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ABSTRACT
Lung cancer, claiming millions of lives annually, has the highest mortality 

rate worldwide. This advocates the development of novel cancer therapies that are 
highly toxic for cancer cells but negligibly toxic for healthy cells. One of the effective 
treatments is targeting overexpressed surface receptors of cancer cells with receptor-
specific drugs. The receptors-in-focus in the current review are the G-protein coupled 
receptors (GPCRs), which are often overexpressed in various types of tumors. The 
peptide subfamily of GPCRs is the pivot of the current article owing to the high affinity 
and specificity to and of their cognate peptide ligands, and the proven efficacy of 
peptide-based therapeutics. The article summarizes various ectopically expressed 
peptide GPCRs in lung cancer, namely, Cholecystokinin-B/Gastrin receptor, the 
Bombesin receptor family, Bradykinin B1 and B2 receptors, Arginine vasopressin 
receptors 1a, 1b and 2, and the Somatostatin receptor type 2. The autocrine growth 
and pro-proliferative pathways they mediate, and the distinct tumor-inhibitory effects 
of somatostatin receptors are then discussed. The next section covers how these 
pathways may be influenced or ‘corrected’ through therapeutics (involving agonists 
and antagonists) targeting the overexpressed peptide GPCRs. The review proceeds 
on to Nano-scaled delivery platforms, which enclose chemotherapeutic agents and 
are decorated with peptide ligands on their external surface, as an effective means 
of targeting cancer cells. We conclude that targeting these overexpressed peptide 
GPCRs is potentially evolving as a highly promising form of lung cancer therapy.

INTRODUCTION

Lung cancer is a daunting malady victimizing millions 
globally, on an annual basis. Being the most common form 
of tumor worldwide, 1.82 million lung cancer cases were 
diagnosed and 1.59 million deaths occurred, in 2012 [1]. The 
widespread nature and high global incidence of lung cancer 
calls for urgent advances in treatment regimes.

The two main subtypes of lung cancer are non-small 
cell lung cancer (NSCLC) and small cell lung cancer 

(SCLC). NSCLC is a heterogeneous group of tumors 
comprising adenocarcinoma, squamous cell carcinoma, 
and large cell carcinoma. Whilst occurrence of histological 
type differs among countries, NSCLC is more prevalent 
than SCLC [1]. Of lung cancer diagnoses globally, 
adenocarcinoma has the highest incidence (29–69%), 
followed by squamous cell carcinoma (28–46%), and then 
SCLC (9–22%), with the lowest frequency [2].

Existing first-line and conventional therapies for 
lung cancer include chemotherapy, radiation therapy, 
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surgery, and most recently, immunotherapy. With the 
toxicities and health hazards associated with existing 
treatments, novel therapies are increasingly gaining 
attention. In recent years, meticulous studies coupled 
with technological innovations have enabled the scientific 
community to better understand intricate intracellular and 
extracellular events at the genomic, molecular and cellular 
levels within neoplasms [3]. This has led to the evolution 
of a novel form of cancer treatment, called targeted 
therapy, that has maximum toxicity for cancer cells and 
minimal toxicity for healthy cells. It is directed towards 
exploiting the abnormal composition of cell surface 
receptors on cancer cells. Agents disrupting angiogenesis 
through vascular endothelial growth factor receptor 
(VEGFR) signaling and those targeting the epidermal 
growth factor receptor (EGFR) have enhanced outcome 
in NSCLC in large and randomized trials, thus, paving the 
entry to clinical practice [3]. The agents involved, typically 
monoclonal antibodies or small molecules, are directed 
towards the ectopically expressed proteins/receptors in 
various intracellular processes essential for disease/tumor 
perpetuation and growth [3]. The therapeutic potential of 
one of the most important ectopically expressed receptors 
in cancer, the G-protein coupled receptors (GPCRs), has 
yet to be explored.

GPCRs, the largest family of cell surface receptors, 
play crucial roles in both normal and diseased body states 
[4]. They have been implicated to play vital roles in the 
formation and progression of tumor, and have been shown 
to be ectopically expressed on the cell surface of cancer 
cells [5, 6]. GPCRs have served, for over a millennium, 
as targets for drug intervention in the treatment of disease; 
medicinal drugs used by the Romans and Egyptians 
contained alkaloids and opioids, derived from foxglove 
and mandrake, which moderate their action through 
GPCRs [7]. Due to their significance in the many 
physiological processes, GPCRs are now a major focus of 
current pharmaceutical research: about 50% of drugs on 
market target the G-protein coupled receptor family [6]. 

With over 800 members [8], GPCRs are categorized 
into five major classifications, namely Rhodopsin (class 
A); Secretin and Adhesion (class B); Glutamate (class 
C); Adhesion (Class D) and Frizzled/smoothened (Class 
E) (TAS2) receptor families. These families are further 
divided into many subfamilies based on sequence 
similarity and ligand classes, including peptide, opsin, 
prostaglandin, MECA, Melatonin receptors, etc. The 
peptide receptor subfamily is the pivot of the current article 
owing to its significant association with the neoplastic 
state and its strict selectivity and high specificity to its 
cognate ligands. Research has proven the high specificity 
and potency of peptide-based therapeutics, which has 
intensified the efficacy of rather nonspecific drugs and 
reduced drug-associated toxic side-effects. Furthermore, 
peptide-based therapeutics have facilitated diagnosis 
and noninvasive gross morphological evaluation of solid 

tumors. Radiotherapy utilizing peptide-based compounds 
has been proven effective in the treatment of certain forms 
of solid tumors. [9]. For these reasons, peptide-based 
therapeutics such as peptide-drug conjugates [10–12] 
and peptide ligand functionalized nanoparticles [13, 14], 
among others, are popular compounds undergoing scrutiny 
and evaluation in ongoing oncological research. 

This review highlights some recent GPCR-targeted 
therapeutics tested as potential candidates for lung cancer 
treatment. The article begins with the introduction of 
various overexpressed peptide GPCRs in lung cancer 
and their significance in neoplastic processes in tumor 
development. The next two sections describe how these 
processes may be altered or ‘corrected’ by targeting the 
overexpressed GPCRs through treatment system involving 
agonists and antagonists, as well as through Nano-scaled 
delivery platforms that enclose chemotherapeutic drug(s) 
and are decorated with peptide ligand of the peptide GPCR 
to be targeted, on their external surface. Finally, future 
directions and perspectives will be discussed. 

Overexpressed peptide receptors in lung cancer 

Common overexpressed peptide GPCRs in lung 
cancer include the Cholecystokinin B/Gastrin receptor, 
the Bombesin receptor family, Bradykinin B1 and B2 
receptors, Arginine Vasopressin Receptors 1a, 1b and 
2, and Somatostatin receptor type 2. All these receptors 
belong to the rhodopsin-like class A family of the 
GPCR superfamily [15–18]. Almost all of them are 
overexpressed in both, NSCLC and SCLC, with Table 
1 showing the extent of over- or ectopic expression in 
different subtypes of lung cancer. All the cognate peptide 
ligands are classed as neuropeptides. Cholecystokinin 
(CCK), gastrin, Gastrin releasing peptide (GRP), 
Neuromedin-B (NMB), bradykinin and vasopressin are 
considered growth-stimulatory neuropeptides as they act 
as autocrine/paracrine growth factors [19, 20] to promote 
cellular proliferation [21] in lung cancer and other cancers, 
whereas somatostatin is classified as a growth-inhibitory 
neuropeptide.

Cholecystokinin-B/Gastrin receptor (CCKBR)

The cholecystokinin-B/gastrin receptor (CCKBR) 
is activated by its endogenous ligands, cholecystokinin 
and gastrin. Under physiological conditions, the CCKBR 
is commonly expressed in the stomach, pancreas and in 
particular areas of the human brain [22–24]. The receptor 
exerts a growth-stimulating effect in peripheral tissues [25, 
26] and is involved in gastric acid secretion [27]. In the 
central nervous system, the receptor mediates emotional 
behaviors such as pain, anxiety and panic [28–31]. 

The CCKBR is, however, not expressed in the 
normal lung [24]. The mRNA expression was below 
the detectable level in all 12 normal lung tissues [24]. 
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Table 1: Ectopically expressed peptide GPCRs in lung cancer
Receptor Gene Lung cancer subtype Patient tissue

Cholecystokinin-B/ Gastrin 
receptor

CCKBR/ CCK2 SCLC mRNA overexpressed in 10/10 (100%) [24] and protein 
overexpressed (57%)  [34]

Squamous cell carcinoma mRNA overexpressed in 1/13 (7.7%)  [24]

Adenocarcinoma mRNA overexpressed in 1/21 (4.76%)  [24]

Bombesin receptor subtype 
3

BRS3/ BB3/ BB3R SCLC mRNA overexpressed in 4/9 (44.4%) [50] 

NSCLC N/A

Bronchial carcinoid mRNA overexpressed in 9/26 (34.6%) [50]  

LCNEC mRNA overexpressed in 1/1 (100%) [50]

Gastrin Releasing Peptide 
Receptor (GRPR)

GRPR/ BB2/ BB2R SCLC mRNA overexpressed in 3/9 (33.3%) [50] 

NSCLC N/A

Neuromedin-B Receptor NMBR/ BB1/ BB1R SCLC N/A

NSCLC N/A

Bradykinin Receptor B1 BDKRB1/ B1BKR/ BKR1/ 
bradyb1

Adenocarcinoma Protein overexpressed in 6/6 (100%)  [70]

Squamous cell carcinoma Protein overexpressed in 5/6 (83.3%)  [70]

Large cell carcinoma Protein overexpressed in 5/6 (83.3%)  [70]

Small cell carcinoma Protein overexpressed in 6/6 (100%)  [70]

Carcinoid tumors Protein overexpressed in 4/6 (66.6%)  [70]

Bradykinin Receptor B2 BDKRB2/ BK-2 Adenocarcinoma Protein overexpressed in 6/6 (100%)  [70]

Squamous cell carcinoma Protein overexpressed in 6/6 (100%)  [70]

Large cell carcinoma Protein overexpressed in 4/6 (66.6%)  [70]

Small cell carcinoma Protein overexpressed in 3/6 (50%)  [70]

Carcinoid tumors Protein overexpressed in 5/6 (83.3%) [70]

Arginine Vasopressin 
Receptor 1a

AVPR1A/ V1aR SCLC mRNA overexpressed in 5/7 (71.4%)  [96]

NSCLC mRNA overexpressed in 17/22 (77.3%)  [96]

Arginine Vasopressin 
Receptor 1b

AVPR1b/ V3R/V1bR SCLC mRNA overexpressed in 2/7 (29%)  [96]

NSCLC mRNA overexpressed in 4/22 (18%)  [96]

Arginine Vasopressin
Receptor 2 

AVPR2/ V2R SCLC mRNA overexpressed in 7/7 (100%)  [96]

NSCLC mRNA overexpressed in 18/22 (82%)  [96]

Somatostatin receptor (type 
2A)

SSTR2 SCLC Protein overexpressed in 23/61 (37.7%) [128]

Typical carcinoid Protein overexpressed in 17/24 (70.8%) [128]

Atypical carcinoid Protein overexpressed in 37/73 (50.7%) [128]

LCNEC Protein overexpressed in 20/60 (33.3%) [128]
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However, CCKBR mRNA was detectable in lung 
cancer, including SCLC, adenocarcinoma and squamous 
cell carcinoma [24]. CCKBR has been proposed as an 
attractive therapeutic target specifically for SCLC, whose 
prognosis persists to be disappointing despite initial 
response to chemotherapy [24]. Receptor autoradiographic 
studies revealed that CCKBR is expressed in high 
percentages in lung [24] and pancreatic [32] cancers, 
medullary thyroid carcinomas, some ovarian cancers, 
astrocytomas, gastrointestinal tumor, and colorectal cancer 
[33–35]. CCKBR was either not expressed or rarely 
expressed in differentiated thyroid cancers, meningiomas, 
lymphomas, renal cell cancers, and prostate carcinomas 
[34]. In regards to lung cancer, CCKBR is expressed in 
both SCLC and NSCLC [24, 34] (Table 1). Recently, 
Tripathi et al. created a comprehensive, literature-based 
map elucidating intracellular signaling cascades mediated 
by CCKBR (and CCKAR) [36]. The map may assist in the 
formulation of novel hypotheses on molecular mechanisms 
[36] and aid in the discovery and identification of novel 
molecular markers for CCKBR-based cancer therapeutics.

The paralog of CCKBR, CCKAR, is rarely or 
negligibly expressed in SCLC [37, 38] and other tumors 
[34, 39], with its expression level being significantly less 
than that of CCKBR. Thus, CCKAR is not covered in the 
current review.

Bombesin receptor family (GRPR, NMBR, and 
BRS-3)

Three receptors have been identified to belong 
to the bombesin (BN) receptor family, namely Gastrin 
Releasing Peptide receptor (GRPR), the Neuromedin-B 
receptor (NMBR), and the Bombesin receptor subtype 
3 (BRS-3). High-affinity endogenous ligands for GRPR 
and NMBR are gastrin releasing peptide (GRP) and 
neuromedin-B (NMB), respectively; meanwhile, BRS-
3 remains an orphan receptor, having low affinity for all 
natural-occurring bombesin type peptides [40, 41]. Human 
GRP is the mammalian analog of bombesin (BN), a 14 
amino-acid peptide primarily discovered in the skin of the 
frog Bombina bombina [42].

The BN receptor family is a family of brain-gut 
peptide receptors [42, 43]. BRS-3 has high homology, 47–
51% to GRPR/NMBR. Under physiological conditions, 
the BN-like peptides act on the central nervous system to 
regulate food intake, body temperature and glucose levels 
and certain behavioral responses [44]. In the periphery, 
GRP and NMB are involved in a spectrum of actions 
including smooth muscle contraction and endocrine/
exocrine secretion. GRP is named for its property to 
induce gastrin release from gastrin (G) cells in the antral 
mucosa. GRPR has been fully characterized in the 
gastrointestinal epithelial cells [45, 46] and plays a role in 
gastrointestinal functions [47]. BRS-3 and its undefined 
ligand mediate vital metabolic and endocrine processes 

[48]. The activation of the BN receptor family causes 
numerous intracellular signaling cascades, which are 
chiefly moderated by phospholipase-C activation causing 
stimulation of protein-kinase C and cellular calcium 
changes [40, 42, 49]. Nevertheless, much is yet to be 
discovered on the BN receptor family. 

Overexpression of the BN receptors has been 
evidenced in several tumor types, including lung, breast, 
prostate, intestinal, pancreatic, and colon carcinomas, 
gastrinomas, neuroblastomas, pituitary adenomas, head 
and neck cancers, and tumors of the CNS (gliomas, 
meningiomas) [42, 50–55]. Lung cancer has been the 
principal experimental model for discovering possible 
treatments curing through BN receptor family targeting. 
This is because SCLC has long been known to produce 
and release BN-related peptides [53, 54]: in 1985, SCLC 
was the first human tumor in which an autocrine growth 
effect was discovered [56], revealing fundamental 
information on the indispensability of this group of 
peptides and their cognate receptors. Overexpression of 
the BN receptor family was shown in different subtypes 
of lung cancer [50] (Table 1).

Generally, human tumors preferentially express the 
individual receptor subtypes of the BN receptor family, 
especially more frequently GRPR and less frequently 
NMBR [57, 58]. The significance of the bombesin/GRP-R 
in promoting cancer cell growth through the induction of 
autocrine loops and the high density of these receptors 
on the cell surface of various human tumors renders the 
receptor family a popular focus of nuclear oncology and 
extremely attractive targets for developing innovative 
therapeutic strategies, particularly for life-threatening 
neuroendocrine tumors such as SCLC [59–62].

Bradykinin receptors B1 and B2 (B1R and B2R)

Two pharmacologically distinct kinin receptor 
subtypes exist, namely bradykinin receptors B1 (B1R) 
and B2 (B2R) which are mainly involved in pain and 
inflammatory pathways [63]. The endogenous ligands for 
B2R are bradykinin (BK) and lysyl-bradykinin (Lys-BK) 
[17]; those for B1R are metabolites lacking the C-terminal 
arginyl residue, [des-Arg9] BK and [Lys-des-Arg9] BK 
[17, 64]. B2R is ubiquitously and constitutively expressed, 
whereas the physiological expression of B1R is extremely 
low. However, the expression of B1R surges in stressful 
situations [65], such as various pathological conditions, in 
several cell types including neurons, endothelial and blood 
cells, and smooth muscles. B1R is induced in various 
models of cancer, angiogenesis, inflammation, pain 
syndromes, diabetes mellitus, multiple sclerosis, epilepsy, 
and Alzheimer’s disease [17, 66–69]. 

B2R and B1R are highly expressed in cancers of 
the lung [70], breast [71], prostate [72], gall bladder [73], 
head and neck squamous cell carcinoma (HNSCC) [74], 
chondrosarcomas [75], colorectal adenomas [76], clear 
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cell renal carcinoma [77], esophageal squamous cell 
carcinomas, and astrocytic tumors [78]. Table 1 shows 
the upregulation of B1R and B2R in lung cancer subtypes 
[70]. 

Whereas B1R and B2R may have a high expression 
profile in numerous tumor types, their relative expression 
levels may differ in different tumors. For instance, Chee 
et al. reported a somewhat similar expression pattern of 
the two bradykinin receptor subtypes in lung cancer [70], 
whereas a study by Nicoletti et al. on glioma cells showed 
a higher expression of B1R relative to B2R [79]. The 
authors of the glioma study attribute the higher expression 
level of B1R to the inducible nature of the receptor [79]. 

Studies on mice lacking each receptor gene and 
different specific peptidic and non-peptidic antagonists 
have implied that both B1R and B2R are potential 
therapeutic targets in various pathophysiological events 
in the aforementioned diseases [17]. Due to negligible 
expression of B1R in healthy tissues, the receptor is very 
appealing as an imaging marker for tumor diagnosis and for 
the development of anticancer therapeutic agents [80, 81]. 

Arginine Vasopressin Receptors 1a, 1b and 2 
(V1a, V1b, and V2)

Three arginine vasopressin receptors (AVPRs) 
have been identified via molecular cloning techniques, 
V1a (vascular), V1b (pituitary) and V2 (renal) [82]. The 
endogenous ligand for the AVPRs is the nonapeptide 
amine, vasopressin (or antidiuretic hormone), produced 
by magnocellular neurons of the hypothalamus [83]. 
This hormone is essential for survival as it is involved in 
the fundamental physiological processes of osmotic and 
cardiovascular homeostasis [84]. 

The expression of each subtype of AVPR is distinct 
and tissue-specific. V1a receptors are normally expressed 
in the heart, brain, testis, liver, superior cervical ganglion, 
vascular smooth muscle cells and renal medulla [85, 86]. 
V1a receptors in the brain moderate anxiety producing 
responses to arginine vasopressin, whilst their presence 
in the vasculature help moderate the pressor actions of 
arginine vasopressin through a phospholipase C-mediated 
pathway [87, 88]. The V1b receptor is involved in 
mediating anxiety and stress in humans and rats [89]. 
Their presence in the anterior pituitary helps mediate the 
ACTH-releasing effects of AVP, through a phospholipase 
C-mediated pathway [90]. V1b receptors are also present in 
extra-pituitary tissues such as the adrenal medulla, kidney 
and brain [91]. On the other hand, the V2R is mostly 
expressed in the renal medulla, where it is involved in 
mediating the antidiuretic effect of AVP [85, 92]. 

In normal cells, the vasopressin gene is 
transcriptionally restricted, while in SCLC, it is activated 
concomitantly with expression of all three of its receptors 
(V1aR, V1bR, and V2R) [93–95]. Vasopressin receptors are 
overexpressed only in lung cancer [96, 97] and ACTH-

secreting pituitary tumors [98, 99]. Table 1 shows the 
pattern of overexpression of AVPRs in lung cancer 
subtypes [96, 97].

Somatostatin receptor type 2 (SSTR2)

The past 30 years saw the identification and 
characterization of the somatostatin receptor family, 
which includes five different subtypes, SSTR1- SSTR5  
[100–102], that show 40–60% structure homology [103]. 
The endogenous high-affinity ligand for the SSTRs 
is the acid polypeptide, somatostatin, which is native 
to the central nervous system and various peripheral 
tissues and organs. Somatostatin has several biological 
functions including the potent inhibition of basal and 
stimulated secretions from a wide range of exocrine and 
endocrine cells [102, 104], and acts as a neurotransmitter 
(exerting both stimulatory and inhibitory effects [105]) 
and neuromodulator in the central nervous system, and 
as an antiproliferative agent for cell proliferation and 
differentiation [106], and as an autocrine/paracrine agent 
in the immune system [107]. SSTRs are differentially 
expressed in the immune and central nervous systems, 
pituitary, thyroid and adrenal glands, gut, pancreas and 
kidney [108, 109]. Multiple receptor subtypes may be 
co-expressed in a tissue-specific pattern, having distinct 
physiological roles [108]. In the peripheral nervous 
system, SSTRs are implicated to play roles in nociception 
[110]. In the pituitary gland, SSTR2 is involved in the 
release of ACTH, GH, and TSH [102]. 

SSTRs are highly expressed in a variety of tumors, 
including cancers of the lung [111, 112], breast [113, 114], 
prostate [115], brain [116, 117], and pheochromocytomas 
[118], gastric carcinomas [119, 120], meningiomas [121], 
hepatocellular carcinoma [122], endocrine pancreatic 
tumors, gastrointestinal carcinoids, and thyroid medullary 
cancer [123]. Out of the five subtypes, the SSTR type 2 
is generally the most commonly overexpressed receptor 
in cancer [108, 124–127]. Thus, SSTR2 is the subtype 
covered in the present article. The extent of SSTR2 
overexpression in lung cancer subtypes [128] may be 
viewed in Table 1.

Carcinogenesis pathways mediated by 
overexpressed peptide GPCRS

Cancer cells produce and secrete the neuropeptides 
CCK/gastrin [34, 129], GRP and NMB [130, 131], 
bradykinin [132], and vasopressin [133, 134]. A plethora 
of evidence exists elucidating the autocrine growth and 
pro-proliferative effects exerted by CCK/gastrin [135, 
136], GRP and NMB [137, 138], bradykinin [139, 140] 
and vasopressin [21, 94, 95, 141, 142] through their 
respective receptors. In the process, they increase the 
colony number of cancer cells, including lung cancer 
[21, 135, 143]. Weber et al. reported that even activation 
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of orphan receptor BRS-3 may contribute to cancer 
cell proliferation, since the analogue [d-Phe6, β-Ala11, 
Phe13, Nle14] bombesin (6–14) caused enhanced nuclear 
oncogene expression, MAPK phosphorylation, and Elk-
1 activation in lung cancer cells [144]. Research has 
indicated that GPCR transactivation of epidermal growth 
factor receptor (EGFR) is significantly involved in cancer 
cell proliferation [135, 145]. For instance, the BRS-3 
agonist (DTyr6, βAla11, Phe13, Nle14)bombesin6–14 (BA1) 
caused Tyr1068 phosphorylation of EGFR in NCI-H727 or 
NCI-H1299 cells stably transfected with BRS-3 (NCI-
H1299-BRS-3), and significantly increased the clonal 
growth of NCI-H1299-BRS-3 cells. Other BRS-3 agonists 
such as (DTyr6, R-Apa11, Phe13, Nle14)bombesin6–14 (BA2) 
and (DTyr6, R-Apa11, 4-Cl,Phe13, Nle14)bombesin6–14 (BA3) 
also caused EGFR transactivation in NCI-H1299-BRS-3 
cells [146]. Furthermore, it has been found that CCK/ 
gastrin [135, 147–150], GRP [53, 54, 131, 138, 151, 152], 
bradykinin [153, 154] and vasopressin [21, 155, 156] bind 
with high affinity to their cognate receptors to promote 
DNA synthesis [157], increase intracellular calcium levels 
[37, 132, 143, 147–150, 153–155, 158], promote cellular 
growth, proliferation, survival [139, 140, 159–165], cause 
loss of cell adhesion, and stimulate tumor progression, 
invasion, migration and metastasis [166–169]. Moreover, 
it is thought that CCK/gastrin [170], GRP and NMB  
[130, 131, 171], and bradykinin [172, 173], by acting 
on their cognate receptors, promote angiogenesis and 
suppress apoptosis.

Somatostatin stands out from the crowd of 
receptors included in this review. While all ligands whose 
cognate receptors included in this paper act as growth 
factors, somatostatin is inherently a broad inhibitory 
neuropeptide and has anti-secretory, anti-proliferative 
and anti-angiogenic activities [174]. It mediates its 
effects through five receptors but SSTR2 subtype is 
generally the most commonly expressed in neoplastic 
cells [123]. Somatostatin and its analogs/agonists inhibit 
tumor growth and metastatic spread through activation of 
SSTRs on both cancer and microenvironment cells, such 
as endothelial cells of tumor vessels that are responsible 
for the neovascularization of the tumor. SST exerts its 
effects through direct antiproliferative (inhibition of 
mitogenic stimuli of growth factors such as IGF-1 and 
cell cycle arrest) and proapoptotic signals, as well as, 
indirectly, by inhibiting the secretion of proliferative and 
angiogenic growth factors and hormones, or suppressing 
neoangiogenesis at the endothelial cell level or regulating 
an immune response [175, 176].

Therapeutics targeting overexpressed peptide 
receptors for lung cancer

Standard therapies have encountered a plateau in 
improving patient overall health and survival and quality 
of life [177]. In addition, despite initial responsiveness to 

existing standard cancer treatments, like chemotherapy 
and radiotherapy, some cancer types like SCLC are 
highly aggressive and commonly relapse within months 
[178]. Cancer therapeutics targeting overexpressed and/
or ectopically expressed peptide GPCRs in cancer is 
one novel and promising treatment option which has 
gained considerable interest over the past two decades. 
The ectopic and over-expression of GPCRs such as 
CCKBR, GRPR, B1R, and other receptors, drives tumor 
growth. Therefore, interference in receptor signaling and 
inhibition of signaling pathways driving tumor growth 
and perpetuation are envisioned as ideal targets for cancer 
therapeutics. This may be achieved using monoclonal 
antibodies, agonists and antagonists. This section will 
include some of the recent targeted therapeutics, for each 
peptide GPCR, that have been discovered to show positive 
results in vitro and in vivo to ultimately contribute to 
tumor shrinkage. 

Cholecystokinin-B/Gastrin receptor (CCKBR)

A plethora of studies have shown the significant role 
that upregulation of CCKBR and its endogenous ligands 
play in the regulation of tumor growth and maintenance 
[25, 26]. Antagonists for CCKBR help downregulate 
expression of the receptor resulting in decreased DNA 
synthesis, cell cycle arrest through inhibition of G(1) to 
S phase progression, reduced  cancer cell proliferation, 
mobility and invasiveness. In addition, downregulation of 
CCKBR increased caspase-3 activity and TUNEL-positive 
cells, suggesting apoptotic activity [179].

CCKBR therapeutics include antagonists such as 
CI-988 (Figure 1A, [180]) and L365, 260 (Figure 1A, 
[181]). CI-988 inhibited the abilities of CCK-8 to elevate 
cytosolic Ca2+, to stimulate EGFR, ERK and FAK tyrosine 
phosphorylation as well as VEGF expression, and so cell 
growth and proliferation in NCI-H727 lung cancer cells 
[135]. L365, 260 inhibited the proliferative capacity of 
human medullary thyroid carcinoma cells, resulting in a 
marked attenuation in growth [182]. 

Bombesin Receptors (GRPR, NMBR, and BRS-3)

Bombesin related peptides are synthesized and 
secreted by cancer cells and are reported to cause 
autocrine-growth effects in human SCLC [56] and other 
cancers [50, 183, 184]. Some studies demonstrated that 
monoclonal BN antibodies inhibit the growth of these 
tumors both in vitro and in vivo xenografts [56]. Many 
studies demonstrate the potential therapeutic significance 
of BN receptor antagonists and other agents that inhibit 
the growth-stimulatory effect of BN receptor agonists on 
tumors [61].

High-affinity NMB receptor non-peptide antagonist 
PD168368 (Figure 1B, [185]) inhibited lung neoplastic 
cell growth by inhibiting the transactivation of EGFR and 
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the tyrosine phosphorylation of ERK caused by NMB-like 
peptides [152]. 

High affinity NMBR (Ki = 0.15 nM) and moderate 
affinity GRPR (Ki = 1.0 nM) non-peptide antagonist 
PD176252 [186] (Figure 1C, [186]) significantly inhibited 
NCI-H1299 proliferation (and was more potent than 
PD168368) and considerably inhibited lung cancer colony 
number in vitro [187]. PD176252 inhibited the binding of 
GRP/bombesin to GRPR and blocked the ability of the 
ligand to elevate cytosolic calcium levels and c-fos mRNA 
in lung cancer cells NCI-H1299, NCI-H345 and H1299. 
It also blocked the ability of bombesin to cause tyrosine 
phosphorylation of focal adhesion kinase in NCI-H1299 
cells [187]. In vivo studies revealed that the antagonist 
dose-dependently inhibited NCI-H1299 xenograft growth 
in nude mice [187]. 

Both the afore-mentioned antagonists, PD168368 
and PD176252, do not bind BRS-3 with high affinity 
[188]. For BRS-3, however, the novel BRS-3 antagonist 
ML-18 (Figure 1D, [189]), had anti proliferative effects 
in lung cancer [189]. ML-18 inhibited specific (125)
I-BA1 (DTyr-Gln-Trp-Ala-Val-βAla-His-Phe-Nle-NH2)
BB(6–14) binding, with an IC50 value of 4.8 μM, to lung 
cancer cells NCI-H1299 stably transfected with BRS-3. 
ML-18 bound to GRPR and NMBR with lower affinity 
with IC50 values of 16 and  > 100 μM, respectively. ML-18 
inhibited the ability of BA1 to increase cytosolic calcium 
and tyrosine phosphorylation of EGFR and ERK in lung 
cancer cells [189]. 

Another BRS-3 antagonist, BRS-3 ant. (DNal-Cys-
Tyr-DTrp-Lys-Val-Cys-Nal)NH2, blocked BA1-induced 
EGFR or ERK tyrosine phosphorylation in lung cancer 
cells and diminished clonal growth of NCI-H1299-BRS-3 
cells [146]. In addition, BA1, BA2, BA3 (BRS-3 agonists) 
and BRS-3 ant. (BRS-3 antagonist) blocked specific 125I-
BA1 binding to NCI-H1299-BRS-3 cells with IC50 values 
of 1.1, 21, 15 and 750 nM, respectively [146].

An additional antagonist of BN/GRP is the powerful 
inhibitor RC-3940-II. It significantly inhibited growth 
of H460 and A549 NSCLC xenografts and caused the 
upregulation of tumor suppressor gene p53, which may 
contribute to the anti-tumor effects of the antagonist [190], 
and an increase in several angiogenesis inhibitors and a 
reduction in proangiogenic genes [191]. There was also 
an escalation in the number of cells with lower G(0)/G(1) 
DNA content and in those blocked in S and G2/M phases 
[192]. Zhou et al.. reported on antibody-mediated therapy 
for SCLC. They conjugated a monoclonal antibody OKT3 
(anti-CD3) with a bombesin/GRP antagonist (Antag2) to 
create a bispecific molecule, OKT3xAntag2. The molecule 
was shown to mediate growth inhibition and apoptosis of 
SCLC cells by activated T cells via the activation and 
cleavage of Poly (ADP-ribose) polymerase (PARP) and 
caspase-3 in vitro and in vivo [193].

Bradykinin receptors B1 and B2 (B1R and B2R)

In 1984, the Stewart laboratory discovered the 
first antagonists for bradykinin (BK) and ongoing 
investigations by this group and others resulted in the 
present generation of extremely potent peptide antagonists 
that are orally active and have proven resistant to all 
tested degrading enzymes [194, 195]. It is noteworthy 
that prolonged administration of bradykinin antagonists to 
humans has not caused adverse effects [196].

CU201 (also called B9870) is a highly potent, 
metabolism-resistant bradykinin antagonist peptide 
dimer. CU201 is a growth inhibitor for SCLC both in vitro 
[197, 198] and, in vivo for SCLC SHP-77 and NSCLC 
A549 tumor growth [199], giving significant inhibition 
(65%) of tumor growth in athymic nude mice models 
upon daily intratumoral administration at a dose of 5 
mg/kg/day [195]. The antagonist inhibited proliferation 
signals but induced apoptotic signals [197] by a novel 
“biased agonist” action. It blocked the Gαq, G11 signaling 
pathway that induces intracellular free Ca2+ in response 
to bradykinin but stimulated the Gα12, G13 pathway 
associated to c-JUN kinase activation [44], inducing 
caspase-3 activity and causing unique changes in apparent 
nuclear DNA binding, ultimately resulting in cell death. 
Therefore, CU201 offers great promise in being branded 
as a new form of targeted therapy for neoplasms with 
neuroendocrine properties, owing to its unique mechanism 
of action [197].

BKM-570 (Figure 1E, [200]) is the non-peptide 
mimetic of CU201 [198]. BKM-570 strongly inhibited 
extracellular signal-regulated kinases 1/2 (ERK1/2) and 
protein kinase B (AKT) [201], effectively suppressing 
tumor cell growth [202]. BKM-570 showed strong 
anticancer activity against SCLC and prostate cancer in 
vivo [198] and in vitro [195] and various other cancer 
cell lines of NSCLC, cervix and colon cancers in vitro, 
where the antagonist did not harm the growth of normal 
pulmonary fibroblasts [195].  

Another bradykinin antagonist is R954. It is a stable, 
selective and potent peptide antagonist of the inducible 
B1R. It exhibits favorable preclinical pharmacological, 
pharmacokinetic characteristics and toxicological profile 
[64] and has shown antitumoral activity on ascitic and 
solid tumors induced by Ehrlich cell inoculation in rats and 
mice [203]. However, more research is warranted for this 
antagonist as current evidence is greatly limited. R954 has, 
nevertheless, been tested in some other conditions with 
success, including acute lung injury [204], osteoarthritis 
[205], inflammatory edema [206] and more. The testing of 
this antagonist in cancer models is relatively recent when 
compared to its testing in other pathological states, hence 
the limited data on its effects in cancer. This antagonist 
may potentially emerge as a new anti-cancer drug. 
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Figure 1: Chemical structures of non-peptide antagonists of overexpressed peptide GPCRs in lung cancer. 
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Arginine vasopressin receptors 1a, 1b and 2 (V1a, 
V1b, and V2)

Vasopressin agonists with anticancer effects exert 
their action through V2 receptor, as it is involved in 
antiproliferative effects; the V1 receptors are related 
to cellular proliferative effects [207]. The synthetic 
nonapeptide 1desamino8Darginine vasopressin, 
desmopressin (dDAVP), is an agonist on the V2 receptor. 
dDAVP decreased expression levels of neuroendocrine 
markers chromogranin A (CgA) and specific neuronal 
enolase (NSE) in aggressive SCLC cell line NCI-H82 
[208]. dDAVP also displayed dose-dependent anti-
metastatic effects with maximum impact at clinically 
relevant doses of 1–2 μg/kg [209] and a 70% reduction 
in the number of pulmonary nodules in experimental lung 
metastatic disease [210]. dDAVP seemed to stimulate a 
dual angiostatic and antimetastatic effect, breaking the 
cooperative function between cancerous and endothelial 
cells during residual tumor progression [210, 211]. 
Pastrian et al. showed that the amino acids present at 
the loop of dDAVP are crucial for the antiproliferative 
activity of dDAVP, accentuating the significant role of the 
N terminal region of the peptide in the interaction with 
the cancer cell surface receptor. These findings help show 
novel strategies for designing and developing improved 
compounds with augmented stability for tumor therapy 
[212]. An analog of dDAVP, [V4Q5]dDAVP , decreased 
tumor growth and angiogenesis in F3II mammary tumour-
bearing immunocompetent mice, and exhibited higher 
antimetastatic efficacy than dDAVP on experimental lung 
colonisation by sarcomatoid mammary carcinoma F3II 
cells [213]. Preliminary acute toxicology studies revealed 
that [V4Q5]dDAVP was well-tolerated at doses ≥ 300-fold 
above those needed for anti-angiogenic/antimetastatic 
effects [213]. DDAVP and [V4Q5]dDAVP markedly 
decreased proliferation, doubling time, and migration in 
NCI-H82 cells. [V4Q5]dDAVP demonstrated a greater 
cytostatic effect than dDAVP, on cellular proliferation in 
the NCI-H82 cell line [208]. 

Somatostatin receptor type 2 (SSTR2)

Somatostatin is of limited clinical utility owing to 
its extremely short half-life of 2–3 minutes, resulting in 
the development of many synthetic somatostatin analogs 
(SSAs) such as octreotide, lanreotide and pasireotide, 
by attenuation of the polypeptide chain while preserving 
binding affinity to the SST receptors [214]. Octreotide and 
lanreotide bind to SSTR-2 with high affinity (0.32 and 0.5 
nM) [215], whilst pasireotide binds SSTR2 with 2.5 times 
lower binding affinity than octreotide [216]. Subsequently, 
long-acting release (LAR) octreotide [217] and long-acting 
release (LAR) lanreotide [218] were also developed. 

Octreotide and lanreotide are registered in many 
countries [219] and have proven to be successful 

therapeutics in the management of tumors. These SSAs 
have similar effects, in neuroendocrine tumors, to native 
endogenous somatostatin in that they decrease cellular 
proliferation, induce apoptosis, inhibit protein synthesis 
and cell signaling [220], and inhibit secretory processes 
[221].

SSAs exert antiproliferative effects through direct 
and indirect mechanisms. Direct mechanisms entail the 
activation of SSTRs in tumor cell surfaces [222]. Upon 
activation, SSTRs induce cell cycle inhibitors such as p21, 
p27 and p130/Rb, thus resulting in cell cycle arrest [222]. 
Somatostatin and SSAs can directly induce apoptosis 
in cancer cells, with a p53- dependent or independent 
mechanism [223]. SSTR2, along with SSTR1, SSTR3 
and SSTR4, may be involved in inhibiting cell invasion 
by impacting the PI3K pathway. SSTR2 is also important 
in restoring gap junctions, which are essential for contact 
inhibition and maintenance of a differentiated condition 
[224, 225]. Indirect mechanisms by which SSAs 
exert antiproliferative effects involve the inhibition of 
circulating growth factors such as insulin-growth factor 
(IGF), vascular endothelial growth factor (VEGF), growth 
hormone (GH), platelet-derived growth factor (PDGF), 
basic fibroblast growth factor (bFGF), as well as inhibition 
of tumor angiogenesis by inhibiting the proliferation and 
migration of endothelial cells and monocytes, which 
secrete proangiogenic factors [226–229]. It is thought 
that the main mechanism of angiogenesis inhibition may 
revolve around interference in endothelial NO release. 
[230]. 

Whilst the antiproliferative and anti-tumor effects of 
SSA were shown in vitro and in vivo years ago, their use 
as anti-cancer agents has only recently been recognized 
[224]. Evidence of SSA success in lung neuroendocrines 
is very limited; a mere handful studies have analyzed the 
antiproliferative effects of SSAs in bronchial carcinoids. 
A retrospective study involving 48 patients with lung 
NET discovered that the most frequently administered 
first-line therapy in patients with advanced disease, was 
administration of SSAs [231]. A phase III RADIANT-2 
trial randomized 429 patients with hormonally active 
carcinoid tumors, including bronchial NETs, to treatment 
with octreotide LAR plus placebo or octreotide LAR plus 
anticancer agent, everolimus. Analysis of the subgroups 
revealed that, for the 44 patients with lung carcinoid who 
received only the SSA as active drug, the median PFS was 
5.6 months [232]. Furthermore, tumor shrinkage, although 
not satisfying RECIST criteria for partial response, was 
seen in 27% of participants from the octreotide LAR 
monotherapy cohort [233]. The results of a randomized 
phase III trial (PROMID) demonstrated that the median 
time to progression in patients with midgut carcinoid 
tumors treated with octreotide LAR was 14.3 months 
versus 6 months in patients treated with placebo [234]. 
Recently, a retrospective study analyzed the efficacy 
of octreotide in 15 patients with advanced pulmonary 
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carcinoids, and reported a median PFS of 15 months 
and a 70% disease control rate [235]. A prospective, 
randomized, open-label, 3-arm, phase II study evaluating 
the effectiveness and safety of pasireotide, everolimus, or 
both, in patients with advanced neuroendocrine carcinoma 
of the lung and thymus (LUNA trial) is currently being 
conducted in Europe [236].

Targeting overexpressed peptide receptors 
through delivery systems for lung cancer

Targeted drug delivery (TDD) platforms are based 
on the success and advantages of using peptides to 
successfully target over- or ectopically expressed receptors 
in cancer cells. Specific tumor receptor interaction is 
instrumental in mediating the ability of peptide ligand-
cytotoxic constructs to induce cytotoxicity [237]. TDD 
platforms may involve peptide-drug conjugates (PDCs) 
that generally comprise a therapeutic moiety, a linker 
moiety, and a peptide as a targeting moiety [238]. Also, 
external surfaces of Nano-sized drug delivery systems, 
including liposomes and micelles, are decorated with 
peptide receptor ligands. The use of peptides as targeting 
moiety is advantageous because they cause the cytotoxic 
drug-loaded delivery platform to be targeted specifically 
to tumor cells, inflicting no/negligible damage to 
healthy cells. This section focuses on some recent works 
incorporating receptor peptide ligands within Nano-scale 
delivery systems for targeted and effective therapeutic 
intervention in neoplasms. A summary of the works 
covered in this section may be viewed in Table 2. 

Cholecystokinin-B/Gastrin receptor (CCKBR)

The Cholecystokinin-B/gastrin receptor binds CCK-
33, CCK-8, CCK-5 and gastrin. However, it is CCK-8 that 
is most commonly used as a targeting moiety in targeted 
delivery systems. There is a lack of research and classical 
literature focusing on CCK-8 labelled/loaded delivery 
systems tested specifically in lung cancer. They were 
however, tested in other cell types including HuVEC cells 
and A431 epidermoid carcinoma cell line, with positive 
results [239–241].

Bombesin receptors (GRPR, NMBR, and BRS-3)

Due to the high frequency of overexpression 
of BN receptor subtypes in many tumors, increasing 
interest has led to massive investments of resources and 
time towards investigating the Bombesin receptors as 
potential therapeutic targets. In vitro autoradiographic 
studies reveal that GRPR, out of the three human BN 
receptors, is the most commonly expressed in human 
tumors [242]. Hence the analogue of GRP, the Bombesin 
peptide (QQRLGNQWAVGHLM) is a popular targeting 
ligand used in targeted therapy directed at GRP receptors. 

The eight-residue C-terminal peptide sequence (BN[7–
14]), may be used to selectively target GRPR. Several 
studies show that the BN (7–14) fragment, modified 
with radiometal complexes on its N-terminus, preserves 
its affinity for these receptors, hence proving vital for 
diagnostic or therapeutic nuclear medicine applications 
[243–245]. 

Moody et al. discovered a potent BN agonist drug 
conjugate (CPT-L2-BA3) that had cytotoxic effect towards 
cells overexpressing all mammalian BN receptor subtypes 
[237, 246]. MTT and clonal growth assays revealed that 
CPT-L2-BA3 inhibited the growth of NSCLC NCI-H1299 
cells and H1299 xenograft growth in nude mice, showing 
a high cytotoxic effect [237, 246]. On cells lacking BN 
receptors, CPT-L2-BA3 had only a very small effect. CPT-
L2-BA3 also inhibited growth of several other tumor cell 
lines, including lung cancer (NCI-H69), neuroblastoma 
(IMR32, SKNSH), glioblastoma (U-87MG), leukemia 
(MOLT-4), breast cancer (MCF-7), prostate cancer (PC-
3, DU-145, LNCaP), gastric cancer (Hs746T) and colon 
cancer (HT-29) cell lines with IC50 values ranging from 
33 to 2269 nM [237]. Safavy et al. showed that the 
cytotoxicity of PTXPEGBBN[7–13], a tumor directed 
derivative of paclitaxel, was improved by a factor of 17.3 
for 24 h and 10 for 96 h exposure times, in comparison to 
paclitaxel alone in NCI-H1299 human NSCLC cells [247]. 
The IC50 of the conjugate was lower than that of the free 
drug by a factor of 2.5 for exposure times of both 24 h 
and 96 h [247]. Moreover, the order of addition of peptide 
ligands to nano-sized delivery systems is an appealing and 
noteworthy perspective since the order may affect the size, 
stability and cytotoxicity exhibited by the final product. 
Post-bombesin decorated nanostructured lipid carriers 
(NLC) exhibited more stability and markedly higher 
transfection efficiency and better anti-tumor activity than 
pre-bombesin decorated NLC for lung cancer therapy, 
both in vitro and in vivo [248]. 

Bradykinin B1 and B2 receptors (B1R and B2R)

Bradykinin has a short plasma half-life of about 
15 seconds [249] and is rapidly inactivated in pulmonary 
circulation [250]. Therefore, bradykinin potentiating 
peptide (BPP) has been used as targeting moiety for 
targeted delivery [251]. BPPs have the ability to inhibit 
bradykinin inactivation in lung [252] and potentiate 
bradykinin action [253–255]. BPP has a relative selectivity 
for tumor vasculature and exerts potent effects through 
B2R, which is commonly overexpressed in various types 
of tumors [70, 256]. Wang et al. speculated that BPP 
can promote drug accumulation in primary tumor and 
lung metastasis by facilitating an increase in vascular 
permeability and enhancing drug penetration [251]. They 
used a 9 amino acid residues-long BPP (EWPRPQIPP) 
and a drug which was bioreductive sensitive platinum 
(IV) compound which became cisplatin in the intracellular 
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Table 2: Ligands of ectopically expressed peptide receptors in targeted delivery/imaging systems 
for lung cancer

Receptor Ligand Ligand sequence
Used in targeted 
delivery/ imaging 

system 
Cholecystokinin-B/
Gastrin receptor

CCK-33 KAPSGRMSIVKNLQNLDPSHRISDRDYMG
WMDF-NH2 [http://www.uniprot.org]

N/A

CCK-8 DYMGWMDF-NH2  [241] N/A

CCK-5 GWMDF-NH2  [http://www.uniprot.org] N/A

Gastrin pEGPWLEEEEEAY(SO3H)GWMDF-NH2    
[268] 

N/A

Bombesin Receptor 
Subtype 3 (BRS-3)

Orphan receptor
(has synthetic ligand)

[D-Tyr, β-Ala, Phe,Nle] BB(6–14)
[269]

N/A

Gastrin Releasing 
Peptide (GRPR)

Gastrin releasing 
peptide (GRP)

VPLPAGGGTVLTKMYPRGNHWAVGHLM-
NH2 [268]

N/A

Bombesin peptide pEQRLGNQWAVGHLM-NH2  [268] PTXPEGBBN[7–13] 
[247]

Neuromedin-B receptor 
(NMBR)

Neuromedin B (NMB) GNLWATGHFM-NH2   
[268]

N/A

Bombesin Receptor 
family (BRS-3, GRPR, 
NMBR)

Pan-BBN ligand 
(binds to all 3 
receptors)

D-Tyr, β-Ala, Phe, Nle] BBN [6–14]
[246]

CPT-L2-BA3
[237, 246]

Bradykinin Receptor 
B1

Bradykinin RPPGFSPFR- NH2  [268] N/A

Bradykinin Receptor 
B2 Bradykinin 

Potentiating Peptide 
(BPP)

EWPRPQIPP- NH2  [251] Pt-CS-BPP  [251]

Arginine Vasopressin 
Receptor 1a

Vasopressin CYFQNCPRG-NH2
[268]

99mTc(NS3)(CN-
AVP) [257]

Arginine Vasopressin 
Receptor 2

99mTc(NS3)(CN-
AVP(an))  [257]

Somatostatin receptor 
(type 2)

Somatostatin AGCKNFFWKTFTSC-NH2   
[268]

N/A

Octreotide (analog of 
somatostatin) 

(D)FCF(D)WKTCT-ol
[270]

1.[OCT(Phe)-PEG-ss-
PTX]  [259]
2. SSTR2-3207-86
[261]
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reductive environments. Both the drug and the BPP 
were covalently attached to 120 nm-diameter chitosan 
nanoparticles. In vivo biodistribution and tumor inhibition 
investigations revealed that, compared with the free drug 
and the peptide-free nanoparticle formulation, the BPP-
studded nanoparticle formulation boasted superior efficacy 
in promoting drug accumulation in tumor, thus confining 
tumor growth and prolonging the lives of tumor-bearing 
mice. In addition, drug accumulation in lung metastasis 
was about 17% and 20% injected dose/gram of lung for the 
chitosan nanoparticles without and with BPP, respectively. 
This was 10-fold greater than that of free cisplatin, which 
was about 1.6% injected dose/gram of lung. Thus with 
improved drug accumulation in lung metastasis tissue, 
the BPP-studded chitosan nanoparticle formulations 
effectively inhibited metastasis to lungs [251].

Arginine vasopressin receptors 1a, 1b and 2 (V1a, 
V1b, and V2)

To our knowledge, the arginine vasopressin peptide 
has not been used as a targeting ligand in delivery 
systems carrying cytotoxic chemotherapeutic agents. 
The nonapeptide has, however, been conjugated to 
radionuclides for tumor imaging/diagnosis. Gniazdowska 
et al. investigated the conjugation of vasopressin 
(AVP) (CYFQNCPRG) and its analogue (d(CH2)5[D-
Tyr(Et2), Ile4, Eda9 ]AVP (AVP(an)) to technetium-
99m radionuclide to test its potential as a diagnostic 
radiopharmaceutical for SCLC patients [257]. In serum, 
the 99mTc(NS3)(CN-AVP) was enzymatically degraded 
into two species, whilst the 99mTc(NS3)(CN-AVP(an)) 
conjugate proved to be highly stable. In addition, the 
AVP (an) is one of the many effective antagonists to V2 
receptor [258] and conjugates containing the AVP (an) 
demonstrated specific and high binding ability to V2 
receptors on the SCLC cell line H69 [257]. 

Somatostatin receptor type 2 (SSTR2)

Recently, Yin et al. developed a redox-sensitive 
prodrug, octreotide(Phe)-polyethylene glycol-disulfide 
bond-paclitaxel [OCT(Phe)-PEG-ss-PTX] for the targeted 
intracellular delivery of paclitaxel [259]. The conjugate 
demonstrated approximately 23,000-fold increase in 
water solubility than the parent paclitaxel [259], which 
has extremely low water solubility [260]. The OCT(Phe)-
PEG-ss-PTX was selectively internalized into tumor cells 
through SSTR-mediated endocytosis and showed a high 
degree of cytotoxicity and apoptosis-inducing ability 
against NCI-H466 SCLC cells that ectopically expressed 
SSTR. Furthermore, in vivo studies on NCI-H466 tumor-
bearing nude mice showed that the OCT(Phe)-PEG-ss-
PTX had superior tumor-targeting ability and antitumor 
activity along with minimal collateral damage, compared 
with free paclitaxel [259]. Also, recently, Redko et al. 

developed five novel PDCs by separately linking the 
SSTR2 specific backbone cyclic peptide 3207–86 with five 
different anticancer drugs. The PDCs exhibited selective 
and significant cytotoxic effects in the human NSCLC cell 
line H1299 and various other human cancerous cell lines 
overexpressing SSTR2 [261]. 

Shen and coworkers analyzed the anti-tumor effects 
of a conjugate developed by coupling two molecules of 
paclitaxel to octreotide in A549 human NSCLC cells 
xenografted into nude mice [262]. 2paclitaxel-octreotide 
caused significant tumor growth inhibition at 150 nM/
kg and 300 nM/kg, and significantly lengthened the 
tumor doubling time and considerably decreased tumor 
micro vessel density at these doses. Increased amount of 
fragmented DNA was seen in the 2paclitaxel-octreotide 
single and double dose groups relative to the controls 
[262]. Similarly, Sun et al. developed paclitaxel-octreotide 
conjugates which dose- and time-dependently inhibited 
the growth of NSCLC cells A549 and Calu-6. Paclitaxel 
and the conjugates could stimulate the increase of G(2)/M 
phase ratio in A549 cells [263]. A noteworthy point is that 
the conjugates had less cytotoxicity than paclitaxel-alone 
in SSTR-negative fibroblasts.

Conclusions and Perspectives

Overexpressed peptide GPCRs are valuable 
biomarkers for cancer diagnosis, imaging, and treatment. 
While CCKBR [24], and B1R [264] are not expressed in 
normal lungs but only in cancerous lungs, all the other 
receptors included in the present review are expressed in 
both normal lungs as well as cancerous lungs; however 
they are upregulated in cancerous lungs. In this regard, 
CCKBR and B1R are ideal therapeutic targets for lung 
cancer because minimal side-effects can be expected. 
In contrast, the expression of other receptors in normal 
tissues must be considered when targeting ligands are 
assessed for use as imaging or therapeutic agents. In 
addition, normal tissue samples from the primary tumor 
organ site should be scrutinized prior to a receptor’s 
designation as an overexpressed or upregulated entity, and 
normal tissues from multiple organ sites for concern for 
toxicity should be examined prior to the determination of 
a marker as an appropriate entity for the ligand targeting 
of therapeutic agents, or for concern for background signal 
interference prior to the targeting of imaging agents [265].

It is likely that, except somatostatin, all 
neuropeptides mentioned in this article bind to their 
overexpressed cognate receptors on cancer cell surfaces 
to establish an autocrine loop by inducing growth of the 
tumor cells they originate from, promoting neoplastic 
growth. Using peptide and nonpeptide antagonists to 
interrupt this autocrine loop has been proven an effective 
approach for the inhibition of tumor growth in vivo as 
well as in vitro in preclinical studies. In the coming years, 
these anti-autocrine therapies may be tested alone in 
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clinical trials to determine the optimal dose for humans 
and evaluate the safety profile, or with immunotherapies 
to generate synergistic effects. For peptide antagonists, 
due to the inherent serum instability and renal infiltration, 
modifications such as cyclization or PEGlyation could be 
applied to improve their pharmacokinetics profile. 

With high affinity and specificity, peptide ligands 
of overexpressed GPCRS are good carriers to deliver 
cancer-toxic agents. Since most studies involving the 
targeted delivery of cytotoxic agents were performed 
in various tumor types excluding lung cancer, future 
studies could investigate peptide-conjugated nanocarriers/
targeted delivery systems in lung neoplasm [266]. For 
example, besides using vasopressin as targeting peptide in 
radiopharmaceuticals for tumor imaging and diagnosis, the 
use of the peptide in targeted delivery system for therapeutic 
purposes is deemed scientifically viable and appropriate 
for tumors overexpressing vasopressin receptors [267]. 
Therefore, the incorporation of vasopressin and/or its 
agonists to targeted delivery systems could be a future step 
for research and development of targeted therapy for cancer. 

With the highest mortality rate worldwide and the 
various concerns associated with existing treatments, 
lung cancer requires urgent attention from the scientific 
community. Targeting peptide GPCRs that are ectopically 
expressed in lung tumor, qualify as promising candidates 
for lung cancer treatment in the near future. The successful 
results obtained from the use of SSAs in growth hormone-
secreting tumors bears witness to this insight. 
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