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Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components 
of a medical image, in contrast to the more common detection of diseased tissue deployed in standard 
machine vision pipelines (which are less straightforwardly interpretable/explainable to clinicians). 
We here present a novel generative visual attribution technique, one that leverages latent diffusion 
models in combination with domain-specific large language models, in order to generate normal 
counterparts of abnormal images. The discrepancy between the two hence gives rise to a mapping 
indicating the diagnostically-relevant image components. To achieve this, we deploy image priors 
in conjunction with appropriate conditioning mechanisms in order to control the image generative 
process, including natural language text prompts acquired from medical science and applied radiology. 
We perform experiments and quantitatively evaluate our results on the COVID-19 Radiography 
Database containing labelled chest X-rays with differing pathologies via the Frechet Inception Distance 
(FID), Structural Similarity (SSIM) and Multi Scale Structural Similarity Metric (MS-SSIM) metrics 
obtained between real and generated images. The resulting system also exhibits a range of latent 
capabilities including zero-shot localized disease induction, which are evaluated with real examples 
from the cheXpert dataset.
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Medical imaging has become increasingly important in modern medical settings for patient stratification, 
assessing disease progression, evaluating treatment response, and grading disease severity1. However, medical 
image diagnosis tends to involve far more than simple disease detection. Visual Attribution (VA) is the detection, 
identification and visualization of evidenceof a particular class or category of images2. It is a specific part of 
explainability of learned models i.e using visualization techniques to investigate the decisions made by a model, 
and attribute the decisions to distinct parts of an image. This opens the model to interpretation, a key aspect of 
XAI (Explainable AI) machine learning research, especially in relation to deep learning models3.

As it manifests, in medical imaging, VA is the process of educing evidence for medical conditions in 
relation to different parts of an image, such as pathological, psychological or disease-related effects4–7. As such, 
VA differs from the straightforward detection or segmentation of pathological regions in standard medical 
machine vision. These detected or segmented parts of the image are thus crucial biomarkers, and may serve 
as additional diagnostic and prognostic evidence8. Such models base their decisions on locally or globally 
perceived evidence components, and it is thus in these terms that the VA aspects of the models must be visually 
and semantically interpretable9. In clinical practice, these findings may then be used to diagnose and select 
treatment options, which may be surgical intervention, prescription of drugs etc. Interpretability is also key 
for scientific understanding of the system as a whole, and VA knowledge may thus sit on top of the explicit 
output of the model (for example, VA-based delineation of those regions affectedby a tumor, typically extending 
significantly beyond the segmented tumor region itself). VA knowledge factors may also relate to the safety of 
the application, or to the ethics and a priori biases of the data, highlighting incomplete or mismatched objectives 
being optimized by the model10.

A lack of interpretability of one or more of these examples may lead to complete or partial system failure, the 
model failing to achieve some aspect of the complex targets provided by the user/clinician, or optimization of 
an objective different to that intended. Model explainability is hence of critical interest in the medical imaging 
domain, having been identified as crucial to increasing the trust of medical professionals in the automated 
diagnostic domain1. Visual attribution consequently provides a way to increase the confidence between the 
system, patient and clinician, leading to fewer misinformed results11. It may also serve to decrease cognitive load 
on the clinicians and medical practitioners via automated localization and segmentation of areas of interest12,13. 
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However, it is important to consider the specific requirements and safety-criticalities of the application when 
developing a VA model (methods that directly manipulate images in the pixel space typically have to gain the 
acceptance of diagnosticians as part of their work process14), and use-case flexible human-in-the-loop models 
are therefore to be preferred in the general case.

Generative visual attribution
The most recent techniques in visual attribution involve variants of deep neural networks (DNNs), which tackle 
the problem in different ways, though typically centred on classification or segmentation15,16. The need for VA is 
especially acute for DNNs in a clinical setting due to their intrinsic high complexity and low interpretability, often 
termed ‘black boxes’17,18. However, DNNs, uniquely amongst machine learning VA approaches have the capacity 
to act in a generative manner. They hence have the capacity to mimic the actual clinical practice of a radiologist 
or practitioner, typically trained via the differencebetween healthy and non-healthy disease manifestations. As 
a result, the diagnosis of a condition or disease may be implicitly explained in terms of abnormalities of non-
healthy tissue in relation to a hypothetical healthy version of the same tissue19.

Generative DNN-based machine learning therefore leads to the state-of-the-art strategy of generative visual 
attribution (developed in part by the authors) that leverages generative methods for counterfactual normal 
generation, in which abnormal images are translated into their normal counterpartsfor observation by a clinician. 
These methods hence perform visual attribution map generation via heatmaps taking the difference between the 
observed image of a patient and its healthy counterfactual19–21.

Previously, such techniques have used a specific DNN generative mechanism, Generative Adversarial Networks 
or GANsto carry out this mapping (cf the techniques ANT-GAN19and VANT-GAN20). This attribution process 
exploits the underlying properties of GANs to directly model the differences present between the normal and 
abnormal clinical images, as well as capture the complete structure of the individual classes in a learned latent 
representation. GANs in general have the advantage of requiring relatively fewer abnormal examples22than 
standard supervised learning while still capturing underlying features of the surrounding areas of the higher 
density information regions. (Examples of these overlooked regions might be micro tumors in other parts of an 
organ that may not, in themselves, have a highly significant effect on the supervised decision boundary2; it has 
been shown, especially for medical imaging DNNs, that such models typically disregard a significant fraction of 
these regions, which are essentially background evidence in relation to the underlying pathological condition23).

However, GANs, while powerful, have faults that have led to the very recent development of a new state-
of-the-art generative mechanism: visual diffusion. Diffusion models are typically able to operate at higher 
resolutions and image qualities than GANs. They are also superior to GANs in not suffering from ‘mode collapse’ 
arising from the adversarial process of distinguishing real from generated images reaching a convergence (Nash 
equilibrium) in which critical image classes are omitted24. Diffusion models have been used for counterfactual 
generation as Diff-SCM21, and similar19,25,26.

Latent Diffusion models, however are not without limitations, and inevitably exhibit systemic biases in 
common with other generative deep learning architectures. One such limitation of relevance in medical settings 
is that of mode interpolation27- a particular generative hallucination that combines similar modes, giving rise 
to artefacts that are over-determined by the training data. In both GANs and Diffusion models this issue 
can be resolved by the addition of training data. More problematically in the medical setting, a hallucination 
phenomenon commonly observed in GANs is that of circular artefacting28, which acts to degrade overall image 
quality via the hallucination of ’blobs’. This has the potential to be exceptionally detrimental for therapeutic 
applications, given that objects of interest are often manifested as localised circular features such as clots, tumors, 
blood cells etc., which the artefacts have the strong potential to mimic. Fortunately, these artefacts are much 
rarer in the latent diffusion domain, and this is a key motivation underlying the current study. Failure modes that 
are more specific to diffusion models include training instabilities29, and memorization30. However, these would 
appear to be less intrinsically problematic in a medical context.

In this work, we shall thus propose to extend the VANT-GAN technique by deploying visual diffusion for 
counterpart normal generation. Our approach hence uses counterfactual generation with diffusion models 
directed at visual attribution in the medical imaging domain in a manner that builds on the conceptual 
foundations of generative visual attribution laid out in VANT-GAN20. In doing so, we will aim to increase the 
interpretability of the model by using multi-modal (text and image) inputs. We hence leverage prior control and 
conditioning techniques to reliably steer the mapping process in an interpretable manner utilising text prompts 
and control images. We achieve this by training domain-specific language and vision models on relevant medical 
imaging data allowing the generation of visual attribution maps for specific medical conditions, which can be 
quantitatively measured using relevant metrics in the domain.

The proposed architecture thus builds on extant methodology in a number of key computer-vision areas, 
in particular conditional image generation/image translation, saliency mapping and counterfactual medical 
image generation, including the deployment of multiple and conditional decoders31to generate saliency maps 
for reconstruction, joint-training of generative and inference components32, multi-stage bootstrapped training 
via an encoder33, use of frozen generative networks, and the use of latent representations of disease images34. The 
architectural model chosen for this study, specifically the conditional latent diffusion pipeline, thus combines 
and enhances methodology from the aforementioned approaches in an efficient package (in in terms of the 
number components used) while addressing the deficiencies of the VANT-GAN approach. We believe that the 
overall improvement in image quality, avoidance of mode collapse, readily connectable pretrained components 
via cross attention using e.g. CLIP and BERT based models, and quick end-to-end joint fine tuning makes the 
pipeline and ideal choice for deployability in the XAI domain, including that of the medical domain.

As well as improving reliability, trustworthiness and utility with respect to previously applied techniques of 
generative visual attribution, the approach of utilizing diffusion models in combination with domain-adapted 
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large language models with enhanced controllability and conditioning potentially also opens horizons to 
applications such as post-surgery simulation of ageing, disease etc by leveraging natural language instructions, as 
well as a host of additional ‘zero-shot’ latent use-case capabilities.

Diffusion generative models
Diffusion models consist of an autoencoder, which encodes the image into a latent space, and a diffusion process 
in which stochastic perturbations are performed incrementally in the latent space, such that a DNN can learn 
the reverse denoising process capable of transforming random noise images into images from the trained 
domain (a process which may be guided by a suitable language model to introduce linguistic priors in the image 
generation). Depending on the autoencoder, the images generated by diffusion models are typically of relatively 
high resolution (compared with GANs) and the textual conditioning may include a wide range of textual 
encoders trained on specific domains, e.g. in the medical domain BioBERT35, RadBERT36and PubmedCLIP37. 
Such language encoders can hence be used to condition the generation in a much more flexible way than other 
generative models, in particular GANs.

Other approaches use the metadata in the datasets to help learn models that take into account age, 
gender, intracranial and ventricular volume etc in parallel with image conditioning such as RoentGen38and 
LDM+DDIM39 for synthetic image generation. This meta-information can then be used to measure correlation 
among real images.

This ability to guide diffusion models via external semantic model make them potentially very powerful and 
relevant to visual attribution, especially in the medical imaging domain.

Proposed methodological approach
The current research builds upon a particular conception of generative visual attribution set out in20 in the 
context of GAN generative models. In particular, it seeks to build on the notion of counterpart normal generation, 
but enriched via the use of visual diffusion and large language models.

We thus leverage domain-adapted language components combined with conditional generation to modify 
the latent diffusion in a manner suited to medical VA. The approach hence combines domain-adapted large 
language and vision models to enable broad medical understanding to be brought to bear on the problem of 
counterpart normal generation, enabling generative visual attribution useful to understanding and pinpointing 
visual evidence in the form of generated counterfactuals and visual maps. Additionally, the representative power 
of the domain adapted large language model alongside the image-domain representation of the vision model 
ensures that medical image concepts are grounded in medical language, such that counterfactual generation may 
be prompted via complex (natural language) text prompts including, potentially, location and intensity of disease 
or condition, or else constrained to the specific organs within a medical scan. Note that the vision model is not 
directly trained on such morphological concepts beforehand (e.g. the concept of an organ or the boundaries of 
an organ), yet is able to extrapolate from the combined multimodal knowledge using the data from the language 
and visual domain to discover these concepts latently.

Lastly, the model proposed shows zero-shot generation capabilities on disease concepts that are out of the 
training data distribution, but which also appear qualitatively valid in the generated counterfactuals. This is 
presumably the result of exploiting the different extrapolate capabilities of the respective vision and language 
models in a synergistic manner. The model thus latently encompasses the ‘rules of biology’ in generating 
counterfactuals, e.g not generating extra lung scar tissue where it could not exist, outside of the chest cavity, 
irrespective of the language prompt.

This strengthens our argument for using latent diffusion models for visual attribution, since no direct 
perturbations are made in pixel space and neither is the model trained on synthetic data. We also need only use 
a dataset with a modest amount of images and basic one-word labels, relying on the text encoder (pretrained on 
domain-specific data, e.g. radiology reports) to supply additional linguistic concept relations.

The contributions of the study are as follows: 

 1.  We illustrate the use of the visual diffusion pipeline for jointly fine-tuning the combination of a domain-adapt-
ed text encoder and a vision encoder with a modest amount of real medical scans and text prompts for con-
ditional scan generation (we thus eliminate the need for synthetic data).

 2.  We generate visually valid counterfactuals (non-healthy to healthy and vice versa) with minimal pertur-
bations to the original real image guided by text prompts that employ complex natural language medical 
imaging concepts.

 3.  We explore the interpolation of knowledge in the text and vision domains using the composite text/vision 
models, evaluating the validity of the interpolations in the respective language and vision domains via their 
reflection into the other.

 4.  Using the generated counterfactuals, we generate visual maps by subtracting the generated counterfactual 
from the original image for visual attribution in the medical imaging domain, thereby enhancing diagnostic 
explainability in the manner of VANT-GAN (motivating the use of these models in safety-critical diagnostic 
applications in which visual explanation is critical for highlighting different areas of interest).

 5.  We show zero-shot generation capabilities in the visual domain for inducing diseases in healthy or non-
healthy scans prompted by complex text prompts including medical imaging concepts using the text encoder. 
We perform and ablation study, eliminating components of the pipeline to investigate the individual and 
collective contribution of the text encoder and image priors aspects of the pipeline.

 6.  Finally, we indicate the potential for future studies using such a combination of vision and language concepts 
for visual attribution using conditional generation.
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Related work in generative visual attribution
Generation of activation maps
Generative visual attribution includes a variety of classes of approach, each of which tackle the explainability 
problem in different ways. The particular class emphasised here, exemplified in a2,19and20, seek to generate 
complete or partial counterfactuals of the abnormal (i.e. diseased) image, and generate implicitly or explicitly 
a discrepancy map between the two. These maps are then visualized to highlight the attributing parts of the 
normal or abnormal image.

The ANT-GAN19approach hence leverages GANs to generate normal or healthy-looking images from 
abnormal or unhealthy images and finds the difference between the two. These are then used to highlight local 
and global features from the image which otherwise might have been overlooked. The work in2learns a map 
generating function from the training data. This function then generates an instance specific visual attribution 
map highlighting the features unique for a class. The VANT-GAN20 approach generates VA maps directly from 
unhealthy images, which can then be used to generate healthy-looking images from unhealthy images. (This 
latter anticipates that the direct map modelling learns why the image is unhealthy and captures the appropriate 
local and global visual attributes of the disease).

Charachon40 generates a range of adversarial examples and tracks the gradient across the stable generation 
of the original image and the adversarial example. By mapping these gradients to image space, visual attribution 
maps are generated to find differences between the counterfactuals and the original image.

Generation of complete counterfactuals
The second (more common) class of generative visual attribution works generate complete subject/image 
counterfactuals, which are used for diagnostic findings and may or may not be used for explicit subtraction of 
images for highlighting the differences between the normal and generated counterfactual. STEEX41uses region-
based selection of images and counterfactuals are generated only using semantic guidance. The regions are thus 
hoped to be meaningful (such as selecting a traffic signal with a green light and generating a counterfactual 
for a stop light within a complex image of a traffic junction). The counterfactuals are generated using semantic 
synthesis GAN, and the generation is constrained to keep the other regions unchanged. The Singla14 approach is 
a similar approach which uses perturbations in the original image controlled by a parameter. A counterfactual 
is generated for the perturbation such that the posterior probability of the image changes to the desired value of 
the parameter in the interval [0, 1].

Cutting edge methods of image generation, such as diffusion models, have significantly improved the 
resolution and quality of generated images. These models have been utilized in counterfactual generation 
techniques for the latter class of techniques such as Diff-SCM42,  “What is healthy”21and other similar 
techniques25,43. Diffusion models based generative VA techniques include44, which use noise encoding with 
reversed sampling and perform guidance using a class label and task-specific network. This combination is 
then denoised with a sampling scheme to generate a class conditional counterfactual. Unsupervised Medical 
Image Translation with Adversarial Diffusion Models26use a combination of diffusive and non diffusive models 
in an adversarial setup, to perform nosing and transformation operations with the noised latents of the image 
to translate between two modalities of MRI scans, using class conditioning, such as transforming a T1 contrast 
image to T2. Diffusion Models for Medical Anomaly Detection25use a weakly supervised setup for generating 
healthy counterfactuals of brain tumor images. The approach uses the noised latents from the diffusion model 
of the image and perform classifier guided denoising of the latent to produce a healthy image without a tumor. 
The What is Healthy21? work similarly encodes the image into noised latents, using an unconditional model. The 
decoding of the latent can be done via class label or unconditionally, to generate a counterfactual of the starting 
input image. A heatmap of the region containing the lesion is then produced by taking the difference between 
the reconstructed healthy and starting image. The guidance is performed without a downstream classifier using 
conditional attention mechanism techniques.

In both of these broad classes of generative VA approach there is noticeable absence of a linguistic, natural 
language explanation or conditioning mechanism easily with which a domain expert could engage ‘in the loop’ 
(e.g. communicating with the system in domain specific terminologies via precise relational instructions for 
counterfactual generation). Such techniques require the use of classifier guidance for conditional descent of 
gradients mapping between the latent parameter space and the image space (for example, using weakly supervised 
decoding strategies or hyperparametric perturbation of the image towards a healthy looking counterfactual). 
Furthermore, such techniques focus on regions of high information density, in most cases leaving the broad 
structure of the image remain changed. (An example would be a tumor causing exogenous pressure in the brain 
such that the surrounding tissue is displaced; this structural deformity would not be visually reversed by the 
above techniques, but rather just the tumor mass removed, and the unhealthy tissue converted into healthy tissue 
via transformations of pixel level features characteristic of the affected region).

Diffusion models
Diffusion models are probabilistic models which learn a data distribution by reversing a gradual noising process 
through sampling. Denoising thus proceeds from an assumed starting point of x(t), where x(t) is considered 
the final noisy version of the input x (which, being assumed to be equivalent to pure noise, can be treated as 
an easily sampled latent space). The model thus learns to denoise x(t) into progressively less noisy versions 
x(t − 1), x(t − 2)..until reaching a final version x(0)24, representing a sample from the domain distribution. 
In transforming a (typically uniformly or Gaussian sampled) latent space into an observational domain, the 
process is thus one of generative machine learning, with the denoiser typically a deep neural network of learned 
parameter weights. The latest approaches, however, use the reweighted variant of the evidence lower bound, 
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which estimates the gaussian noise added in the sample x(t), using a parametrized function θ(x(t), t) rather 
than a denoised version of input x45:

 LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ − ϵθ (xt, t)∥2

2

]
 (1)

with ϵθ (xt, t) estimated via the diffusion model, such that the objective function is the difference between the 
predicted (latent parameter instantiation) noise and the actual noise instantiation (t is an arbitrary time step 
uniformly sampled from 1, . . . , T and Ex denotes the expected value over all examples x in the dataset).

Latent diffusion models
To lower computational demands, latent diffusion models first seek to learn an appropriate latent space, one 
which, when decoded, is perceptually equivalent to the image space (a key assumption of latent diffusion is thus 
that noise perturbation of image and latent spaces are not intrinsically incompatible with regard to the generative 
process). Denoting the encoder by E, E hence learns to map images x ∈ Dx into a spatial latent code z = E(x)
. The essential mechanism of latent diffusion is then as indicated previously going forward - i.e. seeking to learn 
a model to correctly remove noise from an image, though this time in the latent space. The decoder D (which 
is usually a DNN) learns to map the latent codes back to images, such that D(E(x)) p ≈ q x. The objective 
function for the latent diffusion model now becomes

 LLDM := EE (x),ϵ∼N (0,1),t

[
∥ϵ − ϵθ (zt, t)∥2

2

]
 (2)

where z(t) is the latent noised to time step t45,46.

Latent diffusion autoencoders
The autoencoder model follows a training paradigm similar to47 in an adversarial setting, such that a patch-
based discriminator Dψ  is optimized to discriminate between original images and reconstructions D(E(x)) in 
combination with a perceptual loss48, ensuring the modes learns the global composition of images well, while 
preserving locally realistic patterns45. The full objective function, utilizing a combination of the two losses 
discussed above to train the autoencoding model (E, D) is stated as

 
L Autoencoder = min

E ,D
max

ψ
(Lrec(x, D(E (x))) − Ladv(D(E (x))) + log Dψ(x) + Lreg(x; E , D))

An image x ∈ RH×W ×3 in the RGB space is encoded via the encoder E into spatial latent code z, where 
z ∈ Rh×w×c. Crucially, the image x is downsampled by the encoder by a factor of f = H/h = W/w, reshaping 
it into H/f × W/f × 4using a relative downsampling factor f=845.

Conditioning using a domain-specific encoder
In the following, the noise prediction function ϵθ (xt, t)is implemented using a time-conditioned Unet model49, 
which can also be conditioned on class labels, segmentation masks, or outputs of a jointly trained domain 
specific encoder. Let y be the condition input and T(θ) be a model which maps the condition y to an intermediate 
representation T(θ)(y)which is then mapped to the intermediate layers of the UNet via a cross-attention layer50. 
The objective function for the class-conditional variant of latent diffusion thus becomes:

 LLDM := EE (x),y,ϵ∼N (0,1),t

[
∥ϵ − ϵθ (zt, t, τθ(y))∥2

2

]
 (3)

Image priors
In the above, any arbitrary image can be considered an instantiation of the generative latent parameters. Thus, 
instead of commencing from pure noise (i.e. purely stochastic latent parametric instantiation), the latent diffusion 
process can instead be initiated from a given image, via application of the appropriate Stochastic Differential 
Equations (SDEs), as a form of prior conditioning in the image space. The given image (which may or may not 
be in the training data distribution, but which is presumed to lie within the manifold of natural images), is firstly 
perturbed with Gaussian noise (’lifting out the image manifold’). This noise is then removed progressively via 
the learned denoiser, which effectively acts to reproject the guide image back into the manifold of natural images; 
This may be thought of as a short random walk within the manifold of a given metric distance.

More formally, if x(0) ∼ p0 is a sample from the data distribution, the forward SDE produces x(t) for 
t ∈ (0, 1] via Gaussian diffusion. Given x(0), x(t) is distributed as:

 x(t) = α(t)x(0) + σ(t)z, z ∼ N(0, I) (4)

where the magnitude of the noise z is defined by the scalar function σ(t) : [0, 1] → [0, ∞). The magnitude of 
the data x(0) is defined by the scalar function α(t) : [0, 1] → [0, 1]. The probability density function of x(t) as 
a whole is denoted pt.
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The usually considered SDE are of two types. One is Variance Exploding SDE, where α(t) = 1 for all t and σ(1) 
is a large constant, which makes p1 close to N(0, σ2(1)I). The second type is the Variance Preserving SDE, 
satisfying α2(t) + σ2(t) = 1 for all t with α(t) → 0 as t → 1, so that p1 equals to N(0, 1)51.

Image synthesis is then performed via a reverse SDE52,53 from the noisy observation of x(t) in order to 
recover x(0), given knowledge of the noise-perturbed score function ∇x log pt(x). The learned score model as 
sθ(x(t), t), the learning objective for time t is:

 Lt = Ex(0)∼p data ,z∼N (0,I)
[
∥σtsθ(x(t), t) − z∥2

2

]
 (5)

with sθ(x(t), t) a parametrized score model to approximate ∇x log pt(x); the SDE solution can be approximated 
with the Euler-Maruyama method51. The update rule from (t + ∆t) to t is:

 x(t) = x(t + ∆t) +
(
σ2(t) − σ2(t + ∆t)

)
sθ(x(t), t) +

√
σ2(t) − σ2(t + ∆t)z (6)

A selection can be made on a discretization of the time interval from 1 to 0 and after the initialization 
x(0) ∼ N (0, σ2(1)I), Equation 4 can be iterated to produce an image x(0)51.

Additional control priors
Additional conditioning mechanisms can be introduced to add further control to the generation e.g. ControlNet54 
adds intermediate layers to the feature maps at each step of the downscaling operation while transitioning from 
image to latent space. Thus it becomes possible to add a task-specific image-conditioning mechanism to the 
model:

 L = Ez0,t,ct,cf,ϵ∼N (0,1) [∥ϵ − ϵθ (zt, t, ct, cf)) ∥2
2
]

 (7)

Where given an image z0, noised latents zt are produced by progressively adding gaussian noise to the initial 
image after time steps t. Given the time step t, text prompts ct, and task specific conditions cf , the model learns a 
network to predict the added noise ϵθ . Some examples of task-specific image based conditioning include Canny 
edge maps, Semantic Segmentaion, Sketch-based guidance, and human pose54 etc.

The conditioning mechanisms of input text, image priors, depth and segmentation maps can thus be used in 
combination with each other, complementing or adding to the image generation for further generative control 
as required on a task-by-task basis.

Methodology
In the following, we indicate normal medical images by In and abnormal images by Ia. We make the assumption 
that In and Ia are sampled from distributions pn(I) and pa(I) respectively. Additionally, we assume that the 
differences between an abnormal image and its corresponding normal image (from the same patient) are only 
the characteristic disease markers or indicators of diagnostically relevant abnormality, and no other structural 
differences are present. In this setup, given an input abnormal image Ia, we wish to produce a visual attribution 
map M(Ia

i ) that contains all the features that differentiate an abnormal image Ia
i  from its normal counterfactual 

In
i , such that mapping is decomposed M(Ia

i ) = Ia
i − In

i in common with the VANT-GAN20 strategy for visual 
attribution, albeit in a visual diffusion rather than GAN-based context.

To generate the normal counterpart In
i  we use a conditioned stable diffusion model which combines a text and 

an image condition or input of the forms set out in sections 2.3 and 2.5 via the loss functions delineated in equations 
5 and 7. Using an image to image synthesis setting similar to SDEdit51, we initiate with the abnormal image as 
the guide x(g) = Ia

i  and add Gaussian noise to form the noised latents zt = x(g)(t0) ∼ N (x(g); σ2(t0)I) 
which are then used to produce x(0) via application of equation 6, conditioned on Tθ(y), where Tθ  is a domain 
adapted text encoder which maps the conditional prompt y to an intermediate representation Tθ(y). Hence the 
normal corresponding image In

i  = x(0) is synthesized as the denoised version of ϵθ(zt, t, Tθ(y)). The mask 
M(Ia

i ) is then explicitly produced by subtracting the generated normal counterpart from the abnormal image. 
The network architecture is depicted in Figure 1.

The conditioned latent diffusion model pipeline that we utilise in the following experiments deploys an 
initial encoder/decoder network of the form of a variational autoencoder (VAE), a time-conditioned Unet 
model49conditioned on a domain-specific encoder in the textual domain (specifically a Bert based model trained 
on radiology reports called RadBERT36) and, finally, an additional system fine tuning detailed below. We use 
an image-to-image conditioning mechanism paralleling that of SDEdit51, with the model taking two inputs, an 
image and corresponding text prompt to generate the counterfactual image from which the VA map is derived.

Experiments
We firstly evaluate counterfactual generation –the generation of healthy counterparts to unhealthy scans– via an 
investigation of its qualitative impact i.e. the overall visual plausibility of the generated counterpart. Following 
this, we seek to quantitatively analyze the generative perturbation of the tested unhealthy scans in order to 
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determine the utility of the method in its primary mode of VA application. Finally, we explore the latent capacity 
of the trained system to carry out a series of zero-shot counterfactual generation exercises, in particular: localized 
disease induction and the induction of diseases from outside the training data in relation to input healthy scans.

Training details
The pretrained latent diffusion model CompVis/stable-diffusionv1-4 and the Bert based model RadBERT are 
obtained from Huggingface https://huggingface.co/StanfordAIMI/RadBERT. These were jointly fine-tuned 
using a single Quadro RTX 8000 at bf16 precision, with batch size = 2, at a resolution of 512x512px. The models 
were fine-tuned on the diffusers library using an approach for binding a unique identifier to a specific subject 
via a class-specific prior preservation loss, Dreambooth55, with 1200 training steps used for the Normal class, 
after which 500 training steps are applied for each of the non-healthy classes, namely Lung Opacity, COVID-19, 
and Viral Pneumonia, making a total number of training steps of 2700. The greater preponderance of the 
normal class ameliorates the intrinsic imbalance in dataset, with model convergence inherently slower for the 
X-ray image domain, being out of the initial distribution. The learning rate was 5e-05 and, for sampling, the 
PNDM scheduler strength is set at 0.55 with Guidance Scale=4 found to be most effective across all classes for 
counterfactual generation.

The COVID-19 Radiography Database56 contains 10192 normal, 3616 COVID-19, 4945 Lung Opacity and 
1345 Viral pneumonia chest x-ray images. The dataset is obtained from  h t t p s :  / / w w w .  k a g g l e  . c o m /  d a t a s e t s / t a w s i f 

Fig. 1. The counterfactual generation pipeline takes as input the abnormal image xa, which is then encoded 
by the VAE encoder (ϵ) to form the encoded image latents Z and passed through the diffusion process to form 
noised latents of the image ZT  after incremental t steps. The fine-tuned conditional U-net denoises the latents 
into the conditioned latent Z, decoded by the VAE decoder D into the final generated counterfactual xn, from 
which a visual attribution map M(xn) is subtractively generated.
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u r r a h m a n / c o v i d 1 9 - r a d i o g r a p h y - d a t a b a s e     . The model is fine-tuned on the images using their respective labels as 
text prompts i.e Normal chest scan, Lung Opacity, Viral Pneumonia, and COVID 19.

Qualitative evaluation of healthy counterpart generation
Example images from the disease COVID-19 Radiography Database and their generative healthy counterparts 
are given in figure 2. The images on the far left are instances of the lung opacity class from the real images in 
the dataset. The images in the middle column are examples of the generated healthy counterfactuals obtained 
via latent space diffusion, with RadBERT-guided textual-conditioning via a conditional prompt “normal chest 
x-ray”. A total of 75 diffusion inference steps are used with image conditioning strength=0.85 and guidance 
scale=7.5. (The former indicates the level of constraint on changes to the original input image and the latter is 
the weight given to the textual encoder conditioning in the generation of the image, ranging over [0,1] and [0,9], 
respectively).

Side-by-side inspection of the generated healthy counterfactuals (as per fig. 2) suggests that, as required, 
only minimal perturbation is made to the original image with respect to healthy pixels -i.e. localized image sites 
without structural medical defects. (In the top row, the medical structural defect in the original image is due to 
a lung opacity, and characterized via a relatively complex interaction between the imaging modality and subject 
manifesting as ‘gaps’ in the corresponding portions of the lung scan). The healthy/non-healthy discrepancy maps 

Fig. 2. Healthy Counterfactual Generation for three cases of lung opacity (Red indicates generated tissue by 
the model).
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in all of these cases are obtained via masked subtraction of the original image from the generated image (the 
ground truth segmentation masks correspond to the broad area of interest -i.e. the complete lung). The generated 
healthy tissue is thus a subset of the mask and is shown in the final column of fig. 2 for the respective cases.

In the context of a VANT-GAN20-based approach, this highlighted material constitutes the diagnostic 
counterfactual visual attribution, i.e. the selection of material relevant to the diagnosis of the unhealthy condition. 
Healthy counterfactual generation was performed for the complete datasets in the three unhealthy classes, i.e 
Lung opacity, Viral Pneumonia and COVID, examples of which are given in fig. 3 for the three classes (all of the 
generated healthy counterfactuals from this experiment can be found on  h t t p s : / / h u g g i n g f a c e . c o / a m m a r a d e e l / d i 
ff  u s i o n V A     ) . Visual inspection indicates that the generated counterfactuals are, in general, visually plausible with 
minimal perturbation made to the unhealthy image overall. Moreover, the healthy counterpart generation does 
not appear to unnecessarily affect aspects of the images unrelated to the medical condition, the model selectively 
making changes to the unhealthy regions in a structurally plausible manner, e.g. generating missing portions of 
the lung without generating extraneous lung material where it would be expected to normally exist (e.g. in the 
abdominal cavity).

Fig. 3. Healthy Counterfactual Generation (Red indicates generated tissue by the model).
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Quantitative evaluation of healthy counterpart generation
Fréchet Inception Distance (FID) measures
For quantitative evaluation on the COVID19 dataset, Fréchet Inception Distance (FID)57 was calculated for the 
generated healthy counterfactuals for each class in order to measure the general level of plausibility, and also to 
assess how distant the generated counterpart normal distribution is from that of the healthy and diseased image 
sets.

FID scores are calculated with default characterisations i.e activations of the pool3 layer of the InceptionV3 
model with 2048 dimensions (the particular implementation deployed is sourced from the Pytorch FID 
package58). A lower FID would indicate that distribution of the two image sets are similar. Obtained results 
(cf Table 1) indicate that the real healthy and the generated healthy counterfactuals have relatively similar 
distributions, with the exception of the Viral Pneumonia class, which has a significantly larger absolute relative 
difference in FID scores. (An “ImageSet” here indicates randomly-sampled images of a real class or a generated 
class. E.g. In the first row of Table 1, ImageSet 1 is Lung Opacity, referring to all images of the Lung Opacity class 
from the original dataset, while ImageSet 2 contains all generated healthy images corresponding to ImageSet1. 
ImageSet 1 and ImageSet2 in the second row correspond to the images of the Lung Opacity and Healthy classes 
of the original dataset respectively).

Relative differences between generated healthy and real healthy images are presented in Table 2 for respective 
classes (with FID measured as ∥µh − µg∥2

2 + Tr(Σh + Σg − 2(ΣhΣg)1/2) for the two continuous multivariate 
Gaussian distributions parametrised (µg, Σg) and (µh, Σg) applied to activations of the pool3 layer of the 
InceptionV3 model).

The relative differences highlighted in Table 2are overall indicative of good fidelity (By way of baseline, FID 
differences using unconditioned stable diffusion without any training or fine-tuning can reach values 275.0 in 
the Roentgen38 study).

The overall visual soundness of the generated images, as validated via the absolute and relative FID scores 
obtained for each of the classes, is thus broadly consistent with the previous qualitative interpretation that tested 
image distributions are minimally perturbed in order to transform them into healthy counterfactuals, while 
refraining from making changes to the healthy local regions of the image (the scores of the COVID19 class are 
the closest in this respect among the tested disease conditions, with a relative absolute difference of 6.0 in FID 
scores between real and generated images.

The scores for the viral pneumonia class appear to be in a large part attributable to the relatively larger 
magnitude of fundamental structural differences between healthy and viral pneumonia images in the training 
set: in particular, the viral pneumonia image set mostly had scans from children and infants, while the healthy 
class was of adult majority. (This data bias would break the basic assumption that differences between class image 
sets is due only to structural defects of disease).

SSIM and MS-SSIM measures
As a further quantitative measure of the relationship between diseased image and generated healthy 
counterfactuals, we adopt the Structural Similarity (SSIM) and Multi Scale Structural Similarity Metric (MS-
SSIM)59 metrics, calculated between the unhealthy images and their respective generated counterparts, and 
averaged across classes.

The Structural Similarity index60 quantifies the differences between a processed/distorted image x and a 
reference image y, combining the three key comparisons: luminance l(x, y), contrast c(x, y) and structure s(x, y). The 

Image Set 1 ImageSet 2 Frechet Inception Distance

Real Healthy Generated Healthy from the Lung Opacity class 60.60

Real Healthy Generated Healthy from the Viral Pneumonia class 110.72

Real Healthy Generated Healthy from the Viral COVID19 class 45.11

Table 2. FID as a measure of image quality.

 

Image Set 1 ImageSet 2 Frechet Inception Distance

Lung Opacity Generated Healthy 27.8

Lung Opacity Real Healthy 46.9

Relative Absolute Difference 19.1

Viral Pneumonia Generated Healthy 37.63

Viral Pneumonia Real Healthy 97.6

Relative Absolute Difference 59.97

COVID 19 Generated Healthy 32.2

COVID 19 Real Healthy 38.2

Relative Absolute Difference 6.0

Table 1. FID as a measure of minimum valid perturbations across classes to generate healthy counterfactuals.
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SSIM(x,y) between two signals or images x and y is then given as: SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ
, where α, β and γ are weighting variables, used to control the relative importance of the three factors. We use 
the general form of the measure where α = β = γ = 1 and C3 = C2/2:

 
SSIM(x, y) = (2µxµy + C1) (2σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)  (8)

with mean intensities µ and standard deviations σ, estimating the signal contrast. σxy  denotes the covariance of 
x and y, while σ2

x and σ2
y  denote the variance of x and y respectively. C1, C2 and C3are constants or combinations 

of constants to avoid instability based on the dynamic range of pixels60.

The Multi-Scale Structural Similarity61 (MS-SSIM) is an extension of SSIM incorporating image details at 
differing resolutions, progressively downsampling x and y signals using a low-pass filter in factors of 2. The j-th 
contrast and structure comparisons are respectively denoted as cj(x, y) and sj(x, y) (the luminance comparison 
Eq.12 is made at only the largest scale (i.e. original size) at scale M. The Multiscale SSIM is then defined:

 
MS-SSIM(x, y) = [lM (x, y)]αM ·

M∏
j=1

[cj(x, y)]βj [sj(x, y)]γj  (9)

MS-SSIM and SSIM metric values are interpreted as measuring the extent of structural similarity between the 
generated counterfactuals and unhealthy real images: a priori, the structure of unhealthy images should not 
change significantly overall in terms of their broad morphology, but only the requisite minimal perturbations 
should be made. A low structural similarity indicates larger perturbations to the unhealthy image, and a higher 
structural similarity indicates smaller overall perturbation: in the extreme cases, 0 would indicate no structural 
similarity, and 1 would indicate identity of the images. The SSIM and the MS-SSIM measures for the respective 
disease classes are as depicted in Table 3, and appear consistent with this prior assumption, with only small 
variation between tested disease classes.

Latent capacity of the model for open-ended visual analysis
The implicit coupling of a Language Model (LM) with a stochastic image parameterization model embodied by 
our approach raises the question of whether other use cases are made possible within a VA context, closer to 
the goal of arbitrary open-ended counterfactual querying of medical data (e.g. in which a medical practitioner 
might, as part of the diagnostic chain of evidence, ask: “What would this scan look like if the patient were X years 
older and suffered from condition Y?”). Thus we seek to establish the presence of Latent Capabilities within the 
model: i.e. capabilities not explicit instilled at training time.

We conduct two sets of (qualitative and quantitative) experiments to evaluate this latent capacity, namely: 
Zero-shot Induction of Non-Healthy Counterparts and Localized Disease Induction.

Zero-shot induction of non-healthy counterparts
Despite our model being trained for healthy counterpart generation, we may consider instead a reverse of this 
process, i.e. the induction of a specific disease within healthy scans using the same experimental pipeline. In 
particular, we can consider the capacity to induce disease via the latent language capacity of the model.

As an instance of this, the trained model was prompted in the generative setting for “carcinoma” in relation to 
a healthy image. The result is shown in Figure 4alongside the real healthy scan and a separate real-case carcinoma 
can be observed in the image62. It is clear that the induced disease is visually comparable to that of the real case 
despite it’s absence from the training set. We propose that this capability arises as a result of a the internal 
correlation of the domain-adapted text encoder to that of the visual domain via the visual model, given that the 
domain-adapted text encoder is trained on the full panoply of Radiology reports.

To evaluate this in more detail we examine a less localised condition: Cardiomegaly.
Zero-shot evaluation: Cardiomegaly
The disease cardiomegaly (enlargement of the heart) was not present in the training data; to evaluate zero 

shot induction in this context, we take real images from the small version of the Chexpert63 dataset (from  h t t p s 
: / / w w w . k a g g l e . c o m / d a t a s e t s / a s h e r y / c h e x p e r t     ) . Thus, 8060 images of positively identified cases of cardiomegaly 
were used as the reference image set for real cardiomegaly. Correspondingly, for each of the healthy images from 

Image Set 1 Image Set 2 MS-SSIM SSIM

COVID Generated Healthy 0.830 0.798

Lung Opacity Generated Healthy 0.813 0.780

Viral Pneumonia Generated Healthy 0.802 0.768

Table 3. MS-SSIM and SSIM as a measure of minimum valid perturbations across classes to generate healthy 
counterfactuals.
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the COVID 19 database, an induced version was generated by the model with the prompt “Cardiomegaly”. FID 
scores between the real cases of cardiomegaly from the Chexpert dataset and the generated images are given in 
Table 4.

The FID scores in Table 4indicate that the generated cardiomegaly images do not have a large distance (using 
the 275.0 baseline of the Roentgen38 study) from the real images from which they were generated, suggesting 
appropriate perturbations were made and the generations were reasonably close to the real cardiomegaly set 
from the Chexpert dataset.

Interestingly, while generation across different settings of the visual diffusion hyperparameters Strength 
& Guidance-scale did not have a very significant difference on FID scores evaluated across the full range of 
image sets, visual differences for individual images could be more significant, as highlighted in Figure 5 for 
two different settings of the respective hyperparameters. This is presumably due to the different aspects specific 
to individual patient image (such as the prior health of the patient, structural variances due to age, recording 
equipment, size etc) acting to mimic hyperparametric variation, which primarily appears to affect the opacity 
of the induced material for hyperparameter settings ranges consistent with good image generation (in general, 
the Strength hyperparameter give scope for larger perturbation from the original image during diffusion, while 
Guidance-scale determines the intensity of text prompt conditioning; optimal settings of these parameters are 
inherently disease-specific given the wide variation in the amount of pixel opacity needing to be added in the 
disease induction setting of the pipeline).

(For an additional comparison baseline, we include results for induction of disease that are within the training 
set, namely viral pneumonia and COVID19. Results are given in figure 6).

Localized disease induction
Finally, a key requirement of counterfactual visual attribution is sensitivity to both exogenous and endogenous 
aspects of disease: we define the endogenous visual aspects of disease as those attributes intrinsic to diagnosis, 
and the exogenous aspects as free-parameters associated with diseased tissue that are not themselves directly 
implicated in diagnosis. An example might be a tumor identified via its texture characteristics (endogenous), 
but which is otherwise located arbitrarily within a particular organ (so that location within the diseased organ is 
effectively an exogenous free variable within a VA context).

We therefore illustratively test our model in regard to its latent capability to induce disease in specific locations 
through the simple expedient of conditioning on positionally-indicative text. The results may be seen in figure 10 
for the case of localized lung opacity (lung opacity being chosen because it is both diffuse and generally specific 
to one or other lung). The respective condition texts are “large lung opacity on the left” and “large lung opacity 
on the right”.

Hyperparametric ablation studies
The impact of the hyperparameters Strength and Guidance Scale were previously indicated in the context of 
the spectrum of disease severity in Cardiomegaly. We here seek to perform a proxy ablation study by isolating 

Image Set 1 Image Set 2 FID

Real Cardiomegaly Generated Cardiomegaly 52.08

Real Healthy Generated Cardiomegaly 17.71

Table 4. FID as a measure of minimum valid perturbations for zero-shot cardiomegaly induction.

 

Fig. 4. Zero shot carcinoma induction.
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the individual effects of the respective components of the generative pipeline through the setting of these 
hyperparameters. In individual terms, the respective hyperparameters act in the following manner:

Strength: The Strength parameter dictates the resemblance of the generated image to an original image 
given as prior conditioning. In contrast to the standard diffusion process, in which the starting point x(t) can 
be characterised as pure noise, an image prior is instead used. Noise from some suitable function α(t) (with 
range [0, 1]) is thus added to an image prior obtained externally or sampled from the data distribution with 
a multiplicative magnitude coefficient characterised by the Strength parameter. Hence the lower the Strength 
hyperparameter, the lower the level of additive noise in the image, giving rise to a denoised final image resembling 
(i.e. proximal in the image subspace to) the image prior x(0). A Strength value close to 1, by contrast, introduces 
large noise levels, resulting in a final denoised image that is relatively dissimilar to the image prior (though 
still within the image manifold). In the following, this also impacts the inference time, as more additive noise 
requires an increased number of denoising steps to produce a convergent final image: inference time on the 
indicated hardware ranges between 1 and 5 seconds, more-or-less in proportion to the Strength setting.

Guidance Scale: The Guidance Scale parameter controls the effect of the domain-specific encoder on the 
conditional generation of the image (details of which are discussed in section 2.3); in this case specifically the 
domain-adapted text encoder. The Guidance Scale has a range of [0, 9] indicating the degree of alignment of the 
generated image with the prompt (i.e. the textual prior conditioning). An amount close to 0 indicates the highest 
level of deviation allowance from the prompt.

Critically, since these two parameters control the degree of influence of the key pipeline components, in 
particular those of the text encoder and the image prior, we can use these parameters to conduct a proxy ablation 
study, eliminating individual components from the pipeline to assess the effect on image quality.

Hyperparametric elimination of image priors
In this initial ablation experiment we attempt to generate healthy images conditioned on the text encoder, 
commencing from pure noise. Eliminating image priors by setting the Strength parameter to 0.99 and the 
Guidance Scale to 8.5 we generate 4000 images with the prompt ”healthy chest scan”. The generated set is then 

Fig. 5. Induction of Cardiomegaly in real healthy scans.
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compared to the real healthy set for image quality. The FID from the real healthy for the respective generated 
image sets are presented in table 5.

Under these settings, the generated images exhibit a lack of overall structure and quality. As illustrated in 7b 
the generations have relatively poor quality: in fact, the the model often fails to generate the basic structure of a 
chest scan (Images excluded as they might be disturbing). Image priors are thus crucially helpful in controlling 
the VA generation process as the modality of the output is effectively that of input (i.e. Image to image). Starting 
from a base anatomical structure, adding details according to a condition from the prompt significantly assists 
induction. Example generations are presented in Figure 7.

Hyperparametric elimination of the text encoder
To observe the effect of the domain adapted text encoder, we eliminate it from the generation pipeline using 
the Guidance Scale parameter with a value of 0.01 - and the prompt as an empty string. We start with a random 
healthy image and set the Strength to 0.4 to introduce a degree of noise in the input image to give a degree of 
diversity in the generations. 4000 images are generated with the aforementioned hyperparameter settings for 
comparison with the real healthy set of chest scan images.

The images in Figure. 8 indicate that the generation is of a relatively better quality compared to images 
generated without image priors, with a FID from the original healthy set of 91.57. Generations remain 
consistently close to the original image prior in overall structure, and only very slightly deviate in terms of lung 
mass (A different setting of Strength would introduce a greater degree of diversity amongst the generations in 
terms of overall structure, but was avoided in order to isolate effects of the text encoder).

Image Set 1 Image Set 2 FID

Real Healthy Generated eliminating Text Encoder 91.57

Real Healthy Generated eliminating Image Priors 113.14

Real Healthy Generated eliminating Text Encoder and Image Priors 113.71

Table 5. FID as a measure of component effect on overall image generation.

 

Fig. 6. Induction of baseline diseases in real healthy scans (Red indicates induced scarring).
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 Unconditional image generation - hyperparametric eliminating the text encoder and image priors
In the final phase of the ablation study, we eliminate the text encoder and the image priors to give completely 
unconditional image generation. Commencing with pure noise, setting the Strength to 0.99, Guidance scale to 
0.1, and an empty string as the prompt, 4000 images are generated. With an average FID of 113.71 this setting 
results, as anticipated, in the greatest distance to the healthy set in terms of image quality. The images of Figure. 
9 exhibit relatively greater diversity than the other settings, and visually have the largest amount of structural 
inconsistency in relation to generation of normal chest scans. The FID value is relatively similar to the setting in 
which only the text encoder is used as a condition on generation, though the visual results would suggest a far 
poorer result.

We conclude, finally, that all components of the pipeline are critical in the visual attribution approach. 
Although beyond the scope of the current ablative analysis, further light may be shed on the impact of individual 
components via the use of alternative metrics such as conditional FID, domain adapted models for calculating 
FID, directional difference metrics, or classifier based metrics such as Verisimilitude19.

Conclusion
In this work, we present a novel generative visual attribution technique for improving explainability in the 
medical imaging domain, leveraging a fusion of vision and large language models via the stable diffusion 
pipeline, built on foundational generative VA concepts from the VANT-GAN20 approach. The model developed 
generates normal counterparts of scans affected by different medical conditions in order to provide a subtractive 
salience map between the real affected regions and the generated normal scans, thereby providing insight into 
those regions relative to diagnosis (and which is thus distinct from straightforward segmentation of diseased 
regions typically associated with machine medical diagnostics). It does so in a manner potentially synonymous 
with, and therefore assistive to, the inference process of human medical practitioners.

The pre-trained domain-adapted text and vision encoder are jointly fine-tuned using a modest number of 
image and one-word text training examples from the medical imaging domain for image-to-image generations. 

Fig. 7. Example Images: Hyperparametric Elimination of Image Priors using the prompt “healthy chest scan”.
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The generation capabilities include the induction of different medical conditions in healthy examples induced with 
varying severity. Inputs to the text encoder support advanced medical domain language and terminology, with 
the capacity for specifying particular topological locations in organs. Ablation studies highlight the individual 
and combined contribution of the text encoder and image priors to the generation pipeline.By harnessing the 
model’s learned multimodal knowledge from the domain-adapted text encoder and the vision model, out-of-
training data distribution or zero-shot generations can be made for unseen medical conditions. Similar to other 
generative architectures, diffusion models have limitations, including but not limited to hallucinations, mode 
interpolation and memorization. In the medical diagnostics domain, future work will address the possibility 
of addressing complex disease-interactions, for example, providing simulation of the composite effects of age, 
lifestyle choices, and differing underlying disease conditions. The modest data requirement may also prove 
helpful for few-shot learning in relation to rare diseases or those with limited examples (for example, neonatal 
medical scans).

Fig. 8. Elimination of the Text Encoder, with a healthy scan as image prior.
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Fig. 9. Elimination of the Text Encoder and Image Priors.
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Data availability
The datasets generated and/or analysed during the current study are available in the COVID-19 Radiography 
Database56, CheXpert-v1.0-small63, and diffusionVA repositories  h t t    p  s : /  / w  w w . k  a g g l e . c  o  m /  d a t a s e  t s / t a w s i f u r r a h 
m a n / c o v i d 1 9 - r a d i o g r a p h y - d a t a b a s e     , https://www.kaggle.com/datasets/ashery/chexpert, and  h t t p s : / / h u g g i n g f a c 
e . c o / a m m a r a d e e l / d i ff  u s i o n V A     respectively.
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