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Abstract: Tapered roller bearings can accommodate high radial loads as well as high axial loads.
The manufacturing process consists of machining processes for ring and component assembly.
In this contribution, the parameters of influence on the measurement procedure were studied.
These parameters of influence were classified as environmental, process, and machine parameters.
The main objective of this work was to optimize the process using real-time measurements, which
required the study of the influence of several parameters on the measurement uncertainty and how
to correct their effects.
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1. Introduction

Bearing manufacturing is a high-precision technology where the material composition, hardness,
and micrometric dimensions need to be ensured to meet the product requirements [1,2].

The quality of the product is an important strategic factor for the competitiveness of the European
manufacturing industry in the global market [3]. In this context, process control, automation, and
optimization are key to having the best quality at a competitive cost [4,5]. Process control ensures
quality and reduces scrap and rework, but requires dimensional measurements (the effect on the
temperature of the grinding process needs to be considered). Automation is the key to achieving
competitive cost by using machines with enough accuracy and cycle time, and automatic adjustment
of the manufacturing process in real time. Current data collection and inspection technologies allow
data to be collected online along the process chain and can significantly increase quality control
and improvements in current dynamic and modifiable environments [6,7]. The real challenge facing
companies is the problem of synthesizing highly heterogeneous data to gain in-depth understanding
of the correlations between the variables throughout the stages of a multi-stage system. This is aimed
at achieving the generation of zero defects at the single process level, and the propagation of zero
defects at the system level through the proactive control of the process [8].

Tapered roller bearings can accommodate high radial loads as well as high axial loads. They have
four main components: inner ring, outer ring, rollers, and cage. In general and in the case
under investigation, these components are metallic, although the cage can be plastic depending
on the application. The manufacturing process consists of the machining processes of rings and
component assembly. The expected quality standard needs to measure each individual part using an
appropriate measurement instruments. These instruments have an uncertainty in their measurements.
Ambient temperature, the temperature of the system, and the temperature of the part under inspection
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also influences the precision of the components and of the mounted bearing [9]. Different methods
can be used to measure the size of the parts: touch probes [10,11], air pressure [12,13], and laser
systems [14,15]. Most of the developments that can be found in the literature regarding bearing
inspection are methods for fault diagnosis and service life estimation. Many experiments and studies
have been performed to explore the nature of bearing defects with the help of several monitoring
techniques such as vibration, acoustic emissions, oil-debris, ultrasound, electrostatic, shock-pulse
measurements, etc. [1,16,17], although some of them estimate the size of the manufacturing defects of
tapered roller bearings with vibration measurement [18].

As stated before, process optimization and online monitoring and control are key factors for
improving efficiency and quality in machining [19]. With the development of intelligent machining,
the optimization of cutting process configuration during actual production has become more accessible,
and optimizing the volume of removed metal by adjusting the grinding time for each part can decrease
the process time and improve tool life [20,21]. Finally, the grinding machine control system can receive
the measurement results of the machined part as feedback information for process verification.

The work described in this article focused on the “in process” verification [22,23] of a tapered roller
bearing. The magnitude under inspection was the outside diameter of the outer ring (D in Figure 1).
Its design tolerance was ±0.025 mm. The measurement result was needed to feedback the real-time
control of the grinding process used to manufacture the outside diameter of the outer ring. The authors
describe the model and analysis of a measurement system and the effects of its main error sources,
namely the temperature and the misalignment of the devices or of the work piece and the master piece.
The influence of the error sources was studied and an estimation of the uncertainty of the system
was provided using simulations programmed using the Monte Carlo method [24,25], and finally the
process improvement achieved when the measurement results were fed back into the manufacturing
process is shown. A general approach for modelling the uncertainty associated with coordinate
measuring systems (CMSs) is given in [26]. Several authors [24,25] have shown a comparison between
the estimation of measurement uncertainty using the law of propagation of uncertainty [27] and that
using the propagation of distribution using the Monte Carlo method [28]. In this case, the method
presented in [28] was the one that better fit our application, as the variables affecting the results of the
measurement presented different distributions, some of them with asymmetrical effects. A comparison
of the results obtained with the simulation using the Monte Carlo method and the experimental results
allowed for the identification of the main error sources and quantified their influence.
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of operation.

2. Materials and Methods

The measurement of the diameter of the outer ring (“D” in Figure 1) was carried out using a
mechanical comparator, a registration tool to position the ring, and two temperature probes, one per
contact to measure the temperature of the piece and another to measure the ambient temperature.
A scheme of the system taking the measurement appears in Figure 1 and the characteristics of its
components are indicated in Table 1.

Table 1. Components of the measurement system.

Equipment Range Resolution Expanded Uncertainty (k = 2)

Mechanical comparator (probe) −1.5/+1.5 mm 0.001 mm 0.0013 mm
Contact probe thermometer 0 a 250 ◦C 0.1 ◦C 0.39 ◦C

Thermocouple probe thermometer −50 a 100 ◦C 0.1 ◦C 0.40 ◦C

The tooling was adjusted using a standard part (or master). The adjustment of the tooling
consisted of fixing the position in the X direction of the support point p2 (Figure 1). For this purpose,
a master piece was used, the previously-calibrated diameter of which corresponded to the nominal
diameter to be measured with the system (in this case D0 = 112.712 mm). The point p2 shifted in
the X direction until the maximum indicated by the probe was obtained. In this position, p2 was set.
This operation was carried out each time the reference was changed.

Once the tooling had been adjusted, the zero of the comparator with the diameter of the
masterpiece (D0) was set as the reference. This operation was performed every 30 min (approximately
every 50 parts checked). Both the machine and the masterpiece were stabilized at room temperature as
the master piece was kept in the workshop between measurements.

After these two steps, the system was ready to measure the diameter of the outer rings (Dm) after
being rectified so that its temperature (Tm,m) was higher than the ambient temperature at the time
of performing the measurement (Ta,m). The verification of the outer ring was performed at a rate of
approximately 100 parts/h. The system and the masterpiece were kept in the workshop, thus it was
considered that both elements were at room temperature (Equations (1) and (2)).

Tm,0 = Ts,0 = Ta,0 (1)

Ts,m = Ta,m (2)
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where Tx,t is the temperature of the ambience if x = a, of the system if x = s, and of the measured part
if x = m. The temperature changes over time, thus Tx,t indicates the temperature at the moment of
measuring the m-th part if t = m and at the time of measuring the master piece if t = 0.

The following system elements were introduced in the model of the measuring system: Dm,
measurand; H, tooling height; and Lm, probe length in the measurement of the m-th piece. The influence
factors considered and the indicated system elements are summarized in Table 2 together with the
nomenclature used in this work.

Factors due to the measurement process were considered, such as the possible inclination of the
part due to incorrect support in the tooling (θm). This angle depends on the measurement process and
therefore may be different when measuring the master piece and the part to be checked.

Finally, we analyzed the effect of factors influencing the configuration and mechanical behavior
of the system. Therefore, the effect on the result of the measurement of a possible displacement of the
mechanical comparator (λm) and the effect of an angular deviation of the probe from the vertical (ψm)
was studied. It should be noted that when it comes to system factors, it is reasonable to consider that
its values will not be modified between the measurement of the master piece and the measurement of
the rest of the parts, thus their effect will tend to cancel out, as will be verified later (Section 3.3).

The following sections analyze the effect of these factors in detail. The measurement model used
in the mentioned analysis is explained hereafter:

The master piece is measured at a different temperature than the m-th part. In this way, it can
be said that in measuring the master at Tm,0, a diameter D0,0 (Equation (3)) is measured and the
mechanical comparator at temperature Ts,0 provides a reading L0 (corresponding to a length of the
probe L0,0) (Equation (4)).

D0,0 = D0·(1 + α0(Ta,0 − 20)) (3)

L0,0 = L0·(1 + αL(Ta,0 − 20)) (4)

In addition, since there is a slow variation in plant temperature, both the tooling-comparator
system and the master piece are considered at plant temperature, Ts,0 = Tm,0 = Ta,0 (Equation (1)).
At this point, the length of the comparator for which the system reference is defined can be written
according to the height of the tooling, Hs,0 (Equation (5)), depending on the nominal value and its
temperature Ts,0 (Equation (6)).

L0,0 = Hs,0 − D0,0 (5)

Hs,0 = H·(1 + αs(Ta,0 − 20)) (6)

The measurement of the m-th part is performed through a comparison with the master piece.
The temperature of the part will be Tm,m and that of the equipment Ts,m, which is taken as the ambient
temperature at the time of inspection (Equation (2)). When measuring the diameter Dm,m (Equation (7)),
the comparator will provide a reading ∆Lm (Equation (8)) (corresponding to a length of the probe Lm,m

(Equation (9)).
Hs,m = H·(1 + αs(Ta,m − 20)) (7)

∆Lm,m = ∆Lm·(1 + αs(Ta,m − 20)); (8)

∆Lm,m = L0,m − Lm,m; (9)

where αx is the thermal expansion coefficient of the m-th part if x = m; of the master piece if x = 0; and
of the measuring system and the probe if x = s. In this case, αm = α0 = αs = 11 × 10−6 ◦C−1.
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Table 2. Factors influencing the measurement result and system elements. Nomenclature.

Influencing Factors Measurement System Elements (H, L, D)

T, temperature (◦C)

Tx,t t = m t = 0

H, tooling height (mm)

Hs,t

t = m t = 0

L, probe length (mm)

Lx,t t = m t = 0

D, measurand (mm)

Dx,t t = m t = 0

x = a Ta,m Ta,0 Hs,m Hs,0
x = m Lm,m N.a. (1) x = m Dm,m N.a. (1)

x = s Ts,m Ts,0 x = 0 L0,m L0,0 x = 0 D0,m D0,0

x = m Tm,m Tm,0 H, tooling height at 20 ◦C Lt, probe length at 20 ◦C Dt, measurand at 20 ◦C
θt (◦) θm θ0

ψt (◦) ψm ψ0 - H - Lm L0 - Dm D0

λt (mm) λm λ0

x, parameter corresponding to the measurand, x = m; to the system, x = s; to the ambience, x = a; and to the master piece, particular case of measurand, x = 0. t, value of the parameter
during the measurement of the m-th part, t = m; and of the master piece, particularly in the case of measuring, t = 0. (1) N.a.: Not applicable.
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Substituting Equation (9) into Equation (7) provides the dimension of the diameter (Equations (10)
and (11)).

Dm,m = Hs,m − L0,m − ∆Lm,m (10)

Dm,m = Dm·(1 + αm(Tm,m − 20)); (11)

L0,m can be calculated by taking the reference each time the temperature changes (Equation (12)).
Substituting Equation (12) into Equation (10), the part diameter from the master piece data and the
probe reading is calculated (Equation (13)).

L0,m = Hs,m − D0,m; with D0,m = D0·(1 + α0(Ta,m − 20)) (12)

Dm,m = Hs,m − Hs,m − D0,m − ∆Lm,m ⇒
⇒ Dm,m = D0·(1 + α0(Ta,m − 20))− ∆Lm·(1 + αs(Ta,m − 20))

(13)

In the case of not measuring the reference when the temperature changes, it is possible to estimate
L0,m (Equation (14)) and D0,m (Equation (15)), however, the result of Equations (13) and (15) will only
coincide if the thermal expansion coefficients of the probe and the measurand coincide. In Figure 2,
the error of Equation (15) calculated as Equations (15)–(13) is plotted when αs differs from αm.

L0,m = L0·(1 + αL(Ta,m − 20)) (14)

Dm,m = Hs,m − L0·(1 + α0(Ta,m − 20)) + ∆Lm·(1 + αs(Ta,m − 20)) (15)
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Figure 2. (a) Definition of the reference with D0 at temperature Tm,0 = Ta,0. (b) comparison with the
part under inspection Dm at temperature Tm,m where the ambient temperature is Ta,m. (c) Error (15)–(13)
as a function of the difference between αs and αm for a temperature Tm,m = 30 ◦C and T0,0 = 20 ◦C.
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To obtain Dm, the mechanical comparator reading for the m-th part was compared with the
reading taken when measuring D0, thus the result of the measurement (Dm at 20 ◦C) was obtained
from Equation (16).

Dm =
H·(1 + αs(Ta,m − 20))− L0·(1 + αL(Ta,m − 20)) + ∆Lm·(1 + αL(Ta,m − 20))

1 + αm(Tm,m − 20)
(16)

3. Results

3.1. Effect of Temperature on Measurement

The effect of the temperature in the process can be corrected using Equation (16), as the
temperature was known. However, if one of the process temperatures (the ambient temperature
or the temperature of the m-th part) was not known, the following situations could occur, as described
in Table 3.

Table 3. Cases if one or both of the temperature probes are not available. “1” means that the temperature
data are available, “0” means that the temperature data are not available.

Diameter (eq.) Ta Tc ∆T for 0.025 mm Error (◦C)

Dm with ambient and contact thermometer (16) 1 1 Not applicable
Dm w/o contact thermometer 1 0 20.8
Dm w/o ambient thermometer 0 1 19.6

Dm w/o any thermometer 0 0 19.6

The effect of the ambient temperature and the temperature of the m-th part was studied by varying
them independently and evaluating the error (Equation (11)) that they introduced to the calculation of
the diameter in the function of the four cases raised (Table 2). In each case, a variation between 10 and
39 ◦C was introduced for the ambient temperature at the moment of measuring the masterpiece (Ta,0),
the ambient temperature at the moment of inspecting the m-th part (Ta,m), and the temperature of the
m-th part (Tm,m) (Figure 3). From these results, it was shown that by applying Equation (16), it was
possible to measure at any temperature. However, if one of the two probes was not available, an error
was introduced in the measurement. For these cases, the temperature increase necessary to obtain a
measurement error equal to the tolerance (±0.025 mm) was quantified, and is presented in Table 2.
As can be seen, the influence of the ambient temperature at the moment of taking the reference with
the master piece had less weight than temperatures at the time of measuring the m-th part.
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Figure 3. Temperature compensation depending on the measurement process: correction error of the
cases described in Table 3 (the first case of Table 3 is the reference); (a) Effect of the ambient temperature
variation at the moment of measuring the masterpiece (Ta,0). (b) Effect of the ambient temperature
variation at the moment of inspecting the m-th part (Ta,m). (c) Effect of the temperature of the m-th part
(Tm,m) variation. (d) Legend of the results from using each case of Table 3.

3.2. Effect of Process and Machine Factors on the Measurement

In this section, we analyzed the effect of the incorrect positioning of the part on the tooling
(θm, process factor) and the effect of a possible deformation of the tooling-comparator system
(λm displacement and rotation ψm, machine factors) (Figures 4 and 5).
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Figure 4. (a) θm, inclination of the piece when it is placed in the measuring tool. (b) Effect of the
inclination of the m-th part (θm) on the measurement error (comparator reading—Dm,m). (c) Effect of
the inclination of the masterpiece (θ0) on the measurement error (comparator reading—D0,0).

The effect of improper support on the tooling was evaluated, thus a sloping part (θm) was
measured instead of measuring a part that was perfectly horizontal (Figure 4). This can occur both
when inspecting the m-th part (θm) and when measuring the master piece (θ0) and may be due, for
example, to the presence of a chip in the machining process. The geometry of the piece (dimension
C = 23.812 mm) limits the maximum inclination (11◦) from which the measurement would not be
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possible. In the measurement process, a slope close to the indicated maximum would be visually
detected, so the slope range studied was lower (± 1.1◦, Figure 4b,c).

Materials 2018, 11, x FOR PEER REVIEW  9 of 17 

 

possible. In the measurement process, a slope close to the indicated maximum would be visually 
detected, so the slope range studied was lower (± 1.1°, Figure 4b,c). 

   

 
Figure 5. Effect of the system deformation on the measurement error. (a) Moving the probe λm. (b) 
Turning the probe ψm. (c) Effect of λm and ψm on the measurement of Dm,m. (d) Effect of λ0 and ψ0 on 
the measurement of Dm,m. (e) Effect if λm = λ0 and ψm = ψ0 in the measurement of Dm,m. 

If the part is measured with a slope of ± 1.1°, the measurement error (comparator reading—Dm,m) 
is 0.018 mm. 

If the machine suffers some type of deformation, the probe may suffer shifts and rotations that 
cause incorrect measurement (Figure 5a,b). A displacement (λm) on the X axis prevents correct 
probing at the diametrical point of the part, and a rotation (ψm) of the probe on the Z axis introduces 
a cosine error in the probe reading. These effects were introduced independently in the measurement 
of the master piece (λ0 and ψ0) and the measurement of the m-th part (λm and ψm), but, as is reasonable 
to assume, if the system is deformed in the measurement of the master piece, it will also be so in the 
part, and the effect is the same as in Equations (17) and (18), Figure 5. 

λm = λ0, (17) 

ψm = ψ0, (18) 

The effect of θm is inverse to that of λm and ψm since θm tends to increase the reading when its 
value increases, while λm and ψm tend to increase the length of the probe when taking the reading 
and, therefore, reduce the diameter of the ring when they increase their value, as seen in Figure 5. 

a b 

c d e

Figure 5. Effect of the system deformation on the measurement error. (a) Moving the probe λm.
(b) Turning the probe ψm. (c) Effect of λm and ψm on the measurement of Dm,m. (d) Effect of λ0 and ψ0

on the measurement of Dm,m. (e) Effect if λm = λ0 and ψm = ψ0 in the measurement of Dm,m.

If the part is measured with a slope of ± 1.1◦, the measurement error (comparator reading—Dm,m)
is 0.018 mm.

If the machine suffers some type of deformation, the probe may suffer shifts and rotations that
cause incorrect measurement (Figure 5a,b). A displacement (λm) on the X axis prevents correct probing
at the diametrical point of the part, and a rotation (ψm) of the probe on the Z axis introduces a cosine
error in the probe reading. These effects were introduced independently in the measurement of the
master piece (λ0 and ψ0) and the measurement of the m-th part (λm and ψm), but, as is reasonable to
assume, if the system is deformed in the measurement of the master piece, it will also be so in the part,
and the effect is the same as in Equations (17) and (18), Figure 5.

λm = λ0, (17)

ψm = ψ0, (18)

The effect of θm is inverse to that of λm and ψm since θm tends to increase the reading when its
value increases, while λm and ψm tend to increase the length of the probe when taking the reading and,
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therefore, reduce the diameter of the ring when they increase their value, as seen in Figure 5. The effect
of λm and ψm tends to be canceled when their values are the same at the time of measurement of the
master piece and at the time of measurement of the rest of the parts (Equations (17) and (18), Figure 5e).

3.3. Estimation of the Uncertainty and Contribution of Each Parameter

Simulations were programmed using the Monte Carlo method [24,25] to determine the
contribution of each parameter to the final uncertainty. The probability density distributions (PDD) of
each factor were defined based on its calibration data or the characteristics of the process. The PDDs
associated with the measurement equipment, such as temperature probes or the mechanical comparator,
were defined based on their measurement uncertainty. The PDDs associated with the process or tooling
factors were defined from a uniform distribution where the limit values were defined from the analysis
performed in Section 3 and according to the process and characteristics of the tooling (Table 4).

A simulation of the effect of each parameter was carried out by introducing the PDDs indicated
in Table 4. The results of the simulation of the effect of each parameter are shown in Figure 6, where
the distribution of the error in the measurement resulting from the variation of the parameter below it
are presented.

Simulation using the Monte Carlo method allows for the estimation of the value of the
measurement uncertainty according to the “Guide to the expression of uncertainty in measurement”
(GUM) and its supplement 1 [28] from the PDD of the influence factors. From the simulation shown
in Figure 7, the uncertainty values shown in Table 4 were obtained as a function of the parameter
that introduced the variation. At the end of Table 4, the uncertainty obtained when combining the
variation of all the factors appeared. The distribution of the error by combining all the factors is shown
in Figure 8 together with the evolution of the results of the uncertainty estimated as a function of the
number of iterations used. The result stabilized from 105 iterations. Other authors [24,29,30] have
observed a similar number of iterations to obtain a stabilized result with simulation using the Monte
Carlo method.
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Table 4. Distribution and range of variation assigned to each parameter. Estimated uncertainty in each case (for each parameter and at the end of the table for all
parameters at a time).

Simulation Input Parameters Simulation (106 Iterations) by Varying a Single Input Parameter

Parameter Equipment Distribution Measurement Uncertainty Um (k = 2) Up. Limit Low. Limit

Tc (◦C) Contact Therm. Normal (µ = 30; σ = 0.39/2) 0.0014 112.7356 112.7384

Ta (◦C) Ambient Therm. Normal (µ = 20; σ = 0.40/2) 0.0007 112.7363 112.7377

Lm, L0, D0 (mm) Mech.probe Normal (µ = 0; σ = 0.0013/2) 0.0018 112.7352 112.7389

θm (◦)

Parameters of the measurement
process and of the system whose

variation is estimated with a
uniform distribution

Uniform (U.L. = −0.003; L.L. = 0.003)
0.0003 112.7365 112.7370

θ0 (◦) 0.0003 112.7370 112.7375

ψm (◦)
Uniform (U.L. = −0.005; L.L. = 0.005)

0.0000 112.7370 112.7371

ψ0 (◦) 0.0000 112.7369 112.7370

λm (mm)
Uniform (U.L. = −0.2; L.L. = 0.2)

0.0002 112.7370 112.7373

λ0 (mm) 0.0002 112.7366 112.7370

Simulation (106 iterations) varying all parameters 0.0036 112.7334 112.7406
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Figure 6. Influence of the variability of the factors on the measurement result. Above, variation
introduced in the parameter. Below, the error resulting from the measurement when entering the
variation of each parameter. (a) Ambience (Ta) and measurand (Tm) temperature. (b) Probe length
when measuring the master piece (L0) and the measurand (Lm). (c) Master piece diameter (D0).
(d) System angles, θ and ψ, when measuring the master piece (θ0 and ψ0) and the measurand (θm and
ψm). (e) System length, λ, when measuring the master piece (λ0) and the measurand (λm).
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Figure 7. (a) Distribution of the error by combining all analyzed parameters with their corresponding
distributions. (b) Convergence of the result of the simulation.

4. Discussion

The uncertainty obtained through simulation using the Monte Carlo method can be compared with
the variability of the experimental results. The contribution of each error source can be extracted from
the results presented. In this way, the uncertainty in the measurement of the measurand temperature
and that in the measurement of the probe length with the comparator dial are the error sources with
the main effect in the final uncertainty. The results obtained from the simulation also allowed us to
estimate the number of iterations needed to obtain a stable result of the uncertainty. In this case, if the
number of iterations is greater than 105, then the value of the uncertainty is stable.

In general, the greater the variability of a factor, the greater its contribution will be to the final
uncertainty. For this reason, the variability assigned to each variable affecting the result was taken from
the calibration certificate of the instrument, this was the case for the thermometers and the comparator
dial, or from an analysis of the geometrical characteristics of the part under inspection and the system.
This was the case for the variables of the process and the measurement system, where a study of the
possible inadequate use of the system or defect occurrence in the measurand was made.
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The dispersion of the experimental results (standard deviation: 0.0019 mm) was similar to that
obtained with the simulation by the Monte Carlo method (standard deviation: 0.0018 mm) although
the distribution of the values in the experimental results was not as close to a normal distribution as it
was to the distribution obtained with the simulation (Figure 8a). From these results, the effect of the
temperature on the measurement process and the need to control or monitor it to avoid an increase
of the measurement uncertainty was clear, and its influence and the influence of the other variables
was quantified.

When applied to the machining process of tapered roller bearings, the process measurement
methodology modeled in this work for the external diameter of the outer ring of the bearing and
the feedback of the measurement results showed an improvement in process capability (PPK) and a
90% reduction of rework/scrap. This methodology was tested with other dimensions of the bearing.
Figure 8b represents the results obtained after applying this methodology to the internal diameter of
the inner ring, d, and to the thickness, T (in addition to D, the diameter, the measurement of which
was the object of this work).
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Figure 8. (a) Comparison between the results obtained using the Monte Carlo simulation and those
obtained experimentally. (b) PPK results after applying the process measurement methodology
modeled in this work for the external diameter of the outer ring of the bearing (D); and results
obtained after applying this methodology to the internal diameter of the inner ring (d) and to the
thickness (T). “D”, “d” and “T” according to Figure 1b.

5. Conclusions

From the results, it can be concluded that the values obtained experimentally and those obtained
by simulation presented a similar dispersion. The Monte Carlo simulation, instead of being a large
process, provided reliable results and was a useful method to identify the error sources and quantify
their influence by taking into account the correlation between each source (this point could be especially
complicated by applying the law of propagation of uncertainty that is also explained in the GUM [27]).
Thus, when calculating the uncertainty of a system that has a complex mathematical model, it is
preferable to apply Monte Carlo simulation if we can detect and quantify the significant sources that
affect the system.

More generally, it can be added that the implemented methodology allows for complex and
real-time control of the precision manufacturing process by means of contact sensors and temperature
probes, in this case, for dimensions of the tapered roller bearing like “D” and “d”. These measurements
are able to control the grinding process in real time and improve the final part quality, scrap and
rework, and reduce costs by optimizing the cycle time.
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Nomenclature

Ta,m (◦C) Ambient temperature when measuring the m-th piece.
Ta,0 (◦C) Ambient temperature when measuring the master piece.
Ts,m (◦C) System temperature when measuring the m-th piece.
Ts,0 (◦C) System temperature when measuring the master piece.
Tm,m (◦C) Measurand temperature when measuring the m-th piece.
Tm,0 (◦C) Measurand temperature when measuring the master piece.
Tc (◦C) Temperature from the contact thermometer (used in the Monte Carlo simulation).
Ta (◦C) Temperature from the ambient thermometer (used in the Monte Carlo simulation).
Hs,m (mm) Tooling height of the system (see Figure 2) when measuring the m-th piece.
Hs,0 (mm) Tooling height of the system (see Figure 2) when measuring the master piece.
H (mm) Tooling height of the system at 20 ◦C.
Lm,m (mm) Probe length when measuring the m-th piece.
L0,m (mm) Probe length from the measurement of the master piece but when measuring the m-th piece.
L0,0 (mm) Probe length when measuring the master piece.
Lm (mm) Probe length when measuring the m-th piece (dimension at 20 ◦C).
L0 (mm) Probe length when measuring the master piece (dimension at 20 ◦C).
Dm,m (mm) Measurand (diameter) of the m-th piece at the moment of measure it.
D0,m (mm) Measurand (diameter) of the master piece at the moment of measure the m-th piece.
D0,0 (mm) Measurand (diameter) of the master piece at the moment of measure it.
Dm (mm) Measurand (diameter) of the m-th piece (dimension at 20 ◦C).
D0 (mm) Measurand (diameter) of the master piece (dimension at 20 ◦C).
∆Lm (mm) Figure, at 20 ◦C, of the difference between L0,m and Lm,m, see Equations (8) and (9).
θm (◦) Angle between a vertical line and the front face of the ring (see Figure 4) when measuring the

m-th piece.
θ0 (◦) Angle between a vertical line and the front face of the ring (see Figure 4) when measuring the

master piece.
ψm (◦) Angle between a vertical line and the axis of the contact prober of the comparator dial when

measuring the m-th piece (see Figure 5).
ψ0 (◦) Angle between a vertical line and the axis of the contact prober of the comparator dial when

measuring the master piece (see Figure 5).
λm (◦) Linear translation on X-axis direction (see Figure 5) when measuring the m-th piece.
λ0 (◦) Linear translation on X-axis direction (see Figure 5) when measuring the master piece.
αm (◦C−1) Thermal expansion coefficient of the m-th piece.
α0 (◦C−1) Thermal expansion coefficient of the master piece.
αs (◦C−1) Thermal expansion coefficient of the system.
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