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Abstract

A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many
uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-
specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical
investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life
cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and
salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver
and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with
orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large
collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be
predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased
literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such
as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-
protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and
also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data
also provide a foundation for further studies of transcriptional regulation in malaria parasites.
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Introduction

Drug targets for many pathogenic microbes such as Mycobac-

terium tuberculosis or Plasmodium falciparum are often selected from

proteins identified through genome sequencing efforts, for which

enzymatic function is already known allowing for biochemical

assay development in drug screening. This expedient approach

means that many genes encoding proteins with uncharacterized

functions may be disregarded as potential therapeutic or disease-

preventive targets. These assumptions have several consequences.

First, the diversity in many chemical libraries is not utilized.

Second, focusing on the pathogen enzymes most likely to be

essential to all life increases the likelihood that a compound will

also have activity against the host.

While using well-characterized targets (e.g. dihydrofolate

reductase, dihydropteroate synthase, ubiquinol-cytochrome c

reductase) studied previously in model systems such as Saccharo-

myces cerevisiae or Escherichia coli is perhaps inevitable for practical

reasons, the genome sequence of the malaria parasite, P. falciparum,

does encode a plethora of potentially novel drug and vaccine

targets as indicated in the genome sequencing project [1]. It has

also been noted that the proportion of uncharacterized genes in P.

falciparum is much higher than in many other sequenced genomes

[1]. While some of these uncharacterized proteins may be very

specific to P. falciparum, which causes the most severe form of

human malaria, others have orthologs in many other parasites and

even in plants, but their roles are not understood in any species.

Apicomplexan parasites, including Babesia, Theileria, Toxoplasma,

and Cryptosporidium spp. generally are not easy to manipulate

experimentally as many have complex life cycles within multiple

hosts and it may be difficult to obtain sufficient quantities of

parasites for biochemical assays. Given the impact of malaria on

human society, the problem of discovering what these conserved,

but uncharacterized, genes are doing for the cell is particularly

pressing and new approaches that take advantage of empirical

data derived from parasites instead of model systems are needed.

Here we use detailed cross-species expression data to create maps

that associate uncharacterized genes with different cellular
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processes with an emphasis on those that are not represented in

model systems.

While numerous microarray or cDNA sequencing experiments

have been performed on malaria parasites, the use of two-channel

comparative formats, different array designs and, in particular, the

limited coverage (e.g. 2,045 independent clones obtained from a P.

berghei mung bean nuclease DNA libraries) sometimes limits the

usefulness of these data. To illustrate, a cDNA library was

constructed from liver stage schizonts that had been obtained by

laser capture microdissection and 623 transcripts were identified

[2]. Of these, 25% were not detected by cDNA sequencing of

blood or sporozoite stages. However, inspection shows some of the

presumed liver-specific transcripts are likely the result of

sequencing an insufficient number of cDNAs in the different

stages. Replication factor A is reported as being expressed

exclusively in liver stages although there is only one copy of this

gene in the genome and DNA replication is also happening in

blood and oocyst stages. Likewise, GMP synthetase is reported as

expressed exclusively in liver stages while knowledge of metabo-

lism suggests that its product should be required throughout the

lifecycle. Indeed, previous transcription and proteomic studies of

P. falciparum indicate high levels of GMP synthetase in trophozoite

stages. PY01200, a transcript shown to be liver specific by RT-

PCR also shows high expression in P. falciparum merozoites and

protein has been detected in P. falciparum sporozoites. A very

comprehensive expression analysis of P. falciparum blood stages [3]

was also performed, but again, without considering insect stage

data, it is hard to determine the significance of genes showing low

amplitude changes in the erythrocytic cycle. These observations do

not indicate that the data from these previous studies are of poor

quality, but rather that coverage is insufficient to assume presence

and absence of transcripts in the various parasite lifecycle stages.

Proteomic expression data is also available for many parasite

species [4,5,6,7] but coverage, especially when only high quality

spectra are used, is generally much sparser than for microarray

studies, thus limiting their usefulness. For example, one would

expect stochiometric representation of proteins comprising

different protein complexes (e.g. proteosomes, ribosomes, t-

complex) across parasite lifecycle stages in proteomic data from

P. berghei but this is not observed due to random sampling error at

low coverage and chance. Likewise, histones, a component of

chromatin that should be found in all lifecycle stages, are detected

in only some stages—H3 is not found in ookinetes while H2A is

not found in sporozoites [7]. Thus, more studies are necessary.

Here we aim to provide the first comprehensive genome-wide

expression analysis of malaria parasite transcription including all

life cycle stages.

Even if comprehensive data were already available for malaria

parasites, a robust method for analyzing all of the data would also

be needed. Researchers generally use gene expression data to find

new genes involved in processes using a ‘‘guilt-by-association’’

approach and to understand transcriptional regulation. In both

cases genes first need to be clustered by their expression similarity.

However, cluster boundary determinations often are subjective

and non-optimal for the purpose of function prediction. This

challenge is addressed by an algorithm termed Ontology-based

Pattern Identification (OPI) [8], which has been shown to identify

gene clusters of better quality than unsupervised clustering

algorithms such as the robust k-means clustering we used

previously [9]. The OPI analysis begins with a piece of knowledge,

such as a group of genes believed to share a set of characteristics—

e.g. all genes known to be involved in gametocytogenesis in

malaria parasites. From this list of ‘‘seed genes’’ an ‘‘average’’

expression profile that best represents gametocytogenesis can be

constructed, and all of the malaria genes in the genome can be

relatively ranked according to their similarity to the average profile

as measured by Pearson correlation. Genes ranked near the top

are more likely to be involved with the gametocytogenesis process.

OPI iteratively descends the rank list and identifies a cutoff, where

the largest number of seed genes are included within the smallest

cluster size as computed by the minimization of a hypergeometric

probability score. As the p-value represents the odds of non-seed

genes in the resultant cluster sharing a similar expression profile to

the seed genes by chance, OPI clusters automatically balance

between false discovery rate and true positive rate for the purpose

of functional prediction, without relying on subjective parameters.

This process is repeated for all possible pieces of knowledge and

results in gene clusters containing both known genes and

unassigned genes for each functional group. The resultant clusters

are then subjected to statistical permutation tests. It is apparent

that the accuracy of such predictions relies on both the

completeness of the underlying data set and the quality of the

seeding knowledge. Although we had previously carried out OPI

studies, it was based on a limited set of P. falciparum data, as well as

knowledge obtained from the Gene Ontology (GO) consortium

[10], which may not represent parasite-specific processes well. The

accuracy of our predictions in this study is significantly improved

as we not only combine gene expression data from both P. yoelii

and P. falciparum and cover virtually all lifecycle stages, but also

establish a systematic literature mining pipeline to explore many

new groups of functionally-related genes based on co-citation in

1,278 malaria-related publications. To validate the predictions we

apply the same routine to human and yeast expression data, as

well as protein-protein interaction data, and illustrate that the

method can accurately predict many functions. The results are a

searchable database that can be used by researchers seeking

information about the possible functions of uncharacterized

malaria proteins as well as a comprehensive set of unprocessed

data that may be of use to those interested in systems biology.

Results

P. yoelii sporozoite transcription
To infer function of malaria proteins, we had previously

collected detailed expression data from P. falciparum [9]. Here we

add P. falciparum in vitro zygote and ookinete gene expression data,

as well as data from a variety of developmental stages from the

rodent malaria parasite, P. yoelii. For this project, rodent parasite

data were collected from ,150,000 25mer P. yoelii probes

contained on a previously described custom-designed oligonucle-

otide array [9]. These new P. yoelii data included oocyst-stage

sporozoites, blood-stage parasites, late-stage gametocytes and 36

and 40 hour liver stage parasites obtained by a cDNA subtraction

method. Previously described P. yoelii salivary gland sporozoite

data were also used [11]. Expression data were collected for 5,521

different P. yoelii genes. The new expression data for P. yoelii

sporozoite stages agree with results obtained previously from

sequencing cDNA libraries [12]. As expected, UIS3 (Up In

Sporozoites) shows substantial (5-6 fold) induction in salivary gland

sporozoites relative to oocyst stage sporozoites [13]. Interestingly,

although UIS3 is transcribed in sporozoites, it has been shown to

be essential for liver stage development, [14] suggesting that

transcriptional silencing may also play a role in the biology of

exoerythrocytic forms (EEFs) of malaria parasites. Likewise, UIS4

(PY00204) is upregulated. This gene has a P. falciparum homolog

(PF10_0164, by syntenic analysis) that is abundantly expressed in

sporozoites and encodes a member of the early transmembrane

protein family important for establishing the parasitophorous

vacuoles in blood stage parasites [15]. The rodent version is also
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critical for early liver stage development rather than sporozoites

function [16]. Other proteins with similar expression patterns (i.e.,

induction in salivary gland sporozoites relative to oocyst stages) are

likely to be essential for early liver stage development. Genes

highly expressed in midgut sporozoites relative to salivary gland

sporozoites are mostly uncharacterized but include MAEBL

(PY05977) and a calcium dependent kinase (PY06394), both of

which were upregulated by about 20 fold.

P. falciparum ookinete and zygote transcriptional
patterns

New P. falciparum ookinete and zygote data indicate unexpected

dynamics of gene expression that likely reflect novel mechanisms

of gene expression regulation including post-transcriptional

repression [17]. The zygote/ookinete stages of P. falciparum are

diploid and P. falciparum ookinetes have been difficult to isolate in

large numbers. Here, we were able to obtain P. falciparum ookinetes

using a modified approach [18] in which an estimated 5–10%

morphological transformation of zygotes to ookinetes was seen.

The genes showing the largest expression values in ookinetes

included many glycolysis genes such as glyceraldehyde-3-phos-

phate dehydrogenase and fructose-bisphosphate aldolase, which

are not highly transcribed during gametocytogenesis, reflecting a

metabolic shift needed for development within the mosquito

midgut. The most highly expressed genes in the zygote (with 6 or

more probes) included the heat shock 70 protein, PF08_0054

(ranked 1st); the P. falciparum gamete antigen, PF13_0011 (ranked

2nd); a sexual stage specific protein, PFD0310w (ranked 24th); and

circumsporozoite-trap related protein (CTRP), PFC0640w (ranked

20th). Many of the most highly transcribed genes with rodent

homologs had been identified in analysis of the rodent ookinete

proteome at levels that would not be expected by chance. Among

genes with expression values of greater than 1000 ($6 probes), and

with rodent orthologs (233 genes), 96 were detected with more

than 4 spectra in the ookinete proteome analysis. In contrast, only

15 genes with more than four spectra were detected amongst the

270 with transcript levels of less than 25. This difference is not

expected by chance (p = 10221 by x2-test). Several of the most

abundant genes in the proteome analysis were also the most

abundant as measured on the array including a glyceraldehyde-3-

phosphate dehydrogenase (ranked 3rd by proteomics, 2nd by gene

expression) and heat shock protein 70 (ranked 5th by proteomics,

3rd by gene expression, out of 3,137 genes with 6 or more probes).

The 15 proteins that were detected by MudPIT but were not

considered ‘‘transcribed’’ included a helicase, and a translation

factor. It is difficult to determine whether these represent species-

specific differences, annotation problems or the effects of

translational repression [7,17,19], because in most cases transcripts

were detected in earlier gametocyte stages. Genes considered

abundant by transcript analysis, but which were not detected in

the proteomic analysis included many membrane proteins, which

can be difficult to detect by mass-spectrometry. Several highly

expressed genes do not have rodent orthologs and thus their

abundant expression has not been previously reported. Although

P. falciparum ookinetes and zygotes are morphologically similar,

comparison of gene expression patterns showed that a clear up-

and down-regulation of some genes was occurring, despite an

overall similarity (r = 0.92). Differences between the zygote and the

ookinete included a 5-fold downregulation of the transcript for

chitinase, a gene required for penetration of the mosquito midgut

epithelium, which is likely transcribed in zygotes and used in

ookinetes [20], and a 5-fold downregulation of PFC0640w, the

CTRP [21], a gene required for gliding motility in ookinetes. The

downregulation of important ookinete proteins mostly likely

reflects the kinetic differences between transcription and transla-

tion [19,20].

P. yoelii liver stage transcription
We also examined expression data from P. yoelii liver stage

parasites. From an immunological perspective this is the most

interesting stage but also the most difficult to study. We performed

a cDNA subtraction using RNA from uninfected livers because of

the high potential for host RNA contamination. We anticipated

that this would be necessary to detect parasite transcript signal

because the parasite genome is 1,000 times smaller than the mouse

genome and because only 10% of the cells were infected. Overall,

these data were of a lower intensity than for other samples, but the

expression differences relative to blood stages and the enrichment

of genes involved in various pathways were consistently observed

between the two liver samples. The characterized genes (Table 1)

that showed the largest rank ratio changes in liver against mixed

blood stages in P. yoelii were PY01852, a putative phosphotidy-

lethanolamine binding protein; PY03168, the circumsporozoite

protein; PY00446, a polyprenyl synthetase; PY00573 lipoamide

dehydrogenase; and PY01586, beta-hydroxyacyl-acp dehydratase

precursor. With the exception of the circumsporozoite protein,

which is translocated to the host hepatocyte cytoplasm where it

exerts a profound effect on host transcription [22], the rest are

localized to the apicoplast [23]. The apicoplast, like the

chloroplast, is a thought to be a remnant of an endosymbiotic

bacterium and is the site of type II fatty acid biosynthesis. Several

other proteins with non-specific roles in signaling were also

upregulated including PY01269, a phosphotyrosyl phosphatase

activator; PY01857, a cAMP-specific 39, 59-cyclic phosphodiester-

ase; and PY07390, a calcium-dependent protein kinase. Genes

showing the greatest upregulation in blood stages relative to liver

included many ribosomal proteins, plasmepsins, heat shock

proteins, glycolysis enzymes (e.g. lactate dehydrogenase) and a

falcipain. The plasmepsins and falcipains are proteases involved in

hemoglobin degradation [24] and thus their absence in the liver

stages is to be expected.

Grouping genes by expression pattern and statistically
testing associations

To create models for the function of various malaria genes and

to further validate the data, yoelii-falciparum ortholog pairs were

identified and the combined expression data vectors were then

hierarchically arranged. The OPI clustering algorithm was then

applied, which relies on knowledge such as Gene Ontology

annotations to optimize cluster boundaries, normalization and

weighting methods, so that the highest proportion of genes with

particular classifications is contained in the smallest sized cluster of

co-expressed genes. The approach allows us to assess the quality of

the expression data and is more rigorous than spot-checking a

random collection of genes. For example, it is now accepted that

genes encoding proteins that are part of multi-protein complexes

(e. g. ribosomes) are likely to be co-transcribed. Therefore, if

expression data are universally high-quality, one would expect that

almost all members of a complex to show highly correlated

expression patterns across conditions and that the correlation

would be much higher than if genes were randomly assorted.

While it is relatively trivial to choose a few genes and then to show

that they are upregulated by quantitative RT-PCR, or that their

proteins are developmentally regulated by a western blot, such an

approach just validates the behavior of the genes that were chosen

(and whose selection might not have been random) and does not

reveal much about the quality of the measurements for the other

5000 genes in the dataset. However, there are also problems with
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relying solely on statistical measurements because of inherent

correlations between genes and ontology terms. Therefore,

permutation testing was performed.

Applying OPI resulted in 98 non-redundant clusters derived

from gene ontologies highly enriched for processes such as

glycolysis or protein synthesis, or for cellular components such as

the proteosome core complex (Figure 1, Table S1). While we had

previously performed a similar analysis on a limited set of sexual

development and erythrocytic stage P. falciparum data, the addition

of the new data from oocyst and salivary gland sporozoite stages

and the creation of combined expression vectors with data from

both human and rodent parasites substantially improved the

quality of the predictions and allowed the separation of genes

which had previously been grouped together. In a previous

analysis of sexual development and asexual cycles we identified

246 genes associated with gametocytogenesis, which included the

genes involved in type II fatty acid biosynthesis such as

PF11_0256, the pyruvate dehydrogenase E1 component. Here

we can show that while type II fatty acid biosynthesis genes are

upregulated during sexual development they are also upregulated

in liver stage development, while others are not. For this study the

p-values for functional enrichment calculated with the accumulat-

ed hypergeometric distribution ranged from 10269.0 to 1028.1. An

example of one of the clusters is shown in Table 2 (others can be

downloaded as additional data files, http://carrier.gnf.org/

publications/Py, the companion website), which shows the P.

falciparum genes in a group enriched for the cellular component,

nucleolus (GO:0005730). This group contains eight of the fourteen

annotated P. falciparum or P. yoelii nucleolus genes in a group of 28.

Given that 6,592 genes were considered in this analysis the

probability of enrichment by chance is very low (p = 10215.3). Not

only is the p-value low, but it is likely much higher than it should

be: Evidence compiled independently indicates that almost every

‘‘hypothetical’’ gene in the cluster has a yeast ortholog, most with

likely roles in RNA polymerase I processing and transcription

(Table 2). There are numerous other similar examples of the

quality of the expression data as evidenced by the functional

enrichments. For example, of the twelve genes in GO group

GO:0005663 (DNA replication factor C complex), twelve are

found in a cluster of 27 (p = 10228.9), with most of the other genes

having a role in DNA replication. Of the 12 components of the

chaperonin-containing T complex (GO:0005832), ten are con-

tained in a group of 12 genes (p = 10227.2). The gluconeogenesis

cluster contains 9 of the 13 annotated genes in a group of 14

(p = 10221.9), with lactate dehydrogenase considered a miss. The

patterns of gene regulation for the different functionally-enriched

Table 1. Genes upregulated 36 and 40 hpi in liver stages relative to blood stages.

P.f. gene P. y. gene Function Rank Description

PF14_0280 PY01269 Signaling 6, 110 Phosphotyrosyl phosphatase activator

PFL0955c PY01852 Fatty-acid metabolism 8, 9 Phosphotidylethanolamine-binding protein

PFC0210c PY03168 Sporozoite 14, 7 Circumsporozoite (CS) protein

PFB0130w PY00446 AP-localized fatty acid biosynthesis 40, 120 Polyprenyl synthetase

PF08_0066 PY00573 AP-localized fatty acid biosynthesis 47, 19 Lipoamide dehydrogenase

MAL13P1.119 PY01857 Purine metabolism 39,88 CAMP-specific 39,59-cyclic phosphodiesterase 4B

PFL0475w PY01829 Purine metabolism 38, 103 39,59-cyclic-nucleotide phosphodiesterase

PF14_0227 PY07390 Signaling 85,31 Calcium-dependent protein kinase

PFL1260w PY03530 Folate biosynthesis 45, 69 Hydrolase/phosphatase

PF11_0117 PY01741 DNA replication 84, 222 Replication factor C subunit 5

PF10_0330 PY00468 Signaling 122, 49 Ubiquitin-conjugating enzyme

PFL2250c PY00403 Signaling 78, 32 Rac-beta serine/threonine protein kinase

MAL13P1.95 PY03801 Iron metabolism 66, 374 Ferredoxin

PFD0825c PY04369 Translation 93, 565 RNA-binding protein of pumilio/mpt5 family

PFD0215c PY01340 Sporozoite 60, 119 P. Berghei pbs36-related

PFL2460w PY01337 Cytoskeleton 62, 266 Coronin

PFC0831w PY00756 AP-localized fatty acid biosynthesis 130, 76 Triosephophate isomerase

PFD0260c PY04387 Adhesion to CD36 [66] 123, 1 Sequestrin

PFL2510w PY00008 Sporozoite 120, 155 Chitinase

PFE0175c PY00345 Sporozoite 184, 278 Unconventional myosin pfm-b

PFL2210w PY05459 Porphyrin metabolism 208, 483 delta-aminolevulinic acid synthetase

PF13_0128 PY01586 AP-localized fatty acid biosynthesis 91,26 Beta-hydroxyacyl-acp dehydratase

PFB0325c PY02063 Sporozoite 110, 154 Cysteine protease

MAL13P1.190 PY02721 Protein degradation 107, 258 Proteasome regulatory component

PFI0955w PY05332 Transport 89, 28 Sugar transporter

The rank indicates the results from two independent cDNA subtraction experiments. Genes described as ‘‘hypothetical’’ are not listed. The rank is derived from
comparing levels in P. yoelii asexual stages to liver stages and is calculated only for genes of at least six probes and changing more than 3-fold within the examined
conditions (54 for 3,450 P. falciparum and P. yoelii gene pairs total). Genes listed ‘‘sporozoite’’ are highly expressed in salivary gland sporozoites, and their continued
detection may be the result of some sporozoites failing to develop, or may indicate that there is a continued need for the gene product in the liver, potentially because
the product is involved in immune response modulation.
doi:10.1371/journal.pone.0001570.t001
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categories can be seen by following the ‘‘OPI Web Portal’’ link on

the companion website and the representative profile for each

cluster is shown in Figure 1.

One drawback of expression-based function assignment is that

in some cases different processes may share similar expression

patterns due to possible incomplete coverage of lifecycle stages,

inherent noise in the measurements, or the possibility that

transcripts for proteins with relatively different cellular roles may

be controlled by the same transcription factors. For example,

genes involved in both ribosomal protein function and glycolysis

are both transcriptionally induced during the trophozoite, or

feeding stage of parasite growth. We thus also calculated a false

discovery rate (FDR) for each group of genes. Smaller clusters

often have FDR below 50%, indicating its function assignments

are of better quality compared to larger clusters of higher FDR,

therefore only clusters of size #500 were reported (Figure 1, Table

S1, S2). The FDR assigned here tend to be conservative, because

false discovery (FD) genes in some clusters are likely due to

incorrect or incomplete annotation. For example, a group 16

genes enriched for proteins with roles in DNA replication initiation

(GO:0006270) contains ten of the 15 annotated genes (p = 10223.4).

Examination of the list, however, shows that four of the six ‘‘FD

genes’’ are DNA replication licensing factors, proteins needed for

DNA replication initiation.

Figure 1. Temporal expression patterns were constructed from 54 P. falciparum and P. yoelii life cycle samples. A total of 156 statistically
enriched gene clusters identified by OPI analysis illustrates the transcription regulation characteristics of all key biological processes in Plasmodium
species. Their yeast and human orthologs contents are represented by the white-blue heatmap, indicating parasite-specific processes generally found
fewer orthologs in model organisms. The percentage of proteins that form statistically significant within-cluster networks are also white-blue color
coded; most networks occur in blood stage processes. Altogether 33 manuscripts were identified with significant overlap to the clusters, nine of
which [13,27,28,36,42,60,68,69,70] are referenced in the figure. Two clusters were enriched for proteins predicted to have a parasite export signal [68]
and were labeled as ‘‘Exported proteins (sporozoite)’’ and ‘‘Exported proteins (trophozoite)’’—one of which peaks in the trophozoite stage and a
second which peaks in sporozoite stages (see GO:PM15591202_Trp and GO:PM15591202_Spo in Table S1-S2). S & T indicate that the P. falciparum
parasites were synchronized within the asexual cycle by the thermocycling or sorbitol method [9]. The figure does not comprehensively describe all
gene expression patterns contained within the data as there are ,1,026 genes which are not found in any of the groups depicted here because they
do not share expression patterns with a sufficient number of previously characterized genes.
doi:10.1371/journal.pone.0001570.g001
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Validating the data with S. cerevisiae expression patterns
Clusters with a low FDR contain mostly known proteins, and

therefore one can postulate a role for many conserved FD

proteins using annotations and the literature for these clusters.

However, to identify correct predictions for more difficult

clusters, we examined a collection of S. cerevisiae gene expression

data that had been collected on the S98 array and human

expression data derived from 79 tissues collected on the U133A

array [25]. These data were processed in a manner similar to the

Plasmodium gene expression data resulting in 1,046 and 684

statistically significant groups, respectively. For each Plasmodium

gene in an OPI cluster, we looked for the occurrence of its yeast

and human orthologs in the related GO clusters in model

organisms as additional evidence of correct functional assign-

ment. To be conservative, only evidence from the same or child

cross-species GO clusters were automatically compiled, which

resulted in 2,807 gene-GO assignments for 696 malaria genes

(Table S2). These assignments included all co-expression

evidence, i.e., assignments supported by either yeast or human

co-expression analysis, as well as those derived from clusters

identified based on literature mining approach as discussed later.

There are numerous examples of cross-species support for

uncharacterized proteins, in fact, as many as 66% (1,839) of

our functional assignments have not been captured by existing

manual curation. The OPI cluster generated using the replisome

GO group (GO:0030894) contains 22 of 30 members of the

replisome in a group of 109 genes. This cluster contains

PFE0090w and PFF0785w, uncharacterized proteins whose

orthologs are associated with the numerous DNA replication

processes in humans and yeast (e.g. yeast replisome, p = 1029.38,

human alpha DNA polymerase primase complex, p = 1025.31).

Most of the proteins in this group have expression profiles that

peak while DNA replication is occurring in blood, liver and

sexual stages and appear to have roles in cell cycle processes.

Another gene that has strong support for its involvement in

translation is PF08_0019 (yeast ortholog, YMR116C). This gene

is found in a cluster that is strongly enriched for components of

the eukaryotic cytosolic ribosome (GO:0005830) in Plasmodium

species (p = 10237.2) and S. cerevisiae (p,102163.0). Furthermore,

while not annotated as being a component of the ribosome, its

disruption in S. cerevisae leads to defects in translation [26]. Of

course, these data are dependent on having accurate gene models

and protein sequence alignments. If the protein sequence is not

correctly predicted, spurious matches between unrelated genes

may occur. Indeed, based on our work expressing recombinant

proteins we estimate that there may be minor problems with the

gene models for 20% of P. falciparum proteins. These expression

data may assist in correcting and evaluating gene models.

Table 2. Example of a gene expression cluster enriched for genes with roles in RNA polymerase nucleolus I activity (GO:0005730).

P.f. name InGO Yeast name Yeast function Current P.f. annotation

PF11_0305 Y YNL061W Probable RNA m(5)C methyltransferase, essential for
processing and maturation of 27S pre-rRNA and large
ribosomal subunit biogenesis

hypothetical protein

PF11_0358 Y YPR010C RNA polymerase RNA polymerase, beta subunit

PF11_0471 N YCR072C WD-repeat protein involved in ribosome biogenesis hypothetical protein

PF13_0219 N YMR229C1 Protein required for the synthesis of both 18S
and 5.8S rRNA

hypothetical protein

PF07_0121 N YHR170w Protein involved in nuclear export of the large
ribosomal subunit

hypothetical protein

PF10_0200 N YNL132w ribosome biogenesis and assembly hypothetical protein

PF13_0165 N Required for 18S rRNA and 40S ribosomal subunit
production in Schizosaccharomyces pombe [67]

multidomain scavenger receptor
protein PbSR precursor

PF08_0055 Y YNL175w u3 small nucleolar ribonucleoprotein protein, putative hypothetical protein

PF11_0090 N YGR103w NOP7 hypothetical protein

PF14_0734 N hypothetical

PFD1175w N YMR173w Interacts with ribosomal proteins by two hybrid hypothetical protein

PF14_0677 N YOL010W RNA terminal phosphate cyclase-like protein involved
in rRNA processing at sites A0, A1, and A2

RNA 39-Terminal Phosphate Cyclase-like
protein

PFE0465c Y YOR341W RNA polymerase I; RNA polymerase I

PFI1040c N YLR101C1 Dubious ORF hypothetical protein

PFL1345c N YPL086C Subunit of Elongator complex, which is required for
modification of wobble nucleosides in tRNA

hypothetical protein

PF11_0305 Y YNL061W Probable RNA m(5)C methyltransferase, essential for
processing and maturation of 27S pre-rRNA and large
ribosomal subunit biogenesis

hypothetical protein

PF11_0358 Y YPR010C RNA polymerase RNA polymerase, beta subunit

PF11_0471 N YCR072C WD-repeat protein involved in ribosome biogenesis hypothetical protein

For brevity, only P. falciparum genes (15 of 28 total) are shown. The heading ‘‘InGO’’ indicates whether or not the gene was annotated as being part of the GO category
and used to determine cluster boundaries. Yeast genes indicated with a 1 were matched by BLAST searching the P. falciparum or P. yoelii protein against the
Saccharomyces cerevisiae translated genome and selecting the best scoring hit, a necessity as many of these genes are small. YLR101C is antisense to an essential gene
and is considered ‘‘dubious.’’
doi:10.1371/journal.pone.0001570.t002
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Confirmation in human expression patterns
Better support for the functions of proteins was sometimes found

in the human gene expression atlas data compared to the yeast

data. One striking category was the group of genes induced during

gametocytogenesis in Plasmodium spp. (GO:GNF0004). Malaria

parasites form male and female gametes within the mosquito and

Plasmodium spp. male gametes, like their human counterparts, bear

flagella. A number of the genes in this cluster of 480 genes have

human orthologs, but as one might expect, no yeast orthologs. Of

these genes 26 are found in a spermatogenesis-specific human

cluster (483 transcripts, p = 10228.2). The gene PF13_0269 encodes

a putative glycerol kinase and is induced during gametocytogen-

esis. Its human ortholog, GK2, is strongly associated with male

sexual development with a large induction of expression

specifically in human testis-derived tissues. While the co-

expression of characterized genes forming the flagellar axoneme

is expected based on previous work [27], the presence of

uncharacterized P. falciparum proteins, PFL0325w, PF14_0493,

PFL1295w, and PF13_0060, all of which map to uncharacterized

genes in the human spermatogenesis cluster, was not expected. We

also found that some genes in the sexual development cluster have

human counterparts and that they are expressed specifically

during early erythroid development. These included PF14_0774

and PFE0930w, both of which likely play roles in heme

biosynthesis.

Using automated literature mining to create new
biologically relevant groups of genes

Since malaria parasites have not traditionally served as model

experimental systems, genome curation has mostly relied on

transferring GO annotations from other model organisms via

ortholog mapping. Unfortunately, this evidence-based annotation

scheme is not applicable to the many parasite-specific processes

that do not exist in humans or yeast. However, over the past few

decades, the malaria community has investigated many Plasmodi-

um-specific biological processes. In other organisms, high quality

functional annotations have been assembled through automated

and manual literature mining (e.g. the Saccharomyces Genome

Database, http://www.yeastgenome.org). Such an approach has

been adopted for model organisms, but not for Plasmodium spp.

largely because of the low/non-profit nature of malaria research

fails to justify the prohibitive cost. Therefore, we developed an

automated literature-mining tool to identify groups of functionally-

related malaria proteins based on their co-citation in the same

manuscript or related group of publications (Figure 2). First, the

World Wide Web was searched for occurrences of P. falciparum or

P. yoelii locus names. An informatics pipeline was then used to

process co-cited genes (Table S3, S4). Groups of co-cited genes in

one manuscript or several closely related papers comprised over

1,023 virtual GO categories. A comparison in which gene

expression correlation between randomly-associated genes, genes

co-cited in a manuscript, or genes found in an ontology group

indicated that the best correlation was amongst genes that were co-

cited, no doubt because of the inclusion of expert knowledge

(Figure 3). The figure shows that gene pairs within literature

groups are 1,506 times more likely to have a correlation coefficient

above 0.9 compared to a random gene pair. The enrichment

factor for ontology groups are also as high as 62. The clear

differences in the three distributions indicate genes mentioned in

the same publication and genes sharing the same ontology terms

are more likely to be co-regulated than by chance.

The OPI analysis was applied iteratively using this electronic

knowledgebase, leading to another 58 non-redundant, statistically

significant clusters (making 156 OPI clusters total when including

the previous 98 clusters). Thus, groups of genes specific to parasite-

specific processes such as invasion, or sporozoite development

were identified (Figure 1). In many cases this approach produced

better functional enrichments (p-value ranges from 10291.0 to

1028.3) than with the ontology-based method. For example, there

was a high degree of co-expression among genes mentioned in a

review of the process by which the parasite invades new red cells

[28]. When these genes were used as seeds, the resulting OPI

cluster contained 62 of the 81 P. yoelii or P. falciparum invasion

genes mentioned in this review (GO:PM16497586, 134 genes,

p = 10291.0). Thus, there is a high probability that the remaining

72 uncharacterized genes in the cluster are also involved in

invasion. In fact many, of these literature-driven predictions can

be verified by independent protein network analysis as is discussed

later.

The malaria literature database also revealed connections

between proteins studied in the related apicomplexan parasite,

Toxoplasma gondii. During invasion, apicomplexan parasites enter

into a host cell by attaching to and then creating an invagination

in the host cell plasma membrane. Interactions between parasite

and host plasma membranes occur in the form of a ring-shaped

moving junction that begins at the anterior end of the parasite and

then migrates to the posterior end. The proteins are initially

localized to the rhoptry neck, a subcellular organelle located at the

apical end of the parasite. There were seven proteins, four from P.

yoelii and three from P. falciparum, discovered in T. gondii that are

believed to be involved in this process. All seven were found in a

group of seven genes (GO:PM16244709), most of which are

unannotated in P. falciparum [29].

Figure 2. An automatic pipeline for malaria literature mining.
Approach A, full text search by literature search engines: A1) All P.
falciparum and P. yoelii locus names were downloaded from PlasmoDB
and searched against Google Scholar and SCIRUS one at a time; A2) URL
hits were then mapped to PubMed entries. Approach B, NCBI database
mining: B1) Mapping between GenBank sequence entries and PubMed
entries were systematically retrieved from NCBI for four Plasmodium
species; B2) Sequences were mapped to malaria locus names by BLAST
alignment. The pipeline resulted in 6,428 functional associations
between 3,262 malaria proteins and 1,278 PubMed papers.
doi:10.1371/journal.pone.0001570.g002
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Confirmation in genetic diversity data
Previous work has shown that genes with known roles in

immune evasion and host parasite interactions or which are

surface-exposed have high rates of genetic variability while genes

with known housekeeping function across are more conserved

within and across Plasmodium species [7,30,31,32,33]. We also

found this to be true for uncharacterized genes that are co-

expressed with such characterized genes. The invasion group

mentioned above (GO:PM16497586) contains some of the most

polymorphic genes in the P. falciparum genome [32] including the

merozoite surface protein 1 (PFI1475w) in which hundreds of

nonsynonymous SNPs have been identified [31]. Inspection (see

http://www.plasmodb.org and [31,33]) reveals that most charac-

terized genes (with a few exceptions) in the cluster are very

polymorphic as are the uncharacterized ones. Of the unchar-

acterized proteins PFL2505c has at least 13 different nonsynon-

ymous mutations across 12 P. falciparum strains and P. reichenowi

relative to the sequenced strain, 3D7, PF14_0495 has 35,

PF08_0035 has 16 and PFF0675c, a myosin-like protein has at

least 24. In contrast, the uncharacterized proteins that are

associated with genes having a known role RNA polymerase

nucleolus I activity (GO:0005730, Table 2) are overwhelmingly

very conserved: PF11_0471 has only one nonsynonymous

mutation, PF14_0734 has one, PF08_0055 has one, PF07_0121

has one, PF11_0305 has one, PF11_0090 has four and PF10_0200

has five. This is also true for many of the other groups containing

large numbers of housekeeping genes such as DNA replication

clusters. Thus the genetic diversity data provides additional

evidence for evaluation of possible functions.

Independent testing using P. knowlesi
To empirically test our predictions we identified P. knowlesi

orthologs of genes in the literature-derived invasion cluster. P.

knowlesi is a simian model for human malaria and is closely related

to P. vivax. P. knowlesi blood stage parasites were synchronized

within the erythrocytic cycle using two independent methods and

RNA was collected and hybridized to a P. knowlesi microarray. We

expected that if the predictions from the P. yoelii and P. falciparum

data were valid, we would also see upregulation of uncharacterized

genes in the schizonts in P. knowlesi. 67 predictions were mapped to

41 unique P. knowlesi orthologs available on the array, almost all

showed substantial upregulation (.56) in the late schizont stage

(Figure 4). The P. knowlesi ortholog of PFD1130w showed a 100-

Figure 3. Probability density distributions of gene expression correlation coefficients. Gene pairs that either share the same ontology
term (red) or are co-cited in a paper (green) are more likely to be co-expressed than randomly paired genes (blue).
doi:10.1371/journal.pone.0001570.g003

Figure 4. Late schizont upregulation of P. knowlesi genes that
are orthologs of uncharacterized genes in P. falciparum
predicted to be involved in invasion.
doi:10.1371/journal.pone.0001570.g004
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fold upregulation in the late schizont relative to the trophozoite

stage. These data show that our predictions are likely applicable to

other Plasmodium species as well as to other apicomplexan

parasites.

Deriving support from two-hybrid interaction data
Further support for expression-based function predictions were

obtained from two-hybrid data from a large scale study of

interactions between erythrocytic stage proteins [34]. It had

previously been noted that there was enrichment for two-hybrid

interactions amongst genes expressed late in the erythrocytic cycle

[34]. Our new data and analysis method provided additional

support for the likely significance of the two hybrid interactions in

57 clusters (p#0.01) (Figure 1, Table S1). As expected, there was

an abundance of interactions in the invasion cluster mentioned

previously. Two hybrid interaction data were available for 35 of

the 71 P. falciparum genes in the invasion cluster; 31 of these form

83 direct or indirect interactions pairs among themselves

(Figure 5A). The probability of observing this enrichment by

chance is ,1026. A group containing many of the genes in the

cellular carbohydrate catabolism pathway (GO:0044275) also had

more two-hybrid interactions than could be expected by chance

alone (45 P. f. genes by expression, 29 proteins with two hybrid

data, ten of which interact with other members of the group

(p = 0.003)). This group included MAL8P1.17, a protein disulfide

isomerase that interacts with enolase (PF10_0155), glyceraldehyde-

3-phosphate dehydrogenase (PF14_0598) and phosphoglycerate

kinase (PFI1105w) (Figure 5B). The cluster of 99 P. falciparum genes

enriched for structural constituents of the ribosome had 54 genes

with protein-protein interaction data within the group and 35 of

these have interactions with other members of the group

(p = 0.003) (Figure 5C). In a fourth example, we considered an

expression cluster of 100 genes, several with RNA methyltrans-

ferase activity (Figure 5D). The combined two-hybrid and

expression data indicated that most of the proteins in this group

were very likely involved in RNA processing. For example, the

Figure 5. Two-hybrid interaction networks among genes that are co-expressed. A. Invasion; B. Cellular carbohydrate catabolism; C.
Cytosolic ribosome; D. RNA methyltransferase activity.
doi:10.1371/journal.pone.0001570.g005
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uncharacterized gene PF07_0121 had a yeast ortholog factor

required for a late assembly step of the 60S subunit; PF11_0305,

another uncharacterized protein, had a yeast ortholog which is a

constituent of the 66S pre-ribosome particle; and PF10_0200 has a

yeast ortholog, YNL132w (See Table 2), which also interacts with

many nucleolus ribosome assembly proteins (http://www.

yeastgenome.org/, [35]). MAL13P1.14 encodes an ATP-depen-

dent DEAD box helicase and interacts with four other members of

the expression set, including PFL0815w (a DNA-binding chaper-

one), and two uncharacterized proteins, PF07_0106 and

PFA0410w. The yeast orthologs of both MAL13P1.14 and

PFL0815w are co-expressed along with other RNA modification

enzymes and the yeast ortholog for MAL13P1.14 is the U3

snoRNP protein, a nucleolar protein involved in mRNA

processing. Although many of the proteins were uncharacterized,

this is probably because many of the genes were also uncharacter-

ized in yeast or humans. These genes would be less likely to be

good drug targets due to their cross-species conservation. The two-

hybrid data includes few proteins that are expressed in the sexual or

insect stages because the library was derived from blood stage

material. Thus, little two-hybrid support was found for genes that

have roles in sexual development, sporozoite function or other

processes occurring in the non-erythrocytic stages (Figure 1). In all,

protein-protein interaction analysis provided support for 970 OPI

function assignments, 78% of which belong to 229 P. falciparum

proteins not yet captured by existing manual annotations. Together

with the previous cross-species co-expression evidence, we

identified a total of 5,471 supported function predictions, including

new functional characterizations for 926 malaria genes (Table S2).

Upregulation of type II fatty acid biosynthesis in liver
stages

One other cluster of particular interest to those interested in

drug development contained a number of the genes, which were

previously mentioned as upregulated in liver stage parasites

relative to blood stages some of which were mentioned in a

manuscript [36] describing type II fatty acid biosynthesis

(GO:PM15315475, 19 genes, p = 10217.7). Most of these genes in

these clusters are expressed at very low levels in P. falciparum and P.

yoelii blood stages but increase substantially in ookinetes,

gametocytes and in particular in liver stages (Figure 1). The group

includes PF11_0256, the pyruvate dehydrogenase alpha subunit 1;

PF14_0441, the pyruvate dehydrogenase E1 beta subunit;

PF08_0066, dihydrolipoamide dehydrogenase; PF10_0407, dihy-

drolipoamide acetyltransferase and PFF0730c, enoyl-acyl carrier

reductase (ENR, the presumed target of the Mycobacterium

tuberculosis drug, isoniazid [37] and the herbicide, triclosan) as

well as their P. yoelii orthologs. All of these proteins have an

apicoplast targeting signal and most are involved in fatty acid

biosynthesis. In contrast to replication and schizogony in blood

stages where a single parasite gives rise to 18 progeny, in the liver a

single parasite replicates within the hepatocyte to form thousands

of progeny. It is likely that there are additional needs for fatty acids

that can be used to produce the membranes that will eventually

surround each parasite for the thousands of new nuclei that are

formed. These data suggest that fatty acid biosynthesis inhibitors

may be useful against liver stage parasites. The relatively low levels

of PfENR transcript in blood stage parasites relative to liver and

sexual stage parasites is somewhat surprising given that inhibitors

of the PfENR, such as triclosan, can cure blood stage infections in

rodent parasites [38]. However, triclosan is slightly more active

against parasites than against the enzyme suggesting possible off-

targets effects. This may indicate that triclosan could be a more

potent inhibitor of liver stage development. Given the effectiveness

of the irradiated sporozoite vaccine in inducing immunity, it seems

likely that drugs that cure early liver stage infections could also

result in increased immunity. Furthermore, with the exception of

primaquine, there are few compounds that can clear liver stage

malaria infections.

It has been proposed that the protein network structure in P.

falciparum differs from those found in other organisms [39] based

on analysis of protein-protein interactions [34]. Although only

1,682 P. falciparum proteins have orthologs in S. cerevisiae or

humans, proteins with orthologs are not unexpectedly concen-

trated in functional clusters such as mitochondrial matrix,

translation, glucose metabolism, where nearly all the proteins

have S. cerevisiae or human orthologs (Figure 1). In the group

enriched for ribonucleoprotein complex (GO:0030529), 53 of the

57 genes have yeast or human orthologs. In contrast to those

having to do with metabolism, genes that generally lack any type

of ortholog populate clusters that contain genes involved in

parasitic function such invasion or gliding motility [40]. One such

cluster was enriched for genes localized to the rhoptry (combined

literature, GO:PM15049814). This group contained all 11 rhoptry

genes in a group of 20 (p = 10228.6). Of these 20, none had a yeast

or human orthologs. These data suggest that any small molecule

targeting proteins in this cluster would be unlikely to have off-

target effects. In another interesting example, a parasite-specific

cluster of 65 genes contains 21 of the 30 genes that were described

as sporozoite-specific (p = 10234.8) [41]. Of the twelve proteins in

the group with homologs in yeast or in humans, only succinate

dehydrogenase and NAD(P)H-dependent glutamate synthase

have clear cellular roles. Using annotation from a previously

published analysis of expression in P. berghei [42], a cluster

(GO:PM16908078) that contained 19 of 31 genes mentioned in

the previous work was identified (61 genes, p = 10230.8). Only 11

genes had yeast orthologs and in yeast the roles were relatively

uncharacterized as well. While one possibility is that these

uncharacterized genes are involved in immune evasion, or

speciation, most of the genes in this study are conserved across

malaria parasite species and most also have homologs in related

apicomplexan parasites.

Discussion

Existing studies have provided examples where gene functions

can be correctly predicted using a ‘‘guilt-by-association’’ co-

expression analysis, or through protein-protein interaction net-

work analysis. Compared to co-expression analysis within a single

species, identification of evolutionarily conserved cross-species co-

expression patterns provides reliable functional information

complementary to sequence information. Multiple species data is

also much less likely to be affected by statistical randomness in the

dataset or by the complexity of transcription programs [43,44,45].

Although cross-species expression analysis can also be applied to a

few microarray experiments or sample groups [46,47], a large

panel of diversified biological conditions such as those given here

provides much higher resolution and offers a level of detail that

cannot be observed in smaller datasets. Since orthologous gene

mapping is more likely to be a many-to-many relationship instead

of one-to-one mapping, we purposefully avoided using ‘‘meta-

genes’’ [45]. Instead both P. falciparum and P. yoelii genes were

retained in our expression matrix and their orthologous relation-

ships were evaluated through unbiased statistical permutation

tests. New methods have also been proposed to exploit protein-

protein interaction data for functional predictions [48]. Here we

use a two-hybrid data set to evaluate the statistical significance of

the co-expression clusters, based on p-values estimated from simple
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node and edge counting during sampling simulations. This

straightforward approach is unlikely to be controversial compared

to some existing methods [49].

The comprehensive data collection presented here shows that

the function of many uncharacterized proteins encoded by malaria

parasites can likely be predicted based on expression patterns. To

illustrate the validity of the approach we have discussed many well-

characterized processes involving genes with known roles in

human, parasites and yeast, as well as others where the function

can be easily inferred. However, based on the accuracy of these

predictions for these well-studied cellular processes such as

ribosome biogenesis, it is clear that the same analysis can predict

which uncharacterized proteins that are likely to have roles in less

understood processes such as sporozoite function, gliding motility,

or ookinete function. For example, it is very likely that the RNA

binding protein PFD0825c is involved in early liver stage function

given that its expression pattern mimics pbs36, a P. berghei protein

critical for early liver stage development [50]. Similarly, we predict

that the protein encoded by the hypothetical gene, PFI0210c, is

likely involved in late stage liver development and possibly in type

II fatty acid biosynthesis. The comprehensiveness of the data in

this study enhances the specificity of the predictions over previous

studies. While these remain only predictions, a significant portion

has additional co-expression support from their yeast and human

counterparts, or from independent protein network studies. It is

our hope that they will serve as a basis for evaluating other types of

systematic data that are produced in large-scale experiments, such

as mass-spectrometric analysis of protein complexes and provide a

complement to orthology mapping from model organisms.

Implicit in these data is the assumption that genes that are

conserved across species will be playing similar cellular roles in

different malaria parasite species. Our data supports this

assumption many times over, thus, if a gene is upregulated in P.

yoelii liver stages, it seems likely that its P. falciparum ortholog will

also be upregulated in liver stages. These data also show 549 of the

uncharacterized proteins in the malaria genome participate in

conserved processes that are found in other eukaryotes. Knowing

whether an uncharacterized protein is likely a member of the small

nucleolar complex or plays a role in pathogenesis will aid

researchers in making better informed decisions. These data will

also be useful for predicting the functions of genes in many related

apicomplexan parasites, such as Toxoplasma, Babesia or Cryptospo-

ridium. Finally, it may be that these cross-species data will be useful

for understanding the function of uncharacterized genes in S.

cerevisiae and even in humans.

Materials and Methods

Isolation of P. yoelii gametocytes
A protocol similar to that previously described [51] was used to

isolate gametocytes. Three mice (strain: BALB/cByJ) were injected

intraperitoneally with 0.1 ml of a 25 mg/ml stock solution of

phenylhydrazine (phz) to increase reticulocytosis in the mice and

increase parasitemia. The phz-treated mice were then injected

with approximately 107 P. yoelii infected erythrocytes (obtained

from MR4 : P. yoelii 17XNL (1.1)). When the parasitemia of the

mice reached , 40% (after about 4 days), they were treated with

sulfadiazine (15 mg/L) in their drinking water. This treatment kills

asexual parasites and leaves gametocytes unaffected. The treat-

ment was carried out for two days and mice were heart bled for the

collection of the gametocytes. The blood from the mice was

diluted in PBS and the leucocytes were removed by passing the

blood suspension through a Plasmodipur filter (Euro-diagnostica).

The gametocytes were purified from 49% Nycodenz/PBS-solution

(v/v) gradient interfaces. The gametocytes found at the interface

were collected and pelleted before RNA was extracted.

Isolation of P. yoelii blood stages
Blood stages were isolated as previously described [52]. For

schizonts blood from three infected mice (50% parasitemia) was

collected and placed in complete culture medium (RPMI 1640

medium containing heat-inactivated fetal calf serum (20%),

neomycin (50 IU/ml) and HEPES (25mM) containing 40 IU of

heparin). The blood was incubated for 12 hours at 37uC and the

schizonts were collected from the 60% Nycodenz/PBS gradient

interface. These schizonts were pelleted for RNA extraction.

Purification and preparation of total RNA from midgut
and salivary gland sporozoites

The midgut and salivary gland sporozoites were obtained from

infected female Anopheles mosquitoes on days 9 and 14 respectively

post infection. The midgut and salivary gland tissues were

disrupted by hand grinding and the sporozoites were isolated

and counted in a hemocytometer. Sporozoite populations were

purified as described previously [53]. In brief, 3 g of Diethylami-

noethyl Cellulose (DE 52, Whatman) was incubated in an

equilibration buffer containing 8.8 g of Tris-HCl, 5 g of

NaH2PO4H2O, 5 g of NaCl, 18 g of glucose per liter, adjusted

to pH 8.2. The preswollen DE-52 was transferred into 10 ml

plastic syringe plugged with glass wool at the bottom. Ten million

sporozoites were mixed with equal volume of 35% BSA and

incubated on ice for 30 min. Following incubation, the sporozoites

were passed through the DE-52 column. The sporozoites were

eluted in 10 ml of equilibration buffer and collected as 500 ml

fractions. The fractions having highest recovery of sporozoites

were pooled and counted. The purification yielded 2.5–3.0 million

highly purified sporozoites from each population. The sporozoites

were washed twice with ice-cold PBS prior to RNA isolation.

Total RNA was isolated from sporozoites using micro to midi

total RNA isolation kit (Invitrogen) following manufacturer’s

instructions. The yields of RNA varied between 20–30 ng for each

sample.

Isolation of total RNA from P. yoelii infected liver
Balb/c mice were infected with 6 million P. yoelii sporozoites by

an intravenous route. At the end of 36 hours and 40 hours post

infection the mice were anesthetized and the livers were dissected

out. The livers were washed two times in ice-cold PBS buffer

before proceeding with the RNA extraction.

All reagents used for RNA isolation were procured from Sigma.

Each liver sample was homogenized in 4 ml of denaturation buffer

containing 4 M guanidium thiocyanate, 25 mM sodium citrate

pH 7, 0.5% N-lauroyl sarcosine and 0.1M b-mercaptoethanol.

Total RNA was extracted from six hundred microliter aliquots of

each liver homogenate using the phenol chloroform method. In

brief, 60 ml of 2 M sodium acetate pH 4 was added to 600 ml of

liver homogenate followed by addition of 600 ml of buffer

saturated phenol and 150 ml of chloroform-isoamyl alcohol. The

samples were incubated on ice for 15 min and centrifuged at

10,0006g for 20 min at 4uC. Following centrifugation, 400 ml of

the upper aqueous phase was transferred into a clean microfuge

tube and RNA was precipitated by adding equal volumes of ice

cold isopropanol. The samples were incubated at 220uC for one

hour and centrifuged at 10,0006g for 15 min. The RNA pellet

was washed once with cold 75% ethanol, air-dried and solubilized

in 150 ml of RNAse free water. The concentration and purity of

RNA were estimated spectrophotometrically.
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cDNA subtraction of liver stages
Subtraction of cDNA was performed as previously described

[54]. Briefly the subtractor (uninfected mouse liver) mRNA was

isolated from the total RNA using magnetic Dynabeads Oligo

(dT)25 (Invitrogen) and directly converted to the complementary

first strand cDNA, leading to immobilized cDNA on Dynabeads

(DB) after melting away the mRNA. The target (mouse liver

infected with P. yoelii) mRNA was isolated from total RNA using

DB. The target mRNA was hybridized to the immobilized

subtractor cDNA at 65–68uC for 20–24 hours and the common

transcripts were removed by collecting the beads with cDNA/

mRNA hybrids. Bead-coupled cDNA was regenerated and two

more rounds of hybridization were performed using the same

subtractor cDNA. After the final hybridization step, the superna-

tant of DB was enriched for target-specific mRNAs (P. yoelii liver

stages). These transcripts were then captured with fresh DB and

double amplified for microarray analysis.

Isolation of P. falciparum zygotes
Mature gametocytes of P. falciparum NF54 isolate cultured in vitro

[55]. Gametogenesis was induced by incubating mature gameto-

cytes in exflagellation-inducing medium [56] at RT for 30 min.

Zygote formation was achieved by incubation of emerged gametes

in the medium for 4 hours at RT. Zygotes and gametes were

enriched by centrifugation over a discontinuous 6/11/16%

Nycodenz gradient and harvested from the 6–11% interface.

Zygotes and gametes were washed 3 times with incomplete

medium and counted in a hemocytometer. Smears were prepared,

Giemsa-stained, and examined under light microscopy.

Isolation of P. falciparum ookinetes
Mature gametocytes from an 18 day old gametocyte culture were

diluted 1:10 with complete ookinete medium [57] supplemented with

15% FBS and incubated for 24 hours at RT with rocking. Ookinetes

were purified by treatment with Lympholyte (Cedarlane Lab,

Ontario, Canada), followed by centrifugation over a discontinuous

35/50/65/80% Percoll gradient [58]. Ookinetes were collected from

the 35–50% interface and washed 3 times with incomplete medium,

then counted in a hemocytometer. Smears were prepared, Giemsa-

stained, and examined under light microscopy.

Collection of P. knowlesi erythocytic expression data
P. knowlesi strain H1 was synchronized by two different methods,

Percoll 60% [21] and Sorbitol synchronization [59]. Seven time

points were collected every 4 hours for 28 hours throughout the P.

knowlesi intra-erythrocytic cell cycle. For each time point, RNA was

prepared from one 25ml culture flask with an average of 2%

parasitemia and 4% hematocrit. To purify tightly synchronous

schizont stages, cells were synchronized at 8 hour intervals by

Percoll gradient separation for two consecutive cycles. The first

time point was collected after 4 hours of incubation following the

second synchronization cycle. For sorbitol synchronization, the

cells were pelleted and resuspended in 5% sorbitol for 10 min,

then washed and resuspended in complete RPMI media. Two

successive cycles of synchronization resulted in tightly synchronous

parasites. The first time point was collected after 4 hours of

incubation following the second sorbitol treatment. For each time

point, the cells were pelleted and resuspended in 5 volumes of

Trizol. RNA was purified by Phenol extraction and purified using

Qiagen RNeasy kit. RNA was amplified using the Affymetrix

Genechip IVT labeling kit. 20 mg of amplified cRNA was

hybridized to the Pftiling microarray for 14 hours. The gene chips

were washed and scanned using standard Affymetrix protocols.

RNA extraction and preparation of cRNA hybridizations
on array

RNA extraction was performed as previously described [9]. Eight

micrograms of total RNA was used for cDNA synthesis. An oligo dT

primer containing a phage T7 promoter at its 59 end was used to

prime the cDNA synthesis reaction. A second strand of cDNA was

then synthesized and used as a template for in vitro transcription in

the presence of biotinylated ribonucleotide (Enzo). The labeled

cRNA was then fragmented, hybridized to the array, and stained

with a streptavidin phycoerythrin conjugate. Hybridizations were

carried out with 15 mg of fragmented cRNA at 45uC for 16 hours,

then the hybridization solution was removed and the arrays were

stained and washed following Affymetrix protocols. Arrays were

scanned with an emission wavelength of 560 nm at 3 mm resolution

using a confocal scanner (Affymetrix), and the signal intensity for

each sequence feature on the array was determined using the 70th

percentile method in Microarray Suite 5 (Affymetrix).

Double amplification methods
P. yoelii sporozoite RNA (initial concentration of 100ng) was

subjected to a double amplification step, using a modified

Eberwine protocol, to obtain eight micrograms of RNA. After

the first cDNA synthesis, using an oligo dT primer containing a

phage T7 promoter at its 59 end which was utilized to prime the

cDNA synthesis reaction, we used T7-in vitro transcription

(Ambion MEGAscript Kit) following the manufacturer’s protocol.

The labeled cRNA was then fragmented, hybridized to the array,

and stained with a streptavidin phycoerythrin conjugate. Hybrid-

izations were carried out with 15 mg of fragmented cRNA, at 45uC
for 16 hours, then the hybridization solution was removed and the

arrays were stained and washed following the Affymetrix

protocols. Arrays were scanned with an emission wavelength of

560nm at 3 mm resolution using a confocal scanner (Affymetrix),

and the signal intensity for each sequence feature on the array was

determined using the 70th percentile.

Malaria gene expression datasets
The TSRI Malaria custom array (scrMalaria) contains probes for

5,159 P. falciparum genes and 5,521 P. yoelii genes. The P. yoelii

probes were designed to hybridize to predicted genes from P. yoelii

17XNL line clone 1.1 genome sequence [5]. The array was used

previously to systematically profile the P. falciparum life cycle.

Previous studies included the hybridization of 38 P. falciparum

samples, including erythrocyte stages, detailed gametocyte time

courses, and one sporozoite stage [9,60]. This study adds 2 P.

falciparum samples, including zygote and ookinete stages, and 14 P.

yoelii samples, including three blood stages (one schizont and two

mixed stages), four gametocyte samples, five sporozoite and two

liver stage (36 and 40 hours post infection). As with the P. falciparum

design, there are a variable number of probes per gene and thus

higher confidence data is obtained for longer genes. All array

measurements were processed using match-only integral distribu-

tion (MOID) algorithm as described previously [60]. A quantile

normalization method [61] was then applied to the P. yoelii and P.

falciparum data independently, in order to minimize the variation

that resulted from different hybridizations (collected over a five year

period) having different dynamic ranges. Genes with six or more

probes, maximum expression level of 50 units in one sample, a fold

change greater than two within a dataset were considered non-

trivial for correlation calculations. This includes 3,690 P. falciparum

genes and 2,902 P. yoelii genes. All malaria expression data

are available through our web site (http://carrier.gnf.org/

publications/Py) and PlasmoDB (http://www.plasmoDB.org).
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Yeast gene expression datasets
The yeast expression dataset consists of 74 samples accumulated

in GNF’s in-house yeast gene chip database, many of which have

not been published before. The set includes data from 62 yeast cell

cultures that had been treated with small molecules (latrunculin,

itraconazole, ketoconazole, etc.), exposed to different growth

conditions (UV treatment, heat shock, cold shock, low salt, high

salt media) [62,63], or synchronized within the cell cycle (sampled

every 10 min). All samples were profiled using the Affymetrix S98

array that consists of 6,135 yeast genes. All array measurements

were processed and normalized using Affymetrix MAS4 algo-

rithm, 4,515 unique gene entries with expression fold change

greater than 1.5 and standard deviation greater than 40

were retained. This dataset, as well as detailed sample descrip-

ftions, is available through our web site (http://carrier.gnf.org/

publications/Py).

Human gene expression datasets
The human tissue expression dataset is distributed by GNF’s

SymAtlas web site (http://symatlas.gnf.org) [25]. This dataset

consists of 79 human tissues in duplicates, measured using

Affymetrix U133A array that consists of 22,215 probe sets. All

array measurements were processed and normalized using

Affymetrix MAS5 algorithm; 13,499 unique gene entries with

expression level both above noise and a fold change greater than

1.5 across all tissues were retained.

Ortholog pairing and malaria expression extrapolation
Orthologous groups of proteins defined by OrthoMCL database

(version 2.0) were used in this study [64]. OrthoMCL maps

proteins across multiple species, including P. falciparum, P. yoelii, P.

berghei, P. chabaudi, S. cerevisiae, H. sapiens, etc. Within each ortholog

group, all P. falciparum protein sequences and P. yoelii protein

sequences pairs are first pair-wise aligned using BLAST. Then for

a given P. falciparum protein, the P. yoelii ortholog that can be found

in the malaria array ($6 probes) and provides the best alignment

score is selected as the best match. The same matching process was

applied to identify the best P. falciparum match for each P. yoelii

protein. We also took into account 3,969 best reciprocal BLAST

match pairs between the two species identified using E-

value#1022, as well as additional sequence alignment pairs of

E-value#1026. Best orthologs were assigned to 4,469 P. falciparum

genes and 5,258 P. yoelii genes.

We aimed to construct a mostly complete malaria expression

matrix, i.e., the rows comprise all the differentially expressed P.

falciparum and P. yoelii genes, and the columns are the combination

of all parasite life stages profiled in either species (54 samples in

total). For each P. falciparum gene, its expression values in the 14 P.

yoelii samples were extrapolated by copying the expression vector

of its P. yoelii best ortholog match. For each P. yoelii gene, its

expression values in the 40 P. falciparum samples were copied from

the expression vector of its P. falciparum best ortholog match. The

expression extrapolation process resulted in a final matrix of 6,592

malaria genes across all 54 parasite samples. Notice that a

reciprocal best match protein pairs will lead to two identical

expression vectors, therefore such gene expression dependency will

need to be carefully modeled in the OPI permutation testing

described later.

Derivation of P. yoelii Gene Ontology database
Gene annotations for P. falciparum were downloaded from Gene

Ontology consortium (http://www.geneontology.org). Additional

annotations were downloaded from PlasmoDB (http://www.

plasmodb.org) and combined. GO assignments for P. yoelii genes

were derived by inheriting all GO terms assigned to its P. falciparum

orthologs, which were defined according to OrthoMCL database.

As the result 3,763 P. yoelii genes have assignments in 2,889 GO

categories.

Protein network analysis
Systematic protein-protein interaction dataset for P. falciparum

was made available by a previous study [34]. Protein network

analysis described below was applied to the P. falciparum proteins

within each of the 156 OPI clusters. For any given cluster of NT P.

f. proteins, the subset of entries that form either direct or indirect

protein-protein interaction pairs among themselves was identified.

An indirect interaction was defined as two proteins that interact

and only interact via at least a third protein, similar to a previous

network study [39]. We focused on two characteristics of each

resultant network, i.e., its node count NN and edge count NE, where

each node uniquely represents a protein and each edge represents

a unique interaction pair. We then randomly sampled NT number

of proteins from the total collection of 3,691 P. f. proteins

comprising the expression matrix described above, and counted

the nodes and edges in the corresponding resultant network. Such

simulations were repeated at least 1000 times, and the percentage

of runs that led to either a higher node count than NN or a higher

edge count than NE gave an unbiased estimation of the p-value.

Protein networks with a p-value#0.01 are considered to show

significant connectivity (Figure 1, Table S1). For such cases,

protein network data provide an additional piece of evidence for

the correct functional assignment based on expression clustering

(Table S2). All statistically significant protein networks were

plotted graphically and made available on our web site, together

with the human and yeast orthologous evidences.

An automatic pipeline for malaria literature mining
To collect malaria functional annotations from existing

literatures, we took two complementary approaches. In approach

A, P. falciparum and P. yoelii locus names downloaded from

PlasmoDB were used as search terms one at a time through

Google Scholar beta (http://scholar.google.com) and SCIRUS

(http://www.scirus.com) search engines. Gene/protein names or

description keywords were not used in our searches, because of

their high number of false positives. Not limited by the title and

abstract stored in the NCBI PubMed database, both Google

Scholar and SCIRUS index the full literature text, and therefore

are expected to provide complementary annotations to what

already exists in NCBI. Google Scholar database mostly consists of

manuscripts accessible publicly via World Wide Web, while

SCIRUS collects additional non-publicly accessible literature;

including some essential Elsevier journals, which frequently

publish research results from malaria scientific community. Each

search returned a list of URLs (we kept a maximum 500) and some

association summary data such as paper title, journal name,

volume, and start page, etc. As multiple URLs could refer to the

same publication, we mapped every URL hit by an automatic

query to the PubMed database and translated the URL into a

PubMed identifier whenever possible. In this way, proteins co-

cited in the same paper were discovered even though they were

obtained from independent searches. Developing efficient search

robots in this approach was difficult, mainly due to the lack of

programming interface from both search engines. We therefore

had to limit our searches to P. falciparum and P. yoelii only. Searches

with P. falciparum systematic names resulted in 337 papers and

searches with the P. yoelii names only identified an additional 15
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new papers, therefore, we anticipate relatively few papers exist that

cite P. berghei and P. chabaudi genes by their locus names.

When publications are related to genome sequencing projects,

reports of new technology development for malaria systems

biology, or other studies irrelevant to specific parasite functional

characterization, they tend to contain large number of locus

identifiers but are not interesting to our study. We manually

filtered out 26 such papers. In total, we identified 2,605

associations between 1,509 malaria proteins and 326 PubMed

papers through approach A.

In Approach B, we first downloaded all GenBank sequences for

P. falciparum, P. yoelii, P. berghei and P. chabaudi that have

associations with PubMed entries. The association can be either

a direct link or sometimes an indirect link derived through its link

first to an NCBI Gene database entry then to PubMed database

entries. A unique GenBank gi number identifies each sequence.

Genomic sequence entries such as chromosome fragments or

genome shotgun sequences were filtered out. Extremely long or

short sequences were also discarded, so that only nucleotide

sequences of length between nine and 60,000 bases and proteins

sequences with lengths between three and 20,000 amino acids

were retained. All the data were retrieved through NCBI eUtils

programming interface. We then downloaded the complete

transcriptome and proteome sequences of all four Plasmodium

species from PlasmoDB, where sequences are identified by their

locus names. Next, a BLAST search was conducted for each gi

sequence against the corresponding transcriptome or proteome

within the same species with an E-value threshold of 1026. Given

either a protein sequence alignment of at least 90% identity over

50 amino acids or a nucleotide sequence alignment of minimal

95% identity over 100 nucleotide bases, a gi number was mapped

to a locus name whenever possible. Once matched, all PubMed

entries associated with the gi number were automatically

transferred to the locus entry. After filtering out 18 less relevant

publications, we identified 3,901 associations between 2,350

malaria proteins and 1,006 PubMed papers through this

approach.

Combining both approaches into an automatic literature-

mining pipeline resulted in a total of 6,428 associations between

3,262 proteins/genes and 1,278 papers. The complete literature

mining results are available in a searchable database on our

website http://carrier.gnf.org/publications/Py. (follow the ‘‘liter-

ature database’’ link, also Table S3, S4).

Derivation of literature-based malaria annotations
Our literature-mining pipeline produced custom annotations in

the form of malaria protein and PubMed paper associations. For a

given paper, we expand the malaria protein list by including all

orthologs across four Plasmodium species as defined by

OrthoMCL database. Each paper was treated as its own virtual

GO category and all the malaria proteins associated were

considered as members of that category. Gene Ontology database

consists of three branches, i.e., biological process, molecular

function, and cellular component. These literature-derived virtual

GO categories did not undergo the same curation process as real

GO categories and therefore best kept under a separate

‘‘literature’’ branch to avoid misinterpretation. Otherwise, these

virtual GO categories were treated the same by the later OPI

clustering algorithm. We also carried out limited manual curation

in order to merge proteins of some closely related papers into a

newer virtual category. The rationale is such combination typically

produces more complete annotation categories and should lead to

better sensitivity in the clustering analysis.

Annotation-driven OPI clustering analyses
OPI is a supervised clustering algorithm that produces the

highest statistical enrichment for the known genes in an optimal

co-expression cluster of a given GO category. The details of OPI

algorithm, its comparison with other clustering algorithms, as well

as its applications to the P. falciparum global gene expression

analysis were described previously [8,60]. One may also find many

applications of a similar supervised clustering algorithm called

Gene Set Enrichment Analysis (GSEA) [65], however, OPI is

more suitable for function prediction of uncharacterized genes. In

this study, clustering analysis was independently applied to the

three gene expression datasets mentioned above. First, genes that

did not show significant expression variation were filtered out.

Then, the program iterates over all gene ontology groups

containing a minimum of two known genes in the expression

data matrix; this corresponds to 2,708 GO groups (including our

virtual literature-derived categories) for the malaria dataset, 2,210

GO groups for the yeast dataset, and 4,428 GO groups for the

human tissue dataset.

Expression vectors of genes in the expression matrix are not

independent and the various categories in the GO tree are also

correlated, therefore the optimal hypergeometric p-value produced

by OPI algorithm will need to be double checked by randomly

generated dataset so that dependency are modeled correctly. For

yeast and human dataset, randomization testing was carried out

straightforwardly by shuffling gene labels in the expression matrix

as described previously [60]. Permutation schema for malaria

dataset, however, requires extra steps. This is because the

expression extrapolation step made use of ortholog mapping

information and introduced additional coupling between expres-

sion vectors. P. falciparum and P. yoelii genes were first randomly

relabeled among themselves, respectively. The whole expression

extrapolation process used to produce the original combined

malaria dataset was then repeated, so that the ortholog correlation

is retained in the resultant randomized datasets as well. For each

dataset we repeated OPI analyses on 100 independently

randomized expression matrix. An original OPI cluster is

considered truly statistical significant only if equal or better p-

value can be achieved by no more than 5% of the permutation

runs. The percentage of genes not already annotated under the

given GO category in an OPI cluster estimates the false discovery

rate (FDR) of co-expression-based function prediction. OPI

clusters with size greater than 500 are often associated with

relatively high false discovery rate and are unsuitable for the sole

purpose of gene function prediction; these clusters were filtered out

despite the fact that they may still be justified by pure statistical

significance. The final results of the OPI analyses included 684

clusters for yeast and 1,047 clusters for human. The list of known

genes in different ontology groups can be sometimes identical or

very similar, resulting in closely related OPI clusters. To ease the

analysis, we only kept a total of 156 clusters for malaria dataset,

where such redundancy has been removed. Among them, 58

clusters were derived from literature-based custom GO groups. If

a biological process of the parasite is conserved in yeast or human,

cross-species comparison of related OPI clusters enables us to find

additional evidence to support newly predicted Plasmodium genes

functions. All clusters for the three datasets and ortholog evidences

are accessible on our web site (http://carrier.gnf.org/publica-

tions/Py).

Unsupervised clustering of distinctly expressed malaria
genes

For all 6,592 non-trivially expressed P. falciparum and P. yoelii

genes used for OPI analysis, 4,712 genes are members of the 156
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OPI clusters, another 736 genes fall into clusters that are

statistically significant (permutation p#0.05), but their function

predictions are not presented due to the large cluster size, and

another 118 genes share similar expression profiles (Pearson

correlation coefficient $0.8) with at least one statistically

significant OPI cluster. The remaining 1026 genes do not share

expression pattern with sufficient number of previous character-

ized genes. The hierarchical clustering algorithm was applied to

each subset of genes and the results are accessible on our website

(http://carrier.gnf.org/publications/Py).

Probability density distributions
For the 3,690 P. falciparum genes used in the OPI analysis, 1,037

GO groups and 514 literature groups were found to contain 2 to

100 genes. The probability density distribution of two randomly

selected genes was calculated by using all the 6,806,205 possible

gene pairs. For the literature and GO distributions, Pearson

correlation coefficients were first calculated for all gene pairs

within a group. The coefficients were then weighted, such that

each group contributed equally to avoid bias caused by large

groups. In total, 239,577 and 139,811 gene pairs were used to

derive the GO distribution and literature distribution, respectively.

Supporting Information

Table S1 The list of 156 statistically significant OPI clusters,

their ortholog counts in S. cerevisiae and human, and their P.

falciparum protein counts that form within-cluster networks.

Found at: doi:10.1371/journal.pone.0001570.s001 (0.08 MB

XLS)

Table S2 Yeast and human orthologs evidence and protein

interaction evidence for assigned and predicted gene ontology

memberships of malaria genes.

Found at: doi:10.1371/journal.pone.0001570.s002 (3.40 MB

XLS)

Table S3 The complete list of malaria-related PubMed

publications.

Found at: doi:10.1371/journal.pone.0001570.s003 (3.20 MB

XLS)

Table S4 The complete list of malaria genes cited in each

malaria publication.

Found at: doi:10.1371/journal.pone.0001570.s004 (0.75 MB

XLS)
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