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Purpose: To investigate whether combining multiple radiomics signatures derived from
the subregions of glioblastoma (GBM) can improve survival prediction of patients with
GBM.

Methods: In total, 129 patients were included in this study and split into training
(n = 99) and test (n = 30) cohorts. Radiomics features were extracted from each
tumor region then radiomics scores were obtained separately using least absolute
shrinkage and selection operator (LASSO) COX regression. A clinical nomogram
was also constructed using various clinical risk factors. Radiomics nomograms were
constructed by combing a single radiomics signature from the whole tumor region
with clinical risk factors or combining three radiomics signatures from three tumor
subregions with clinical risk factors. The performance of these models was assessed
by the discrimination, calibration and clinical usefulness metrics, and was compared
with that of the clinical nomogram.

Results: Incorporating the three radiomics signatures, i.e., Radscores for ET,
NET, and ED, into the radiomics-based nomogram improved the performance in
estimating survival (C-index: training/test cohort: 0.717/0.655) compared with that of
the clinical nomogram (C-index: training/test cohort: 0.633/0.560) and that of the
radiomics nomogram based on single region radiomics signatures (C-index: training/test
cohort: 0.656/0.535).

Conclusion: The multiregional radiomics nomogram exhibited a favorable survival
stratification accuracy.

Keywords: glioblastoma, multiregional, radiomics nomogram, survival stratification, magnetic resonance
imaging
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INTRODUCTION

Glioblastoma (GBM) is the most common malignant brain tumor
in adults, accounting for 15% of all brain tumors (Ostrom
et al., 2015). The median overall survival (OS) of GBM is
only 12 to 14 months even with aggressive therapy (van Meir
et al., 2010). However, in clinical practice, the OS of patients
with GBM differs significantly across patients despite having a
similar pathological grade and treated with the standard Stupp
protocol (Stupp et al., 2005; Omuro and DeAngelis, 2013).
The wide range of the OS underscores the imperative need
of individualized therapy for GBM patients. To address this,
survival stratification (short- and long-term survival) is one
solution as it can directly impact image-guided diagnosis and
subsequent treatment options (Chen et al., 2019). In other
words, the identification of effective prognostic factors of GBM
patients plays an important role in delivering individualized
therapies and improving patient prognosis. ] The poor prognosis
of GBM patients is mainly due to the heterogeneity within
the individual tumors (Narang et al., 2016; Shergalis et al.,
2018). This heterogeneity hampers the use of invasive biopsy-
based genomic analyses, but provides an opportunity for medical
imaging techniques that can view the entire tumor non-
invasively and repeatably. Magnetic resonance imaging (MRI)
acquires comprehensive images of the entire tumor and is a
routine preoperative examination for GBM. In conventional MRI
acquisition, four image sequences are commonly utilized for
brain tumor diagnosis, including T1-weighted contrast-enhanced
imaging (T1CE), T1-weighted imaging (T1WI), T2-weighted
imaging (T2WI), and T2-weighted fluid-attenuated inversion
recovery imaging (FLAIR). All of these sequences have been
widely utilized in glioma diagnosis and survival analysis (Shukla
et al., 2017; Zhang et al., 2020).

It is widely accepted that multiparametric MRI is pivotal
for improving the efficiency of tumor diagnostic and survival
stratification (Gutman et al., 2013; Huang et al., 2016; Jiang et al.,
2018). On the other hand, GBM exhibits significant variations
across geographical region, as has been seen on enhanced
and non-enhanced MRI area. This is particularly important
since different image types can have profound effects on how
healthy and edema brain regions are interpreted, which can
alter prognosis prediction (Gevaert et al., 2014; Jain et al., 2014;
Wu et al., 2015). Thus, it is crucial for accurate diagnosis to
fully utilize the heterogeneous information from each subregion
within a tumor environment. To do this, radiomics leverages
the correlation between underlying genetic characteristics of
the tumor and the corresponding medical imaging features
(Gillies et al., 2016; Kickingereder et al., 2016). By extracting
high throughput quantitative imaging features, radiomics is able
to analyze tumor heterogeneity non-invasively and may even
correlate with clinical outcomes (Lambin et al., 2012; Aerts et al.,
2014). Therefore, if the multiregional information of GBM can
be captured using multi-parametric MRI and effectively exploited
using radiomics, the survival stratification in GBM patients can
be expected to improve. In order to solve this problem, we tried to
extract features from each subregion of GBM instead of from the
whole tumor volume, as is commonly performed in other studies.

As for survival analysis, a nomogram model is generally
used to evaluate patient prognosis. As a statistical prediction
tool, multiple factors can be incorporated into a nomogram
to provide an individualized estimation of patient outcomes
(Gittleman et al., 2017). Beyond traditional clinical information-
based nomograms, a radiomics nomogram combining various
clinical factors has great potential in GBM patient stratification
(Huang et al., 2016; Kickingereder et al., 2016; Zhang et al.,
2019). However, previous studies typically use a single radiomics
signature that is based on features extracted from the whole
tumor. Therefore, the impact of different heterogenous regions
may be reduced when using such signatures. Combining multiple
radiomics signatures from each subregion into one nomogram
may improve the stratification performance and facilitate the
effective treatment and survival of GBM patients.

Thus, the purpose of the present study was to develop and
validate an effective nomogram that is based on multiregional
radiomics signatures for the individualized survival stratification
of GBM patients.

MATERIALS AND METHODS

Patient Population
A total of 129 patients were retrospectively included in the
current study. All patients had clinical information available from
the Cancer Genome Atlas GBM Collection (TCGA-GBM1) and
corresponding multimodal MRI data available from the Cancer
Imaging Archive (TCIA2). The complete radiological data of
the TCIA-GBM consists of 262 multimodal MRI scans obtained
from eight institutions (Clark et al., 2013). The data used in the
present study included the pre-operative baseline scans acquired
with T1WI, T1CE, T2WI, and FLAIR sequences. The patients
were assigned to two cohorts: a training cohort comprising 99
patients from institutions 2, 6, 8, and 12, and an independent test
cohort comprising 30 patients from institutions 14, 19, 27, and
76. No institutional review board approval was required since
TCGA is a publicly available dataset without patient identifiers.
Except for the multi-parametric MRI data, the clinicopathologic
information, including gender, age, KPS, prognostic treatment,
TP53, PTEN, EGFR, and IDH1, were obtained from TCGA GBM
Project for all patients.

Image Preprocessing and Tumor
Segmentation
The pre-processed and labeled MRI data are available through
TCIA (Bakas et al., 2017). The pre-operative MRI volumes
were initially co-registered to the T1WI and then skull-
stripped. Consistent with the BRAin Tumor Segmentation
(BRATS) challenge, the segmentation labels delineate three parts
of each tumor, including enhanced (ET) and non-enhanced
tumor (NET) regions, as well as the peritumoral edema (ED).
Tumor segmentation was achieved by integrating an automated

1cancergenome.nih.gov
2www.cancerimagingarchive.net
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pre-segmentation process with manual corrections from a board-
certified neuroradiologist. The automated hybrid generative-
discriminative method, which won first place at the International
Multimodal BRATS 2015, was applied to produce a set of labels.
Then, these automatically segmented labels were modified and
the misclassified labels were manually corrected.

Radiomics Feature Extraction and
Signature Construction
A variety of imaging features were extracted from the MRI
datasets, including spatial information, intensity, volumetric,
morphologic, histogram, and textural parameters. A total of 537
radiomics features, including 179 features from ET, NET or ED,
were extracted for each subject. A detailed description of the
extracted spatial features can be found in Supplementary Table 1.

The number of subjects (independent samples) should exceed
the number of selected features by a factor of at least 10
according to the guideline (Harrell, 2015). Thus, the combination
of the least absolute shrinkage and selection operator (LASSO)
algorithm and Cox survival model was used to select the
most useful prognostic features in the training dataset. The
LASSO method utilizes a regularization parameter λ to shrink
the coefficients of all irrelevant features to zero. Here, λ was
optimized to maximize the area under the receiver operating
curve (AUROC) in a 10-fold cross-validation procedure. Then,
the Cox regression model was constructed from the features with
non-zero coefficients. After that, radiomics scores (Radscores)
were computed for each patient through a linear combination
of the selected LASSO features, weighted by their respective
coefficients. These scores can be useful by further stratifying
the GBM patients.

Specifically, when considering the influence of different tumor
regions, two kinds of feature selection strategies were applied and
compared in this study:

(i) All 537 features from the ET, NET, and ED were combined
as the input to the model, and eventually one single
Radscore was obtained and analyzed (denoted as Radscore-
Con);

(ii) The features from the ET, NET, and ED regions were fed
into the model separately to produce three independent
Radscores (denoted as Radscore-ET, Radscore-NET and
Radscore-ED) for the following survival analysis.

Validation of Radiomics Signatures
By using Kaplan-Meier survival analysis, the potential correlation
between radiomics signatures and OS was assessed in the training
cohort and validated in the test cohort. The optimal cutoff
values of Radscores were selected based on their association
with the patients’ OS in the training cohort using the maximally
selected rank statistics from the “maxstat” R package (Delgado
et al., 2014). Then, the same cutoff values were applied to
the test cohorts. Patients were classified into high- and low-
Radscore groups accordingly for further analysis. Evaluation
of the radiomics signature built from different features was
performed by adding the Radscore as an independent factor
in the multivariable Cox proportional hazard model (backward

step-down selection; the Akaike information criterion, AIC). This
model also integrated the general clinical risk factors as well.

Radiomics Signature Assessment
Radiomics and clinical nomograms were both applied to the
training cohort based on the multivariate Cox analysis to
indicate the increased predictive value of the radiomics signatures
to the clinical risk factors for individualize OS assessment.
Specifically, the radiomics nomograms were generated by
integrating the radiomics signatures and clinical risk factors,
while the clinical nomogram contained only the clinical risk
factors. Then, the increased predictive value of the radiomics
signatures relative to clinical risk factors was assessed by
calculating the discrimination, reclassification, calibration, and
clinical usefulness. The effect of the radiomics signatures was
compared with that of the clinical nomogram. Before this, two
radiomics nomograms corresponding to two feature selection
strategies were also constructed and compared.

For model fitting assessment, AIC was calculated to assess
the risk of model overfitting. And the performance of different
models was evaluated using the integrated Brier score (IBS) by
calculating the prediction error over time and the compared,
which represents the weighted average squared distance between
the predicted probability of the established model and the
observed survival status. IBS values can range from 0, i.e., a
perfect model, to 0.25, i.e., a non-informative model with a 50%
survival/non-survival prediction.

For discrimination performance assessment, calibration
curves were derived to compare the consistency between
the OS predicted by the radiomics and clinical nomograms
and the actual OS. The Harrell concordance index (C-index)
was calculated to quantify the discrimination performance.
Meanwhile, decision curve analysis (DCA) enabled the
determination of clinical usefulness of the radiomics nomograms
by measuring the net benefit at several probability thresholds.

Statistical Analysis
Statistical analysis performed using the R software. R packages
that were utilized are summarized as follows: the “surv_cutpoint”
function of “survminer” package was applied for cutoff point
calculation; the “glmnet” and “survival” packages were applied
for LASSO Cox regression; the “rms” package was applied for
multivariate Cox regression, calibration plots and nomograms;
the “Hmisc” package was applied for C-indexes comparisons; the
“rmda” package was applied for DCA; and the “ipred” package
was applied for IBS calculation.

RESULTS

Patient Characteristics and Radiomics
Signature Construction
Clinical characteristics of all patients are shown in
Supplementary Table 2. We used the LASSO Cox regression
model to select features and build prognostic classifiers from
these features. Ten potential predictors were identified from
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FIGURE 1 | The optimum cutoff score calculation of the Radscores. (A) The cutoff plot for Radscores of ET, (B) the cutoff plot for Radscores of NET, and (C) the
cutoff plot for Radscores of ED. The low-radscores are indicated in blue and high-radscores are indicated in red.

FIGURE 2 | Graphs show results of Kaplan-Meier survival analysis according to the radiomics signature of ET (A), NET (B), and ED (C) for patients in the training
cohort (first row) and those in the test cohort (second row). The low-radscores are indicated in blue and high-radscores are indicated in red.

the 179 features for each subregion, i.e., ET, NET, and ED, in
the training cohort Eight potential predictors were identified
when all the features were concatenated together. The radiomics
signatures were then constructed with weights applied to the
coefficients in each model and the Radscores were obtained.
The relevant equations for this process can be found in
Supplementary Table 3.

The distributions of the Radscores of different sub-regions
in the training cohort are shown in Figure 1. The optimal
cutoff value was −0.233, −0.295, and 0.055 for the Radscore-
ET, Radscore-NET and Radscore-ED, respectively, and −0.321
for the Radscore-Con. Accordingly, patients were stratified into a

low-Radscore group and high-Radscore group. The OS rate in the
high-Radscore group and low-Radscore group in the training and
test cohorts are provided in Supplementary Table 4. Combined
with Figure 2, we found that patients with lower Radscores
generally exhibited a better OS. This finding was assessed in the
training cohort and then confirmed in the test cohort.

Assessment of Radiomics Signatures
To validate the radiomics signatures and to provide a quantitative
and clinical method to predict the probability of the 1-, 3-,
and 5-year OS of GBM patients, a clinical nomogram and two
radiomics nomograms were constructed based on the training
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FIGURE 3 | Use of the constructed clinical nomogram (A) and the radiomics nomogram (B).

cohort data (Figure 3). Four clinical risk factors, including days
to birth, KPS, prognostic treatment and spatial_frontal, were
significantly associated with survival and were included in the
models (Table 1).

As for the radiomics nomograms, we found that the
discrimination performance of the one constructed from all
the independent RadScore risk factors, including Radscore-ET,
Radscore-NET, and Radscore-ED (C-index/AIC: training cohort:
0.717/452; test cohort: 0.655/143) was better than the nomogram
constructed from the Radscore-Con as a single risk factor (C-
index/AIC: training cohort: 0.656/468; test cohort: 0.535/146).
Thus, the nomogram constructed from the combination of the
Radscore-ET, Radscore-NET, and Radscore-ED signatures was
used for further analysis.

Meanwhile, the correlation between the subregion RadScores
was examined to test whether overfitting exist. The correlation
coefficients between RadScore-ET and Radscore-NET, between
Radscore-ET and Radscore-ED, and between Radscore-NET and
Radscore-ED were 0.36, 0.28, and 0.16, respectively (Figure 4A).
Figure 4B indicates the scatter plot based on these three
RadScores and 1-year survival difference between two groups can
be observed obviously.

We found good agreement between three actual survival
observations and the survival estimates determined by the
radiomics nomograms at 1, 3, and 5 years in both training and test
cohorts, as is depicted in the calibration curves of the nomograms
(Figure 5). The C-index, IBS and AIC estimations for the
clinical and radiomics nomogram models are also summarized
in Table 2. As assessed with the IBS (training cohort/test cohort:
0.077/0.066, lower values indication better model performance),
the C-index (training cohort/test cohort: 0.717/0.655, higher
values indication better discriminative ability) and AIC (training
cohort/test cohort: 452/143, lower values indicating better model
performance), the radiomics nomogram performed better than
the clinical nomogram in both the training and test cohorts.

Meanwhile, multivariable Cox regression analysis after
adjustment for clinical factors showed that the Radscores were
an independent and powerful prognostic factor for OS in the

training and test cohorts (Supplementary Figure 1). The p-values
for the Radscore-ET, Radscore-NET, and Radscore-ED were
0.96, 0.002, and 0.003, respectively. Among these, the Radscore-
ED had the highest hazard ratio and played an important
role in prognosis.

TABLE 1 | Clinical factors used for overall survival (OS) stratification of
glioblastoma patients.

Univariate cox Multivariate cox

regression regression

HR (95% CI
for HR)

P value HR (95% CI
for HR)

P value

Gender 0.89
(0.58–1.4)

0.580 0.65
(0.38–1.11)

0.115

Age 1.3
(0.81–2.10)

0.275 1.07
(0.65–1.76)

0.789

KPS 0.97
(0.95–0.99)

0.004* 0.97
(0.95–0.99)

0.005*

Prognostic treatment 3.6 (2.3–5.6) <0.001* 2.48
(1.30–4.75)

0.006*

TP53 0.89
(0.53–1.5)

0.64 NA

PTEN 0.68
(0.39–1.2)

0.16 NA

EGFR 0.88
(0.46–1.7)

0.71 NA

IDH1 0.3
(0.041–2.1)

0.23 NA

SPATIAL_Frontal 1 (0.99–1) 0.179 NA

SPATIAL_Temporal 1 (1–1) 0.51 NA

SPATIAL_Parietal 1 (1–1) 0.20 NA

SPATIAL_Basal_G 1 (0.98–1) 0.56 NA

SPATIAL_Insula 1 (0.97–1.1) 0.52 NA

SPATIAL_CC_Fornix 1 (0.95–1.1) 0.63 NA

SPATIAL_Occipital 1 (0.99–1) 0.52 NA

SPATIAL_Brain_stem 1 (0.99–1.1) 0.14 NA

*P < 0.05.
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FIGURE 4 | (A) The correlation between each RadScore. The lower corner shows the Pearson correlation coefficients and upper corner indicates the correlation
degree. (B) The scatter plot shows patients with short (<1 year) and long survival (≥1 year). X, y, and z axis represents RadScore-ET, RadScore-NET, and
RadScore-ED, respectively.

FIGURE 5 | Calibration curves for the clinical nomogram (A) and radiomics nomogram (B) show the calibration of each model in terms of the agreement between
the estimated and observed 1-, 2- and 3-year outcomes for the training cohort (first row) and the test cohort (second row).
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TABLE 2 | Performance of models.

Model Training cohort Test cohort

C-Index Concordance probability IBS AIC C-Index Concordance probability IBS AIC

Clinical nomogram 0.633 0.040 0.094 470 0.560 0.051 0.127 112

Radiomics_ET signature 0.632 0.034 0.096 673 0.535 0.054 0.151 145

Radiomics_NET signature 0.632 0.034 0.093 678 0.584 0.061 0.134 142

Radiomics_ED signature 0.654 0.031 0.091 666 0.557 0.052 0.146 146

Radiomics_Con Nomogram 0.656 0.040 0.090 468 0.535 0.053 0.127 146

Radiomics_ET+Radiomics_
NET + Radiomics_ED
Nomogram

0.717 0.038 0.077 452 0.655 0.066 0.125 143

FIGURE 6 | Decision curve analysis for each model.

Clinical Use
The DCA (Figure 6) showed that in most of the reasonable
threshold probabilities, the net benefit of the radiomics
nomogram was slightly higher than that of the clinical
nomogram.

DISCUSSION

The current study investigated the influence of a multiregional
radiomics nomogram in the survival stratification of GBM
patients. We found an optimal radiomics nomogram to be one
that integrated three radiomics signatures from different tumor
subregions and clinical risk factors. This optimal nomogram
outperformed the one built only by clinical risk factors as well as
the one constructed from the radiomics signature from the entire
tumor, as is commonly used in previous works.

Clinicopathological risk factors such as KPS, gender, age, IDH
status and O6-methylguanine-DNA methyltransferase (MGMT)
have been the most utilized factors used to construct survival
nomograms of GBM patients in previous studies. Using these risk
factors, various achievements have been obtained, however, due
to the lack of MGMT information for most of the patients from
TCGA-GBM, this factor was not included in our study. Based on

the univariate logistic regression used here, we found that various
clinical risk factors, including days to birth, KPS, prognostic
treatment and spatial_frontal were significantly associated with
survival. These factors were therefore chosen to further construct
the clinical nomogram. Using this clinical nomogram, we
observed a similar survival stratification performance as has been
reported throughout literature.

Consistent with previous studies focusing on radiomics
nomograms, we observed a performance improvement after
adding the radiomics signature, suggesting that radiomics
signatures were more robust compared with clinical risk factors
(Zhang et al., 2019). However, the heterogeneity pattern of
ET, NET, and ED are different and may provide specifically
heterogenous information. Thus, instead of extracting imaging
features from the whole tumor area or only the contrast-
enhanced area of glioblastoma, we further analyzed information
from different heterogeneous areas of the tumor environment.
This strategy takes advantage of each sub-region into account and
evaluates the significance of each. The results further indicated
that the nomogram that utilized three radiomics signatures as
separate risk factors performed better than the nomogram based
on a single radiomics signature. Along these lines, the C-index
improved from 0.656 to 0.717 in the training cohort and from
0.535 to 0.655 in the test cohort using these two model types.

As for each tumor region, the Radscore-ED signature derived
from the peritumoral edema region outperformed those from
the other two regions, i.e., showed the highest predictive
performance. It has been reported in multiple previous studies
that the heterogeneity of GBM in not limited to the tumor
margins and that the peritumoral brain parenchymal zone (PBZ)
is also involved. In fact, about 90% of GBM recurrences occur
in the PBZ. The microenvironment of GBM-PBZ suggests that
the interaction of specific cells (microglial cells, glioma cells,
neuroglial, and vascular endothelial) and molecular events in PBZ
leads to micro-vascularity, tumor infiltration, and compromise
of the blood brain barrier. This process eventually contributes
to poor survival of GBM patients; however, few studies have
investigated the PBZ. Thus, the prognostic influence of ED in
GBM patients’ needs to be demonstrated in future studies.

The data used in this study was obtained from different
institutions and acquired on different MRI scanners. This
combined data was further split into a training and test cohort,
where the test cohort was completely independent. These factors

Frontiers in Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 683452

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-683452 May 13, 2021 Time: 14:6 # 8

Yang et al. GBM Patients Survival Stratification Improvement

in general make our study more robust than previous studies;
however, several limitations still exist for the current work. Since
the data were collected from a public database, we only included
images with conventional sequences in our radiomics signatures.
Radiomics features derived from functional or more complex
MR sequences, such as diffusion or perfusion sequences, were
therefore not investigated. Similarly, genetic information was
often incompletely provided by the public databased and was also
excluded from this work.

In conclusion, in this study, a radiomics nomogram model
based on multiple radiomics signatures was developed and
validated in GBM patients. This model leveraged multi-
institutional and multi-parametric data collected from TCGA
for enhanced survival stratification of GBM patients compared to
traditional nomograms. The encouraging predictive accuracy
and survival stratification performance of the proposed
multiregional radiomics nomogram demonstrated great potential
for clinical applications.
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