode

switching. Blue and red stand for two modes and the blue dashed line for the

original phase.

Together, the data purports that κ has an indirect effect on
the field locations. It might alter the internal density of a firing
field, affecting MRA and structure scores, both of which are
sensitive to the internal density. Change in local spike density
might influence spatial information and sparsity density in a
subtle manner as well. Further analysis of the effect of κ is out
of interest in this study.

3.4. Mode Switching
Navigation on a half-flat, half-tilted arena is simulated to
demonstrate how our model enables mode switching between
two navigation modes. Navigating on a horizontal plane
(Figure 6A, Flat) gives rise to grid codes that contain all the
information, since the altitude is constant, whereas navigating
on a tilted plane (Figure 6A, Slope) discards the altitudes due
to vector projection. Furthermore, the grid scales are unequal
to represent the effects of other sensory cues. The animal visits
the arena in the order: Flat, Slope, Flat, Slope (Figure 6A, orange,
red, green, and purple, respectively). The time navigating in each
plane is similar, though not necessarily the same, and larger
than 5,000 steps. If the alternation between the planes is too
fast, without a phase restoring mechanism (shown below), rapid
alternation in b0 will deteriorate the stability of neurons.

Mode switching does not deteriorate the computation. The
model is able to form hexagonal lattices during the first and
second visits. However, the grid fields of the second run on either
of the plane are translated (Figure 6A, left). If the frequency of
mode switching is high, the grid fields are dispelled (visualization
not shown). The spatial translation is found to be the result of
phase shift in the neurons; a 1D illustration is in Figure 6B. The
phase shift might impede path integration and stability of the
cognitive map, so there needs a correction mechanism.

We hypothesize that memory and other somatosensory cues
provide the reset current that eliminates the phase shift. In this
study, we devise a very simple algorithm: when the animal enters

either of the planes for the second time, the activity pattern of
the neurons at the previous exit is recovered (memory retrieval).
After that, it achieves the displacement between the current
position and exit position (interaction between memory and
somatosensory cues to estimate the displacement). 100 updates,
as if the animal navigates from the first exit position to the current
position, are done to restore the previous phase (recognition).
The grid fields of the second run overlap well with the first when
such “virtual walk” exists (Figure 6A, right).

4. DISCUSSION

We construct an interpretive plane-dependent model of 3D
grid cells. The model has two achievements: it is capable of
representing both 2D and 3D space during different navigation
modes and predicting the principles behind the multimodality
of grid codes and degradation of grid field regularity observed
in experiments (Hayman et al., 2015; Casali et al., 2019; Ginosar
et al., 2021; Grieves et al., 2021). Specifically, the model interprets
3D 6-DoF motion in local cylindrical coordinate systems based
on planes. The planes can be instantaneous, such as the tangent
planes of motionmanifolds, or static, such as the horizontal plane
defined by gravity. The perceptual error of the planes gives rise to
the degradation of grid field regularity from optimal structure.
This idea is verified by a weight-variable RNN model extended
from (Gao et al., 2021). Furthermore, simulations demonstrate
that as refresh interval τ decreases, the degradation gets stronger,
but converges at a level better than random placements. Finally,
the model naturally bears switching between modes. We give an
example with a half-flat, half-tilted arena that involves switching
between twomodes. The example tells that there has to be a phase
restoring mechanism, which is hypothesized to be the interaction
between memory and somatosensory cues. We put forward a
“virtual walk” algorithm to restore the phase successfully, such
that the grid fields are stable on revisiting.

Plane-independent computation (section 2.1, B3) is supported
by our model as well but discouraged for two reasons. First,
it does not fully agree with the experiments. In this mode,
the motion is evaluated under the global Cartesian coordinate
system. Merely FCC grid fields can occur, which has not been
discovered experimentally. This study in contradiction with
(Hayman et al., 2015; Casali et al., 2019) may even arise because
the motion planes do not intersect FCC with a few specific angles
that lead to hexagonal lattice. The mode does not explain the grid
fields during volumetric navigation (Ginosar et al., 2021; Grieves
et al., 2021) either. The contradictions may only be solved if a
remapping mechanism exists (Finkelstein et al., 2016). Second,
this mode is highly subject to motion detection error: little
perturbation to the motion directions can drastically eliminate
the grid fields by dispersing the spikes. The plane-dependent
modes are instead more tolerable to motion detection error.
To sum up, plane-dependent computation is more biologically
plausible and stable than plane-independent computation.

Our unified framework has some connections to the two
interpretive models that deal with only some special cases
in 3D: Wang et al. (2021) on crawling on curvy surfaces
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(2.5D) and Horiuchi and Moss (2015) on 3D free motion. The
former establishes a plane-dependent system as well. The major
difference is in the cognitive process. Our theory supposes that
animals perceivemotion in a local cylindrical system and perform
a projection, while theirs has motion in a global coordinate
system and rotates egocentric basis according to the current
tangent plane of the crawling manifold. Since only dealing with
crawling, the model has merely 3 co-planar basis vectors which
are equivalent to the projection of B along the Z-axis. This
implementation naturally limits their model on crawling only.
The latter addresses 3D free motion. It uses four ring attractors
corresponding to four basis vectors identical to our B. Each grid
cell reads out the logical AND combination of four nodes from
the four attractors. In terms of representation, our four complex-
valued nodes can be thought of as the simplification of the
four attractors. However, their attractors can only form stripes,
whereas our recurrent coupling enables each node to form grid
fields. This study, nevertheless, does not account for the grid
fields on slopes and vertical walls (Hayman et al., 2015; Casali
et al., 2019) and the loss of global order (Ginosar et al., 2021;
Grieves et al., 2021).

Two other theoretical studies approach the question via
synaptic plasticity (Stella and Treves, 2015; Soman et al., 2018).
Grid fields either arise from mature, gaussian-like place fields
(Stella and Treves, 2015) or as a combination of effects from
Hebbian plasticity with the integrated head-direction input and
anti-Hebbian plasticity in the recurrent connections (Soman
et al., 2018). In accordance with our study, they both conclude
that grid fields have the tendency to form FCC structure, but may
only preserve local order in reality. However, the two plasticity-
based models argue the imperfection stems from insufficient
training, a lack of either training time (Stella and Treves, 2015)
or narrow pitch distribution (Soman et al., 2018). The training
time hypothesis may contradict the fact that decay of grid fields
regularity is present in model animals raised in enriched 3D
environments (Casali et al., 2019; Grieves et al., 2021). Moreover,
many environments, especially rectangular ones, share many
similarities. Cumulative learning is possible. In addition, replay
in hippocampus (Wilson and McNaughton, 1994; Skaggs and
McNaughton, 1996; Foster, 2017) and mEC (Ólafsdóttir et al.,
2016; Gardner et al., 2019; Trettel et al., 2019) might reinforce
the training as well (Bellmund et al., 2018). As such, the training
time hypothesis could be rejected. On the other hand, novel
stimuli activate the neuromodulatory system that affects synaptic
plasticity and reinforcement learning (Schultz, 2002; Ranganath
and Rainer, 2003; Nyberg, 2005), questioning the narrow pitch
distribution hypothesis. Although animals naturally have narrow
pitch distribution, the perception of pitch is intact (assumed by
the model and at least present in bats Finkelstein et al., 2016). It
is still possible that the learning efficacy is greater for unfamiliar
pitch directions than familiar ones, which leads to nearly optimal
3D grid fields. In conclusion, training issues can be overcome by
neural adaptation and are less likely.

More experiments on the grid fields with different navigation
modes are also necessary to verify our theory. Besides, it is still
unclear if the plane-based system exists. This can be broken

down into multiple subtasks. People need to confirm the neural
basis of (1) the decomposition 1x⊥ and 1x‖, (2) the cylindrical
coordinate system (essentially the perception of u), (3) the basis
vectors B, and (4) variable weights in favor of the derivation
above. The existence of gravity-tuned neurons (Laurens et al.,
2016) supports the vertical unit vector of B, and may further
allow such a basis to evolve. For (4), the neural circuits might
implement the matrix exponential exp(Wu

r (φ)r + Wu
b
b) with

a Taylor approximation of finite order. In addition, from a
functionalistic perspective, does a “plane” present in cognition?
Experimenters might test this by introducing illusions. For
example, one can design an optical illusion with checkers.
Another possible design is to let animals wear shoes that deceive
the accurate proprioception. Distortion to the grid fields may
indicate that planes exist.

Finally, multiple theoretical extensions of the model can be
made. A spiking neural network (SNN) are more biologically
plausible than ours. Till this paper is written, there is no
SNN models of grid cell computation beyond horizontal planar
navigation. As discussed above, the complex-valued model
has connections to ring attractors, so an equivalent network
should be feasible. The recurrent connection matrix can be
determined via convex optimization on objective functions
such as Gao et al. (2021), and then the RNN is transformed
to SNN. Alternatively, an SNN could be achieved through
unsupervised learning directly. Another important direction is
to delve into navigation mode switching. The nervous system
may not implement the “virtual walk” algorithm applied here
to restore the phase. Instead, the phase could be restored
directly in an associative memory network, in which reasoning
modules provide the restoring currents. Third, an egocentric-
allocentric transformation is presumed in this study, but a
specific implementation is out of scope. It would be interesting
to devise a model for this mapping in a global or 3D point
of view. Finally, this study attempts to recover and explain
the grid field structures in various navigation modes but does
not address decoding. How does the degradation of regularity
influence decoding? Previous decoding algorithms developed on
planar hexagonal grid fields (Bush et al., 2015; Stemmler et al.,
2015; Yoo and Vishwanath, 2015; Yoo and Kim, 2017) are yet
to be tested with non-planar modes. For the scenarios that
include projection, for sure they are unable to recover the global
positions of animals; are they capable of returning the parametric
positions on the manifold? If not, new generalizable decoding
algorithms should be brought forward. With greater complexity
and biological plausibility, we wish our framework can stimulate
modeling and experimental efforts to elucidate the computation
of grid cells.
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