
The Transcriptional Regulatory Network of
Mycobacterium tuberculosis
Joaquı́n Sanz1,2, Jorge Navarro3, Ainhoa Arbués4,5, Carlos Martı́n4,5, Pedro C. Marijuán3, Yamir

Moreno1,6*

1 Instituto de Biocomputación y Fı́sica de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain, 2 Departamento de Fsica de Materia Condensada, Universidad

de Zaragoza, Zaragoza, Spain, 3 Grupo de Bioinformación, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain, 4 Grupo de Genética de Micobacterias,
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Abstract

Under the perspectives of network science and systems biology, the characterization of transcriptional regulatory (TR)
networks beyond the context of model organisms offers a versatile tool whose potential remains yet mainly unexplored. In
this work, we present an updated version of the TR network of Mycobacterium tuberculosis (M.tb), which incorporates newly
characterized transcriptional regulations coming from 31 recent, different experimental works available in the literature. As a
result of the incorporation of these data, the new network doubles the size of previous data collections, incorporating more
than a third of the entire genome of the bacterium. We also present an exhaustive topological analysis of the new
assembled network, focusing on the statistical characterization of motifs significances and the comparison with other model
organisms. The expanded M.tb transcriptional regulatory network, considering its volume and completeness, constitutes an
important resource for diverse tasks such as dynamic modeling of gene expression and signaling processes, computational
reliability determination or protein function prediction, being the latter of particular relevance, given that the function of
only a small percent of the proteins of M.tb is known.
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Introduction

During recent years, simulations of biological systems have been

spurred by the massive acquisition and availability of data in

molecular and cell biology. It is increasingly becoming evident that

simulations can be paired with experiments, and in fact, they are

customarily used by computational scientists to understand the

quantitative behavior of many complex biological systems. Addi-

tionally, in silico simulations are also successfully employed in the

design of new biomolecular experiments thus driving experimen-

talists. Although the gap between in vivo and in silico biology has been

remarkably reduced, there are still many limitations hindering the

adoption of computational approaches in everyday biomolecular

research. Filling in this gap will help for a better understanding of

mechanisms and operation of cellular processes.

Achieving such a goal is not easy. On the one hand, experi-

mental data for large biological systems are often incomplete and

of non-uniform quality, so that their modeling is often hampered

by the lack of complete knowledge of the cellular circuitry or

networks of interactions. On the other hand, a successful in silico

model would require an enormous amount of information relevant

to the system under analysis, which posses constraints to the

number of variables that can be used to characterize the state of a

biological system. Our still limited capability to produce accurate

computational models of living systems is however producing

simulation tools useful in drawing new principles and laws, both

from the topology and the dynamics of the system under

consideration, that complement the huge body of experimental

work. In particular, viewing the system as a network has revealed

as a powerful approach that allows elucidating its components and

their dynamical interplay in order to understand the functioning of

the system as a whole. By constructing and analyzing biological

networks one can overcome the limitations of traditional

reductionism reasoning.

In this paper, we study the transcriptional regulatory network of

one of today’s most threatening menaces: Mycobacterium tuberculosis,

that causes Tuberculosis (TB). M.tb is an extraordinarily successful

pathogen that currently infects approximately one-third of the

global population and causes 8 million new cases of tuberculosis

annually [1]. Along with AIDS and malaria, it remains being one

of the deadliest diseases worldwide, with 1.8 millions deaths each

year [2]. As a major threat to human health globally, there is an

urgent need to improve our knowledge on the molecular and

systemic mechanisms underlying the pathological success of this

bacillus. Herein, the combination attempted of genomics, bio-

informatics, and systems biology, together with network science

and topological analysis, may be useful to generate new analytic

tools and to suggest further therapeutic strategies.

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e22178



The success of the pathogen is based on the singularities of its

life cycle within the host organism. As was pointed in [3], the

characteristic features of the tubercle bacillus include its slow

growth, dormancy, complex cell envelope, intracellular pathogen-

esis and genetic homogeneity. As an intracellular pathogen, the

bacillus must be able to gain entry into macrophages, disorganize

the phagosome maturation and its fusion with the lisosome,

multiply intracellularly, survive within the lung granulomas for

years, and disperse to a new host via aerosols [4]. The ability to

persist for long periods in the host depends on the capacity of M.tb

to acquire and utilize nutrients from the very interior of the

macrophage phagosome. The bacillus switches metabolic path-

ways to utilize fatty acids rather than carbohydrates during

infection [5]. It is therefore likely that the expression of different

sets of genes at various stages of infection is crucial to its survival.

For instance, the phoP gene regulates a large number of genes of

M.tb bacilli, controlling many metabolic functions: hypoxia

response, respiratory metabolism, response to stress, lipid synthe-

sis, etc. [6].

Unraveling the biochemical mechanisms behind M.tb infection

is crucial for the development of new drugs and vaccines aimed at

eradicating the disease. The current TB vaccine, called BCG (live

attenuated strain derived from Mycobacterium bovis), remains the

most widely used worldwide, but the degree of protection it confers

is very variable and rather inadequate against the respiratory form

of TB [7,8]. Consequently, several teams have been working on

the development of new vaccines [8,9]. One of such candidates is a

live vaccine that consists of a mutant strain of M.tb called SO2,

characterized by inactivation of phoP gene, which greatly

attenuates its virulence. It is therefore of utmost importance to

know in depth as many aspects as possible of the biochemical and

metabolic networks of M.tb through the application of existing

analytic tools, including those of systems biology and signaling

science [10].

Such a challenging goal would imply to comprehend both the

transcriptional control of the signaling system and the interaction

of the bacillus with the immune system of the host. As a first step, it

is necessary to study the backbone of this complex system, i.e., the

circuitry behind the biochemical processes operating at the gene

expression and signaling levels. In this paper, we report the most

complete transcriptional regulatory network of M.tb to date.

Capitalizing on previous attempts to build up the M.tb transcrip-

tional regulatory network, we have been able to assemble a

network that links together the many isolated interactions reported

in the literature. Specifically, we cover roughly the 40% of the M.tb

genome (1624 genes) and report 3212 interactions.

Thinking on a wider perspective than the strictly biomedical

interest of this work, our study also address important open

questions in the field of network science. During the last decade, it

has been shown that many complex systems from fields as diverse

as sociology, technology, economy or molecular biology, are made

up of components that form interaction patterns or complex

networks that share an strikingly rich amount of topological

features [11–14]. Analyzing the commonalities and differences

among the topological features of these heterogeneous networks is

of utmost importance. To the best of our knowledge, the network

here assembled is the first intracellular pathogen whose TR

network is characterized to a reasonable level of accuracy and

completeness. In this paper, we calculate the main macro-scale

features of the M.tb TRN: connectivity distributions and mean

values, assortativity and clustering coefficients as well as average

path lengths [14]. Of further interest is the analysis of small scale

features as given by the abundances and significances of the so-

called network motifs, i.e., small subgraphs whose high relative

abundances can be identified as strong topological markers. The

analysis carried out gives relevant information about the effective

tasks for which the network under study is designed or evolved

[15,16]. Finally, we also present a comparative topological analysis

between the TR interactome of an intracellular parasite like M.tb

and other already available analogous system, E.coli, with

diametrically opposite life styles.

Results

Construction of the TR network of M.tb
Our starting point is the TR network proposed by Balázsi and

colleagues a few years ago [17], which is the largest M.tb

transcriptional network to date (see Table 1). Based on this TR

network, we have performed a considerable expansion by using

publicly available sources, most of which appeared after Balazsi’s

compilation {see Materials and Methods{. For such an expansion

we have used resources that are based on two different

experimental groups of methodologies. Within the first family of

experimental procedures, we have considered techniques that are

based on detecting significant changes of target-gene expression

levels caused by disrupting, over-expressing, or inducing a certain

regulator, compared with wild type reference expression levels.

These techniques include microarrays analysis (genome-wide,

poorly specific), or quantitative real time qRT-PCR analysis (that

provides higher accuracy and reliability), as well as fusion in

target promoters of sequences coding reporters like gfp or lacZ.

On the other hand, the second family of methodologies covers

procedures that are based on the identification of the DNA-

transcription factor binding sites, and, eventually, the character-

ization of the physical protein-DNA interaction. Electrophoretic

mobility shift assays, one hybrid reporter systems and ChiP-on-

chip assays are examples of these methodologies. Moreover, once

the new information coming from experimental sources and

computational inference is compiled, we have further enlarged

the network by operon-based expansion as done in [17], using the

operon map predicted in [18]. See Materials and Methods for more

details. Figure 1 shows the resulting TR network of M.tb. We next

analyze its main topological properties at different resolution

levels.

Table 1. Sources considered in [17] to assemble the first TR
network of M.tb, which constituted our starting point.

Source
Number
of genes

Number
of links Number of

transcription
factors

1. Explicit bibliography based network 380 380 26

2. Operon extended version of 1 518 580 26

3. E.coli orthologies based network 201 223 29

4. Operon extended version of 3 358 409 29

5. 2
T

4 93 53 8

6. Total network (2
S

4~2z4{2
T

4) 783 936 47

The difference of one link and one gene existent between the table and the
data provided by Balazsi et al. in [17] is because the link DosR-otsB1 (Rv2006) is
counted twice in [17] (See supplementary spreadsheet from [17], lines 484 and
500).
doi:10.1371/journal.pone.0022178.t001

Transcriptional Network of M. tuberculosis
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Global topological properties of the network
We have measured several topological properties of the

assembled network. It consists of N~1624 nodes and E~3212
edges, with a giant connected component of order N. As the

network is directed, one can compute the total degree of a node, k,

as the sum of the incoming links (meaning that the node is a target of

a regulation) and the outgoing links (meaning that the node

regulates another node), i.e., k~kinzkout. Figure 2 represents the

cumulative degree distribution for the TR network of M.tb. This

distribution gives the probability to find a node with degree k larger

than a given degree k�. As can be seen from the figure, the

cumulative degree distribution follows a power law P(kTk�)*k{c,

with c~0:99+0:07. In other words, the TR network of M.tb

shows the same highly heterogeneous degree distribution found

for other biological networks not only at the cellular level, but

also at larger scales [14]. This means that the vast majority of genes

only interact with a few other genes, while there is a small but

statistically significant number of genes that interact with hundreds

of genes.

Concerning the kind of regulation, a similar plot but only taking

into account incoming or outgoing links shows that both in-degree

and out-degree distributions are also highly heterogeneous.

However, the larger contribution to the many interactions of a

few nodes mainly comes from transcription factors (see Figure 3).

This can be appreciated already in Table 2, where we have

summarized several topological properties. As a matter of fact, the

average out-degree of transcription factors is much larger than the

average in-degree of genes that have at least one regulator,

indicating that most of the hubs are the formers (note that these

quantities are not calculated in the usual way, otherwise

SkinT~SkoutT~SkT=2). Concerning other topological features,

we see that they are within the typical range of values for other

biological (and, in general, real complex) networks [14].

We have also inspected what are the most connected

transcription factors, see Figure 3. As one can see, phoP, whose

inactivation is at the root of the new live vaccine currently being

developed, appears as the third most connected hub of the

network, only following to mosR and sigmaE regulators. Indeed, it is

Figure 1. TR Network of M.tb. Blue nodes represent regulatory genes that are not regulated by other nodes, while green ones are nodes that
regulate the activity of other targets and are regulated by other transcription factors. Self-regulations are represented by black arcs, while feedbacks
of mutual regulations are represented in green, thick lines. The picture has been done using the software Gephi.
doi:10.1371/journal.pone.0022178.g001

Transcriptional Network of M. tuberculosis
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known that PhoP regulates key functions required for the

intracellular survival and persistence of M.tb. Admittedly, inactiva-

tion of phoP results in down-regulation of genes needed to

successfully survive within macrophages and consequently in M.tb

attenuation. Given that the analysis summarized in Figure 3 is

straightforward once the network is built up, one can ask whether

other transcription factors that share a large number of connections

are also key components from a dynamical (functional) point of

view, and therefore potential candidates to design new vaccines.

Small-scale properties of the network: motifs
The previous topological characterization allows to find system

wide properties. However, as we shall argue later, mesoscopic or

small scale topological features are key to understand the dynamics

and function of the networks under study. For instance, communities

(subgraphs whose elements are more connected among themselves

than with external elements) are often identified with functional

modules. Another important tool is the analysis of motifs abundance.

A motif is a connected reduced-size subnetwork (typically of length 3

to 5). The statistics of motifs, namely, the number of times that a given

motif appears in a network with respect to a certain null ensemble, is a

statistically meaningful way of characterizing a network [15,16]. In

order to uncover the structural design principles of complex systems,

the study of motif appearances in real networks has emerged as a

fundamental tool. As it has been shown [19], different types of natural

networks share different profiles of subgraphs significances.

Using an approach similar to that introduced by Alon and

coworkers [15,16] we have firstly registered the number of

appearances for each of the subgraphs of length 3 and 4 in the

M.tb network (see Materials and Methods). These numbers, even

normalized by the total number of registered graphs, do not tell

very much about the relevance of the corresponding motifs since

they are strongly biased by the macro-scale features of the

network. For example, the fat-tailed connectivity distribution

typical of scale-free networks [13] makes single input modules to

appear many more times than any other motif. Therefore, to get a

better descriptor of motifs significance (i.e., whether or not they

are more or less present than usual), we have to compare motifs

appearance with a null model, namely with the frequency of motifs

that comes out in an ensemble of suitably randomized networks.

We have used the approach firstly suggested in [20]. It consists of

generating, from the initial system, networks that preserve the

same connectivity sequence of the original one. To this end, we

implement a switching algorithm that preserves not only the

number of incoming and outgoing links of each node, but also the

number of mutual links when this is the case in the original TR

network (see Materials and Methods). This kind of randomizing

procedure has been the subject of intense research in the last years,

and besides the method used in this paper, there are other

alternative randomization schemes [16,20,21].

Figure 2. Degree distribution of the TR network of M.tb. The
figure shows the cumulative degree distribution, i.e., the probability to
find a node whose connectivity is larger than or equal to k� . The plot is in
log-log scale so that a straight line corresponds to a power law function.
The best fit gives an exponent (the slope of the curve) of c~0:99+0:07.
doi:10.1371/journal.pone.0022178.g002

Figure 3. Most connected regulatory hubs in the M.tb transcriptional regulatory network. The figure reflects the high heterogeneity of
the degree distribution. Namely, there are a few nodes with hundreds of interactions (regulating other genes), while most of the nodes in the
network have a few transcriptional relations. For a list of all transcription factors identified see Materials and Methods.
doi:10.1371/journal.pone.0022178.g003

Transcriptional Network of M. tuberculosis
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Once the ensemble of randomized networks is generated, we

calculate the mean values and the typical deviations of the number

of appearances of each of the possible motifs of a given length in all

the randomized networks. The significance of each motif h is

determined by the so-called Z-Score as follows,

Z{Scoreh~
nh{Snrand,hT

srand,h
ð1Þ

At this point, it is worth noticing that when a subgraph is absent

in any of the randomized networks of the null model, the Z-Score

for that precise subgraph cannot be defined. Moreover, all the

defined Z-scores are normalized considering each of them to be a

component of a unitary vector. This normalization allows to

compare motifs significance profiles of networks of very different

sizes.

We have calculated the significance profiles for the newly

assembled TR network of M.tb focusing on 3 and 4 nodes’ motifs.

Figure 4 shows the Z-scores obtained for triads. Note that as our

network is directed, so are the triads. Out of 13 possible motifs of

length 3, only triad 13 is not present in the Z-scores representation.

Additionally, the first six motifs, all of which correspond to open

structures (i.e., loopless motifs) are underrepresented in the M.tb

transcriptional network, while those that are found more

frequently than in the random version of the TR network are

closed motifs.

Discussion

The statistics of motifs as represented in Figure 4 has been used

as a way to deepen our understanding of the relation between the

structure and function of biological networks. Specifically,

previous works have focussed on directed triads as a means to

categorize networks around superfamilies which, roughly, share

the same functionality even when the networks belong to very

different fields [19]. Two distinct superfamilies were identified for

informational-processing networks [19]. In one of these superfam-

ilies, we can find networks for which the response of the whole

system to an stimulus cannot last much more than the response

time of one of its interactions. These so-called rate-limited networks

include TR networks of unicellular microorganisms, covering both

prokaryotic and eukaryotic organisms. The second informational

processing superfamily groups networks that work in a less

immediate way, being able to perform slower responses with

characteristic times that can be even several orders of magnitude

greater than the response times of its single interactions. Synaptic

and developmental networks in multicellular organisms are typical

cases of this kind of unrate-limited behaviors.

The question is then how the TR network of an intracellular

parasite like the M.tb integrates into the above framework, i.e.,

which of the two informational processing superfamilies the M.tb

TR network belongs to. It is worth mentioning that a priori the

question is not trivial. All unicellular microorganisms have

presented up to now the characteristic profiles of rate-limited

networks [19], so that one may be tempted to ascribe to this family

the network of M.tb. However, the bacillus spent most of its vital

cycle within the macrophage, so that the characteristic response

times of its TR network should be slower. Several findings support

this hypothesis. For instance, it has been reported [17] that after

hypoxia stimulus, the dynamics stabilizes in a time as long as

eighty days, suggesting that the TR network of M.tb could better

adjust to the unrate-limited superfamily. As a matter of fact, a

direct comparison of the triads profile of M.tb with those reported

in [19] shows that this is indeed the case.

Beyond the question of network superfamilies, it is also of

interest to compare the TR networks of E.coli and M.tb as two

examples of prokaryotic, unicellular bacteria. The aim is to

identify whether there are relevant divergences in their motifs

profiles that could be related to their different vital cycles: that of

an intracellular parasite in the case of M.tb and that of an

extracellular bacterium in the case of E.coli. Special care have to be

taken with motifs containing feedback loops. Feedback loops are

considered as rare structures in TR networks of unicellular

microorganisms because of their scarce presence in most of the

best characterized TR networks [19]. For instance, none of them

were present in the original TR network of E.coli, and only one in

that of the Yeast [19]. However, with the proliferation of new

experimental data in the last years, we can find as many as 10

Figure 4. Triads significance profile of the M.tb TR network. We
represent the values of the Z-scores as defined in Eq. (1) for each of the
13 possible 3-nodes directed motifs, which are depicted in the x-axis.
Only one of them cannot be defined in the M.tb network. See the main
text for further details as well as the section Materials and Methods.
doi:10.1371/journal.pone.0022178.g004

Table 2. Topological properties of TR network of M.tb.

Property M.tb TR network

genes 1624

Transcription factors 83

Links 3212

Self-loops 43

2 nodes feedback loops 6

Mean connectivity 3.96

Mean in-connectivity 2.01

Mean out-connectivity 38.70

Directed average path length (Giant Component) 2.07

We report some global metrics of the network such as its mean connectivity
and directed average path length. For the definition of these quantities, see
[14]. Note that the mean in and out degrees are calculated with respect to the
number of target genes and transcription factors, so they are not normalized in
the same way. See the text for more details.
doi:10.1371/journal.pone.0022178.t002

Transcriptional Network of M. tuberculosis
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feedback loops in the updated network of E.coli (see Materials and

Methods) and 5 in the M.tb network. These numbers, even being

small with respect to the total size of the systems, give high motifs

significances in some of the subgraphs where they are present.

Taking into account the above remarks, we have compared the

Z-scores significance profiles for the networks of E.coli and M.tb

looking for common (i.e., present in both organisms) structures

that exhibit the larger differences in their Z-scores. To this end, the

statistical analysis of tetrads is more convenient. In our analysis, we

only consider feedback-free tetrads that appear in both TR

networks at least a thousand times. Within this subset, we have

selected the structures with a differential behavior in both systems.

The results are depicted in Figure 5, where we have represented

the cases for which the differences in Z-scores between tetrads of

both networks are greater than unity. As one can see in the figure,

E.coli presents stronger trends for the two simplest parallel

combinations of feedforward loops with single regulations (tetrads

4 and 5). On the other hand, the three structures with highest

differences in favor of M.tb are single output modules (tetrad 1),

cascades, (tetrad 3) and the combination of them (tetrad 2). The

preference for different motifs in E.coli and M.tb TR networks

supports the evolutionary pressure hypothesis put forward in

[15,16,19]. At a glance, given the homology between the two

networks { both organisms are bacteria {, one might think that

their TR networks come from common underlying mechanisms

that regulate the way they grow and are assembled. However, the

TR networks should have been shaped in relation to the vital

needs of both bacteria, which are known to be radically different.

Therefore, over and under represented subgraphs with different

significances in these two organisms are a consequence of the

different life cycles and of an evolutionary origin.

From a dynamical point of view, the previous results also make

sense. The dynamics associated to most of the motifs that appear

to be under or over represented in the TR networks of M.tb or

E.coli have been well characterized previously [15,22-28]. For

instance, feedforward loops have been described as a discriminator

between persistent and transient signals [15,22] or as a pulse-

generator to accelerate signal responses [23]. The performance of

the motif as persistence discriminator or accelerator depends,

essentially, on the signs of the regulations and the logical

scheme[29], but nevertheless, both functions are useful for the

organism when it is subjected to a highly dynamic or unpredict-

able environment. This is the case of E.coli whose environment

offers a very rich amount of nutrients to the bacterium, but also a

considerable concentration of harmful substances and other

threats. This highly variable environment (due to thermic,

chemical or Ph-related changes) requires a valuable mechanism

to filter the very noisy signals that are being sensed continuously.

Therefore, it is to be expected that feedforward and closely related

structures be over represented in the E.coli TR network.

On the other hand, as noted before, the M.tb bacillus expends,

on average, more than 90% of its vital cycle sporulated, surviving

under a latency regime within the cytoplasm of the human

immune system macrophages. In this sense, it is difficult to

conceive a bacterial environment more hostile than that of M.tb.

However, hostility does not mean variability, so that the

environment of M.tb could be hardly less volatile or more

predictable than the macrophage cytoplasm. These considerations

are in qualitative agreement with our observations of a less marked

bent for feedforward loops in M.tb.

Conclusion
In this work, we have assembled the more complete TR

network of M.tb. to date. The network has been built up by

exhaustively including publicly available bibliographical informa-

tion relative to microarray essays, protein-promoter binding sites

determination experiments and synthetic biology techniques

coming from as many as 31 different works. The importance of

gathering all this information into a common frame with tractable

format is twofold. First, it is a valuable database that can be

directly used for research purposes. And second, the new network

constitutes an important tool for the application and development

of computationally inspired models and methods that may be able

to guide future in-vitro and in-vivo experiments. The latter

includes using the network to develop new tools for tasks such as

the identification of spurious links and missing interactions [30],

prediction of unknown functions of the proteins, the generation of

more accurate operon maps predictions [18] or the dynamical

modeling of network operations as a sensory system [31].

Concerning the role of phoP, our analysis shows that it appears

as the third-most connected hub of the network (see Figure 1),

thus, the relevance of altering its functionality is easily under-

standable and expected from a network viewpoint. The extended

TR network presented in this work is essentially the backbone of

the regulatory system, and our topological analysis also reveals

what experimental works are demonstrating to be relevant in

relation to phoPR [6,32]. This is the reason why we believe that the

newly assembled network can provide valuable hints of potential

targets (mainly those that, as phoP, are the hubs of the network).

Additionally, we have performed a detailed analysis of the

topology of the TR network. The results show that our system

shares the main macro-scale features of TR networks such as the

small-world property, assortativity or a fat-tailed degree distribu-

tion [13]. The statistical characterization of the relative abundance

of different motifs has also shown interesting results. First, our new

Figure 5. Differentially significant motifs present in M.tb and
E.coli TR networks. Feedback-free tetrads present more than 1000
times in both networks were divided into three groups according to
their Z-scores: we consider as overrepresented those tetrads with Z-
Scorew1 and as underrepresented those with Z-Scorev1, being the
third group joined by tetrads for which jZ{scorejv1. We have only
looked for motifs that belong to different groups in E.coli and in M.tb,
and we have sorted them according to the absolute difference DZ~Z-
ScoreE:Coli-Z-ScoreM:tb . After this filtering process, the tetrads in the
figure are those with jDZjw1. The resulting tetrads with highest jDZj
are the same when one takes the normalized Z-score.
doi:10.1371/journal.pone.0022178.g005

Transcriptional Network of M. tuberculosis
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system could reasonably be incorporated into the differentiation

scheme firstly proposed in [19]. Secondly, we have performed a

comparative analysis between the significance levels of the most

relevant tetrads in the TR networks of E.coli and M.tb. Our results

show that the relative abundance of the different subgraphs is

tightly related to the dynamical response of each subgraph [15,22–

28] and to the life styles (in relation to their environments) of both

bacteria. Besides, given that the TR networks correspond to two

bacteria, the differences between subgraph significances of E.coli

and M.tb can only be a consequence of divergent evolutive

pathways.

In summary, the expanded TR network will be useful to provide

an overview of multiple functional aspects of M.tb, and to suggest

new experiments. It is also important to note (especially for future

studies) that the network obtained does not distinguish between

activation and inhibition in gene expression, which should be

introduced in order to develop considerations of broader

functional scope. The same is true with regard to the relative

quantification of changes in the expression (introduction of

‘‘weights’’ on the links between nodes). Besides, the methodology

used to expand the network and the four kinds of resources used,

which have been treated case by case, individually for each

transcription factor, allow for a quick and easy review and

extension of the network. Finally, the development of a functional

sense upon the extended TR network of M.tb that encompasses the

whole TR network and the integrative action of the signaling

system, would be one of the essential objectives to achieve in the

near future.

Materials and Methods

Bibliographical revision and datasets of the TR network
of M.tb

We have updated the network presented in [17], using new and

copious experimental information available from as many as 31

different works dated in the last ten years, (see Table S1). To

assemble and expand the network, we have also used the predicted

operon map proposed in [18] assuming that if a transcription

factor A regulates a gene B belonging to an operon BCD, then,

also the interactions A–C and A–D are present.

All the information extracted is given at Table S2, including the

experimental works where the regulations contained in Balázsi’s

compilation were originally reported. Finally, we filtered all

repeated information to build our network. The final system, as

can be seen in Table 2, contains 1624 nodes (genes) and 3212

links, i.e., more than two times the size of the previously available

dataset [17]. The expanded network can be found in Material S1,

in.txt format.

E.coli TR network
We have used the TR network of E.coli [33] updated as of

August 2010 (release 6.8), which contains experimental informa-

tion until the ultimate large-scale revision published in 2008 [34].

Dimeric transcription factors and toxin/antitoxin systems are

taken as single nodes of the network. The network can be found in

Material S2, in txt format.

Subgraph counting algorithms
In order to evaluate the motifs significance profiles, we have

developed algorithms that randomize the original network and

count triads and tetrads in both the original network and the set of

randomized systems. All algorithms have been programmed in C

and are provided in three independent files. Each one of them

performs the following tasks:

N randomizer.c (Material S3): it takes the original network and

generates a set of randomized versions of it. The size of the

network, {number of nodes and links{ is also read by the

algorithm from the file ‘‘Parameters.txt’’, as well as the desired

number of random networks to create. So, this file ‘‘Parame-

ters.txt’’ must contain only these three numbers separated by blank

spaces. The original network should be provided in a two column

file ‘‘Network.txt’’. The program follows the scheme proposed in

[19]. Essentially, we randomize separately mutual links and simple

links, avoiding interferences between these two kinds of two-nodes

structures (mutual links rewire with mutual links and simple links

rewire with simple links). So, for each random network, we start by

choosing at random a number of rewirings to be performed for the

simple links (between 100 and 200 times the total number of

simple links in the network). Then, for each potential rewiring we

choose two single links at random, and exchange them provided

that they do not generate self-loops, mutual links or multiple links

(see Figure S1, panel a). Otherwise the rewiring is not accepted

(nevertheless it is counted). Rewiring of mutual links proceeds in a

similar way, always taking care of potential conflicts (see Figure S1,

panel b). The output of this algorithm will be a file called

‘‘Networks.txt’’, which stores the original network together with

the ensemble of randomized versions, one after another, always in

a two column format of the form regulator-target. All the results

presented in this work have been obtained by taking 100 random

networks.

N triads.c (Material S4): the algorithm takes the output file that

generates randomizer.c, and identifies and counts the triads

present in both the original network and any of the random ones.

Essentially, the algorithm:

1. needs to read the number of nodes and links of the original

system and the number of random networks from ‘‘para-

meters.txt’’, as well as the list of links of all the systems in

‘‘Networks.txt’’.

2. registers the nodes belonging to each triad and write them in

the three column file ‘‘TriadsCensus.txt’’, in which we can find

the three nodes of each triad (different triads correspond to

different rows). This file lists the triads that belong to all the

networks, one after another. For this reason, the algorithm also

saves the total amount of triads in each of the networks

(100z1~101 in our case) and stores them in ‘‘TriadsPerNet-

work.txt’’, in order to identify the lines of ‘‘TriadCensus.txt’’

that are referring to each network.

3. identifies the type of each registered triad for each network, by

checking its ‘‘topological footprint’’ and comparing it with the

list of all possible types [35] in ‘‘triadsIDs.txt’’ (available at

Material S6). The program counts the total amount of triads of

each type present in each network and register them in

‘‘TriadsCounts.txt’’.

N tetrads.c (Material S5): The strategy performed by this

algorithm to exhaustively count all tetrads as fast as possible starts

by reading the file ‘‘TriadsCensus.txt’’ created by triads.c. Next,

systematical sweeps of the fourth gene are performed taking care

of not registering tetrads more than once. Specifically:

1. the code registers the number of tetrads of each type existent in

each network. To do this, the number of nodes, links and

random networks are read from the file ‘‘Parameters.txt’’ and

the triads are taken from ‘‘TriadCensus.txt’’ to perform the

sweeps on the fourth gene. Besides, in order to know what

triads belong to each of the 101 networks -in our case-

sequentially analyzed, the code reads ‘‘TriadsPerNetwork.txt’’.

Transcriptional Network of M. tuberculosis
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2. for each identified tetrad, we check its ‘‘topological footprint’’

and determine its type by comparing it with all the 199 possible

types listed in ‘‘tetradsID.txt’’(Material S7). It is worth

mentioning that while only six numbers are enough to

unambiguously identify a certain triad (the in and out

connectivities of each of its three nodes), we have needed

thirteen numbers as topological coordinates to correctly

distinguish between the 199 kinds of tetrads. Using these

topological footprints, we reproduce the scheme of the ‘‘motifs

dictionary’’ available in [35].

3. the code counts the total amount of tetrads of each type present

in each network and register them in ‘‘TetradsCounts.txt’’.

The informational flow between executable files and the.txt files

created and/or read by the algorithms is illustrated in Figure S2.

With the information coming out from these files, the Z-scores

corresponding to triads and tetrads can be straightforwardly

calculated.

Supporting Information

Figure S1 The figure represents the set of allowed and forbidden

rewiring steps for the randomization of the TR network. The left

panel corresponds to the situation in which simple links are being

rewired whereas the right panel represents the cases considered

when mutual links are being rewired.

(TIFF)

Figure S2 Flow between the different codes and files used to

determine the Z-scores of triads and tetrads. The source of the

codes used are provided as Supplementary Material. The files

‘‘network.txt’’ and ‘‘Parameters.txt’’ are not explicitly provided.

(TIFF)

Material S1 Transcriptional Regulatory network of Mycobacte-

rium tuberculosis dataset.

(TXT)

Material S2 Transcriptional regulatory network of Escherichia

coli dataset.

(TXT)

Material S3 Randomizer.c: code used to generate a null

ensemble of random networks.

(C)

Material S4 Triads.c: code used to identify triads.

(C)

Material S5 Tetrads.c code used to identify tetrads.

(C)

Material S6 Triads.txt defines the topological fingerprint of

each of the 13 possible triads.

(TXT)

Material S7 Tetrads.txt defines the topological fingerprint of

each of the 199 possible tetrads.

(TXT)

Table S1 The Table contains the references used to build up the

TR network reported in the main text as well as the transcription

factors studied. �, ��� and ����: These works were already cited in

[17], nevertheless, not all the regulations reported in these works

were considered in the compilation of Balazsi et al. More precisely,

we have found 18 regulations of DosR coming from Park at al and

110 links coming from Manganelli et al not included in the

previous database. �� reports regulations coming from the

following 31 transcription factors: oxyS, Rv0260c, sigK, regX3,

Rv0818, Rv0823c, mprA, sigE, Rv1359, Rv1931c, higB1, Rv1990c,

Rv2017, Rv2021c, Rv2034, Rv2175c, Rv2669, sigB, Rv2745c, dosR,

moxR3, sigJ, Rv3334, sigD, whiB3, Rv3557c, Rv3678c, whiB4, moxR2,

nmtR, Rv3833.

(PDF)

Table S2 Exhaustive compilation of all the information

regarding the bibliographical revision process: links, works in

which they had been reported and experimental methodologies

used to infer them.

(XLS)
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