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Abstract: Ultrafast (femtosecond) lasers have become an important tool to 
investigate biological phenomena because of their ability to effect highly 
localized tissue removal in surgical applications. Here we describe 
programmable, microscale, femtosecond-laser ablation of melanocytes 
found on Xenopus laevis tadpoles, a technique that is applicable to 
biological studies in development, regeneration, and cancer research. We 
illustrate laser marking of individual melanocytes, and the drawing of 
patterns on melanocyte clusters to help track their migration and/or 
regeneration. We also demonstrate that this system can upgrade scratch 
tests, a technique used widely with cultured cells to study cell migration and 
wound healing, to the more realistic in vivo realm, by clearing a region of 
melanocytes and monitoring their return over time. In addition, we show 
how melanocyte ablation can be used for loss-of-function experiments by 
damaging neighboring tissue, using the example of abnormal tail 
regeneration following localized spinal cord damage. Since the size, shape, 
and depth of melanocytes vary as a function of tadpole age and melanocyte 
location (head or tail), an ablation threshold chart is given. Mechanisms of 
laser ablation are also discussed. 

© 2011 Optical Society of America 
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1. Introduction 

Femtosecond (fs) Ti:sapphire lasers have been used to investigate biological phenomena in 
many different types of organisms, particularly for submicron laser ablation studies [1,2]. By 
operating the Ti:sapphire laser around 800 nm, away from the absorption of most tissues [3], 
and capitalizing on the short duration of the laser pulses, ablation can occur at less than the 
laser beam’s focal volume while offering deeper tissue penetration. In the field of 
developmental biology, fs-lasers have been used to sever the nerve axons of worms [4], to 
study short- and long-term development after laser ablation of zebrafish cells [5], and to 
dissect drosophila embryos for the study of morphogenetic movements [6]. 

Effects of laser surgery on embryos of Xenopus laevis (the African clawed frog) are as yet 
unexplored. This constitutes a valuable opportunity given the importance of this amphibian as 
a well-studied model of vertebrate development [7,8], cancer [9], and regeneration [10–12]. 
Xenopus are widely used in developmental biology because their embryos are readily raised in 
laboratory culture, accessible from the earliest stages and throughout organogenesis, relatively 
quick to develop, large and easy to manipulate, and highly resistant to infection. Also, the 
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tadpoles are largely transparent. Most importantly, their development is known in detail, and 
the embryos are amenable to a wide range of manipulations using molecular-genetic, cell-
biological, pharmacological, optical, and biophysical techniques [13–15]. For studies of 
cancer-like cell behavior, melanocytes, the melanin-containing cells that constitute the darkly 
pigmented spots in the animal’s skin, can be induced to behave like neoplastic cells, making 
them an interesting in vivo model for melanoma [16,17]. Moreover, melanocytes are 
descendants of a vertebrate-specific stem cell population called the neural crest [18], and their 
study can thus shed light on many aspects of the complex signaling by which an animal 
integrates functions of stem cells and their descendants into the developmental programs of 
the host—a research topic crucial for advances in regenerative medicine and cancer biology. 

In this paper, we focus on the use of ultrafast lasers as a tool to label, draw patterns on, 
and eliminate Xenopus melanocytes. We show how this methodology can be used to 
understand melanocyte migration and regeneration, and the relationship between tail 
regeneration and particular cell types using a loss-of-function approach. Since the 
development of Xenopus is sensitive to individual variations and temperature, we refer to the 
stage of the Xenopus rather than the age [19]. Our discussion will be limited to melanocyte 
laser ablation in embryos between stages 35 and 46 (i.e. ~2–7 days post fertilization at 22°C), 
since pilot studies have shown that damage at earlier developmental stages caused no 
definitive disruptions to development, in agreement with published results on zebrafish 
embryos [5]. Our target period begins just at the end of the melanization of pigmented cells in 
Xenopus, which occurs during stages 25-40 [20]: around stages 25-30, melanin is generated in 
melanocyte cells located around the dorsal region; during stages 30-40, the melanocytes 
migrate away from the dorsal midline (the developing central nervous system and vertebral 
column) of the tadpole; at later stages, the melanocytes are fully pigmented and remain 
stationary. Where previous studies only considered melanocyte death and regeneration in 
zebrafish [21], or laser ablation of lines for microdissections [6], we show controlled cell 
ablation and pigment removal on melanocytes found in the head and along the tail, at the same 
dorsal-ventral level as the spinal cord, and demonstrate how these methods are useful for 
applications in the study of wound healing, cancer, and developmental processes. 

2. Materials and methods 

The optical setup used for laser surgery of Xenopus is shown in Fig. 1a. Pulses with a center 
wavelength of 810 nm, repetition rate of 80 MHz, and pulse width of 120 fs were generated 
from a Ti:sapphire oscillator (Spectra Physics Tsunami). The average pulse power was varied 
between 20 mW - 1 W using a combination of neutral density filters along with a half-wave 
plate and polarizing beam cube. Included in the beam path was an electro-mechanical shutter 
(Thorlabs SH05/SC10) with an opening time ∆T = 0.4 ms and a closing time ∆T = 0.6 ms. 
Both imaging of the specimen and pulse focusing were performed through an inverted 
microscope (Olympus Microscopes IX71). The laser beam was typically focused with 10x 
(NA = 0.3) or 20x (NA = 0.5) Olympus objectives. For the experiments reported here, we 
found that the narrow depth of focus associated with higher NA objectives was impractical 
because the tadpole surface is not flat, making focusing and marking difficult. The reported 
fluences account for the ellipticity of the incoming laser beam and use the measured average 
power (Pavg) after the microscope objectives. Fluences were calculated by F = 2Pavg/(RRπab) 
where RR is the laser repetition rate and a and b define the beam ellipticity. Using a knife 
edge technique, the (1/e

2
) beam radii for the 10x objective were 2.2 µm and 2.9 µm, and those 

for the 20x objective were 1.7 µm and 2.3 µm. The specimen was located on top of a 
motorized xy stage (Ludl Electronics Products Ltd. BioPrecision2 Flat-top Inverted Stage). 
The sample position, CCD image acquisition, and shutter duration were computer controlled. 
A LabVIEW interfacing program was written to allow the laser to write images in three 
modes: (1) raster scanning; (2) tracing basic shapes such as grids, lines, and spirals; and (3) 
targeting specific locations of a live image (program available from corresponding author). 
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Fig. 1. Schematic of femtosecond laser ablation of Xenopus tadpoles. (a) Femtosecond pulses 
were focused onto the specimens mounted on top of the motorized stage. For laser ablation, 
Xenopus laevis younger than stage 40 were held between a Petri dish with a glass welled 
bottom and a cover slip, while older tadpoles were placed inside a depression made of agar, 
secured with a glass cover slip, and then inverted for placement on the stage. (HWP—half 
wave plate, PBC—polarizing beam cube, SPF—short pass filter, DM—dichroic mirror, WL—
white light source) (b) Images of Xenopus tadpoles at three different developmental stages. 

Xenopus were raised in 0.1X Marc’s Modified Ringer’s (MMR) solution at a temperature 
of 14-22°C and pH 7.8, according to standard protocols [22]. For tail amputation, tadpoles 
were anesthetized using 1.5% tricaine, and one third to one half of the tail was removed using 
a No. 10 scalpel. After five minutes, the tadpoles were returned to plain MMR. For laser 
ablation, stage 36-42 tadpoles were anesthetized either with 1.5% tricaine in MMR, or with 5 
µL N-benzyl-p-toluene sulfonamide (BTS) in MMR for ~15 minutes prior to laser surgery. 
Figure 1a illustrates the two modes used to house the specimens for laser ablation. Younger 
tadpoles were placed into a 35 mm glass-bottomed Petri dish (WWW precision instruments) 
with a recessed center containing ~0.3 mL of anesthetic solution, and held in place with a 
square glass cover slip (22 mm x 22 mm x 0.17 mm). Older tadpoles were placed in a 
depression made in agar with a drop of anesthetic solution, held in place with a cover slip, and 
then the dish was inverted for surgery. After surgery, the tadpoles were moved into a six-well 
plate filled with MMR solution and maintained at 22°C for further analysis. It has been 
observed that size and shape of melanocytes are influenced by the anesthetic solutions 
(tricaine and BTS), which cause them to retract and present a smaller area to target with the 
laser [23]. The three stages of tadpole development we found most useful for out studies are 
shown in Fig. 1b. 

The depth of the melanocyte relative to the surface of the tadpole was determined using 
DIC microscopy. With a calibrated stage, the distance was measured from focused images of 
ciliated cells above the melanocytes, which marked the surface, and the focused image of the 
melanocyte. 

Time lapse movies of laser-marked migrating melanocytes were made on a Nikon 
AZ100m stereoscope with an attached Andor Luca-R CCD camera. The system is controlled 
by NIS Elements. Tadpoles were placed in depressions made in agar and contained in 35 mm 
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Petri dishes. The dish was then filled completely with MMR, and a large coverslip was used 
to seal the dish. Images were collected every 3-5 minutes. 

Absorption spectra of a paste composed of ground stage 35 Xenopus tails and diluted in 
deionized water were acquired with a Varian Cary UV/VIS spectrometer. 

The damage threshold was determined by focusing the laser on a specific melanocyte and 
delivering pulses for 10 ms duration while varying the laser fluence until a change in the 
pigmented tissue such as a contraction, expansion, or discoloration was observed (see Media 
1). Tests were conducted at the head and tail for 2 tadpoles at stages 35, 40, and 46. Between 
5 and 10 melanocytes were used at each location. 

3. Results 

3.1. Ablation of melanin-containing cells 

Our investigations focus on the ablation of melanin-containing cells for several reasons. First, 
these cells are more absorptive to our laser wavelength and hence we can reduce the amount 
of collateral damage to the surrounding tissue. Second, melanin-containing cells are situated 
in several locations on the tadpole that are interesting for developmental biology, including 
the eye, the gut, and near the spinal cord. Lastly, these cells can be induced to show cancer-
like properties. Therefore, the ability to selectively ablate such cells provides several 
interesting opportunities to expand our knowledge of development and neoplastic behavior. 

 

Fig. 2. (a) Absorption spectrum from a paste made of Xenopus tails and diluted in deionized 
water. Arrow indicates peak likely due to hemoglobin. The inset plots the absorption spectrum 
of melanin and oxygenated hemoglobin and the dashed line indicates the laser wavelength. (b) 
Histology section of undamaged tadpole tail (24 hpa) showing location of the notochord (N), 
the melanocytes surrounding the spinal cord (SC) and the dorsal muscle (DM). (c) Another 
section of the same tail where the red arrow points to absence of a melanocyte after laser 
treatment for one insult, i.e., shutter duration of 200ms and laser fluence of 26 mJ/cm2. (d) 
Section showing damage to SC and DM after multiple laser insults to melanocytes. 

Figure 2a is a plot of the absorption spectrum from a paste of ground Xenopus tails diluted 
in deionized water. As the wavelength increases, there is an exponential decrease in the 
absorption similar to melanin found in mammalian skin. The slight increase in absorption at 
580 nm is likely due to oxygenated hemoglobin (HbO2) contained in the tail paste because the 
major intracellular absorbers for the visible wavelength range are hemoglobin and melanin 
[3]. 
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If the 810 nm laser beam is scanned along the surface of the tadpoles, at any age, we find 
no visible damage to the transparent regions of the tadpole for our maximum fluence of 130 
mJ/cm

2
. In contrast, scanning over melanocytes does produce damage depending on the 

number of pulses hitting the sample (i.e., shutter opening time) and the fluence used. For 
example, Fig. 2b and 2c are histology sections of an untreated and a laser-treated region, 
respectively, and illustrate that the melanocytes inside the tissue can be damaged without 
damaging the outer layer. Higher energies (fluence × shutter opening time) will cause greater 
collateral damage around the melanocyte (Fig. 2c). 

Ablation of melanin-containing cells is affected by the amount of cell pigmentation and 
the thickness of the epidermis above the melanocytes, which varies as a function of age and 
location (head or tail) on the tadpole [20,24]. Table 1 highlights some of these differences. As 
the tadpole develops from stage 35-46, the melanocytes migrate closer to the surface and 
become fully pigmented. Surface melanocytes, which are <30 µm from the surface, such as 
those found in the head and in the tail for stage 46 Xenopus tadpoles, have lower damage 
thresholds (~3 mJ/cm

2
). In contrast, melanocytes in the tail of tadpoles ranging from stages 35 

to 40 have larger damage thresholds (4.8–13.6 J/cm
2
) due to partially pigmented cells and to 

the varying melanocyte depths as they migrate to their final destination. By operating the laser 
near the damage threshold, we are able to mark melanocytes, and by exceeding the damage 
threshold, destroy melanocytes. 

Table 1. Damage threshold for Xenopus melanocytes located on the head and tail for 
different stages of growtha 

Stage Location 
Damage Threshold 

[mJ/cm2] (N = 2, M = 5) 

Average Depth of Melanocytes 
from surface 

[µm ± SD] (N = 3, M = 5) 

35 Head 2.8-3.4 31 ± 8 

35 Tail 9.6-13.6 33 ± 8 (58 ± 15)b 

40 Head 2.8-3.4 27 ± 7 

40 Tail 4.8-6.2 42 ± 19 

46 Head 2.0-2.8 13 ± 4 

46 Tail 2.0-5.4 30 ± 11 (surface) 
90 ± 20 (spinal cord) 

aThe lower threshold value corresponds to an observable change in the pigmented tissue such as contraction, 
expansion, or discoloration. The upper threshold value corresponds to melanocyte ablation. The number of specimens 
is indicated by N, while M refers to the number of melanocytes per specimen. 
bDistance from Xenopus midline to surface where partially pigmented cells containing melanin were migrating. 

3.2. Laser marking and ablation of melanocytes 

Drawing micropatterns on individual melanocytes or on clusters of melanocytes is possible 
because the laser spot size (~2 µm) is significantly smaller than the average melanocyte size, 
which ranges between 10 and 50 µm. This enables the marking of specific geometric figures 
in vivo to follow the evolution and migration of the cells. For surface melanocytes, a slight 
separation of tissue is observed at a fluence of 2.0 mJ/cm

2
 while ablation occurs for fluence 

values in excess of 3.0 mJ/cm
2
. In contrast, targeting melanocytes located below the surface 

first causes the skin to contract (most likely a muscle reflex associated with heating the 
melanocyte) and then, with increased fluence, to separate (the tissue is broken open by excess 
heating and cavitation bubbles). Media 1 is a short video illustrating contraction and slight 
skin separation resulting from targeting a melanocyte just below the surface of the tail, for a 
fluence of 26 mJ/cm

2
 and a 200 ms shutter open time. Lastly, when the central area, the 

melanocyte cell body, is targeted, the melanocyte tends to break into many fragments, which 
in many cases leads to cavitation bubbles that persist beyond laser pulse delivery. 

Figure 3 shows some examples of different ways to mark melanocytes. Spot-like ablation 
was achieved for melanocytes located on the anterior dorsal side of a stage 46 tadpole (Fig. 
3a). Tagging of individual melanocytes with triangles is shown in Fig. 3b, and line patterning 
in a particularly dark tadpole is shown in Fig. 3c. On average the line patterns were observed 
to last up to 8 hours before becoming unrecognizable. In addition to these simple patterns, we 
were able to laser write grids, spirals, and preset designs (not shown here). The ability of the 

#148794 - $15.00 USD Received 7 Jun 2011; revised 24 Jul 2011; accepted 24 Jul 2011; published 27 Jul 2011
(C) 2011 OSA 1 August 2011 / Vol. 2,  No. 8 / BIOMEDICAL OPTICS EXPRESS  2388

http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-2-08-2383-1


laser to eliminate a melanocyte was also tested. Figure 3d shows a melanocyte located on the 
dorsal fin before and after laser irradiation, and then after the application of trypan blue, a 
biological stain applied to discriminate between live and dead cells, with blue indicating cell 
death. In these experiments, for spot diameter D, the number of pulses N applied to an area 
π(D/2)

2
 is given by N = Rt for the stationary sample, and N = RD/υ for the moving sample, 

where R is the repetition rate, t is shutter duration, and υ is that scan speed [25]. Thus, for a 
laser fluence F, the dosage is NF. For the four images in Fig. 3, the dosages were: (a) 2 M 
mJ/cm

2
, (b) 12 M mJ/cm

2
, (c) 30 M mJ/cm

2
, and (d) 32 M mJ/cm

2
. With increased exposure 

to laser pulses, the melanocyte ablation changes from controlled spot-like ablation (Fig. 3a) to 
partial fragmentation (Fig. 3b), then to noticeable cavitation bubbles (Fig. 3c), and finally to 
collateral tissue damage (Fig. 3d). For labeling and drawing patterns on melanocytes, it is best 
to avoid bubble formation; therefore, dosages should be between 2 and 10 M mJ/cm

2
. 

 

Fig. 3. Different methods to mark melanocytes. (a) Top image is a melanocyte located on 
anterior dorsal side of a stage 46 Xenopus before laser ablation and the bottom image shows 
multiple ablated spots after a laser fluence of 2 mJ/cm2 and a shutter duration of 10 ms. (b) 
Tagging of individual melanocytes located near the tadpole’s eye with triangles using a fluence 
of 2 mJ/cm2 and scan speed of 50 µm/s. (c) Before and after images of lines drawn on a dark 
wild-type stage 36 Xenopus for a 14 mJ/cm2 fluence and 150 µm/s scan speed. The red marker 
points to a long-lasting cavitation bubble. (d) Top image of melanocyte located on dorsal fin 
before laser ablation, middle image is the melanocyte after laser irradiation at 26 mJ/cm2 and 
shutter duration of 200 ms, and the bottom image shows a dark blue coloring of the ablated 
area, after bathing the Xenopus in the vital stain trypan blue, which indicates cell death. 

 

Fig. 4. Images of melanocyte migration after clearing a large area of melanocytes using laser 
ablation (raster scan with line spacing of 5 µm, F = 6 mJ/cm2, scan speed = 150 µm/s). Red 
arrowheads indicate the position of ablation (a), 19 hrs later (b), and 28 hrs later (c). (d) shows 
a dorsal image comparing the left (nonablated) and right (ablated) side of the Xenopus 28 hrs 
after laser ablation. 

Although no visible scarring from tagging or line patterning of surface melanocytes was 
observed, we needed to determine if the laser ablation would somehow inhibit melanocyte 
migration and/or regeneration. Therefore, preliminary investigations were carried out by 
recording time-lapse videos of stage 35 Xenopus tadpoles with a 150 µm x 200 µm area 
ablated from the anterior dorsal region, as illustrated in Fig. 4. The images indicate that after 
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28 hrs new melanocytes move into the ablated area. We also found that when surface 
cavitation bubbles did form, the skin shed and new melanocytes filled the regions (Media 2). 

3.3. Targeting melanocytes to create collateral damage 

Laser ablation of melanocytes can also be used as a technique to locally disrupt other tissue, 
which is of importance for loss-of-function studies in developmental biology. To illustrate this 
use of the laser, we studied the regeneration process in the Xenopus tadpole tail. If the tail of a 
stage 40 Xenopus is amputated with a scalpel, the missing part will regenerate [26,27]. It has 
further been shown that complete surgical extraction of the spinal cord after tail amputation 
causes the remaining tail to regenerate abnormally [28]. We used laser ablation to study the 
influence of localized spinal cord damage (rather than complete spinal cord excision) on tail 
regeneration, using absorption by melanocytes near the spinal cord to cause targeted insults to 
the spinal cord itself. 

Targeting melanocytes (highlighted in Fig. 5a) with laser powers in excess of the ablation 
threshold allowed damage to surrounding tissue within a spherical region of diameter, on 
average, 35 µm. Histological sections showed that the spinal cord and portions of the dorsal 
muscles were damaged in this targeted region (Fig. 2d). Unlike damage above or below the 
spinal cord, which had no effect on the tail regeneration, damage to the spinal cord, even far 
from the amputation plane, caused a sharp deviation in shape of the regenerated tail, (compare 
Fig. 5c and 5d). Moreover, distinct differences in the regenerated tail were observed when 
targeting different positions or more than one position of the spinal cord. For example, 
targeted insults close to the amputation plane typically caused the regenerate to bend in the 
dorsal direction, whereas insults further anterior caused more complex shape changes. The 
results of these regeneration experiments are described in detail in [29]. 

 

Fig. 5. Tail regeneration after targeting the spinal cord. (a) Image of the position where the tail 
was amputated from a stage 40 Xenopus tadpole. The blue box highlights the region targeted by 
the laser. (b) Image after targeting laser in 10 locations inside blue box with laser fluence of 26 
mJ/cm2 and a 200 ms shutter duration. The dark melanocytes that were targeted are gone. (c) 
An image showing the same tail after 1 week. (d) The normal shape of a regenerated tail. 

4. Discussion 

Although the exact ablation mechanism is yet to be determined, we can elucidate its nature 
based on our observations and previous theoretical and experimental studies [1,30]. At low 
fluences, ablation is a result of free-electron-induced chemical decomposition (bond breaking) 
of biomolecules, while at higher fluences, cumulative thermal heating plays a role and long-
lasting cavitation bubbles can be observed. These bubbles are related to molecules in the 
tissue dissociating into volatile fragments, and can cause dislocations to the surrounding 
tissue. In addition to the fluence, the concentration of melanin in cells also determines the 
mechanism of ablation by changing the effective absorption coefficient. 

Patterning individual melanocytes is a useful technique for following migration of specific 
cells or clusters of cells, whereas ablation of single or multiple melanocytes lends itself well 
to the study of melanocyte regeneration and wound healing abilities. By monitoring time-
lapse videos of a patch of melanocytes cleared by laser ablation, we observed melanocytes 
filling the cleared area (Fig. 4). We believe not only that this method is useful for studying 
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regenerative and migratory melanocyte properties, but also that it makes possible in vivo 
scratch test studies. Presently scratch tests are performed in vitro by removing a region of 
confluent cells grown in a Petri dish and monitoring its repopulation [31]. Moreover, the 
ability to clear patches of densely spaced melanocytes is of great interest because melanocytes 
normally exhibit contact inhibition, but can be induced to display cancer-like behaviors; thus, 
this technique can be used for controlled in vivo studies of neoplastic behaviors [17]. 

The localized, in vivo loss-of-function experiments made possible by laser ablation of 
melanocytes also show promise, as demonstrated by the application to tail regeneration. 
Targeting specific regions of the spinal cord allows for systematic exploration of the short- 
and long-distance signaling mechanisms affecting the shape of the regenerated tail—details 
inaccessible with classic excision experiments [28]. The method can also be extended to areas 
devoid of melanocytes by staining relevant target cells [30]. 

5. Conclusion 

We have demonstrated the use of an ultrafast Ti:sapphire oscillator for an array of ablation 
experiments on Xenopus laevis tadpoles with specific focus on studies in developmental 
biology. Typical laser ablation thresholds for different ages (and corresponding developmental 
stages) of Xenopus tadpoles are measured to provide a reference for different modalities of 
marking and ablation of melanocytes. The ability to label and draw patterns on melanocytes is 
useful for studies on melanocyte regeneration and migration. Moreover, fs-lasers can be used 
to clear patches of melanocytes for in vivo scratch assays and cancer studies. Lastly, the 
method can be used for loss-of-function experiments by targeting selected regions of 
melanocytes, demonstrated here by showing disruptive changes in tail regeneration as a 
consequence of targeted spinal cord ablation. This combined ability to tag, draw patterns, and 
ablate melanocytes makes the ultrafast laser a compelling tool for exploring developmental 
biology mechanisms in Xenopus and similar organisms. 
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