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Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional
modules associated with specific cancer types is very important to understand the distinct functions associated with them.
Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification
of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis.
Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different
cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-
protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derivedmodules; and
(iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally
determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional
modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent
the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool
to discover cancer-type specific functional modules from large protein-protein interaction networks.

1. Background

PPI networks represent the cross talk among groups of
proteins, which have a wide range of biological implications
[1, 2]. Computational analysis has become an indispensable
tool in understanding the functional significance of PPI
networks, given the large volumes of PPI data available
from systems biology experiments. Specifically, graph theory
based computational methods have been widely used to
analyze PPI networks [3, 4]. For example, graph kernels and
graph alignments have been used to compare similarities
between networks [5]; and graph-clustering and module
detection have been used to identify functional modules in
PPI networks [6]. For a thorough description of different
graph-mining algorithms that have been applied to study
biological interaction networks, please refer to a recent review
[7].

In a previous study [8], we collected differentially
expressed genes (DEGs) between tumor and normal samples
from microarray studies of nine different solid tumor types,
using the Oncomine database [9]. We constructed nine
cancer-type specific PPI networks by mapping DEGs to
PPIs of five human protein interactome databases including
IntAct [10], MINT [11], HPRD [12], DIP [13], and BIND
[14]. We studied the commonality among the nine PPI
networks and identified the commonmodules that frequently
occur in these networks. These common modules could be
functionally important as they were frequently identified
in multiple cancer types. In fact, these modules have been
closely associated with cancer-related processes such as tran-
scriptional regulation, cell growth, and cell proliferation [8].
While finding common functional modules (subgraphs) that
exist among many cancer types was very useful, it is more
valuable to find the modules that are specific to only one
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cancer type. In contrast to our previous study, this study
is focused on discovering distinct cancer-specific functional
modules that could offer direct targets for effective drug
discovery. Distinct modules are those that exist exclusively
in one network and can be discovered by finding distinct
patterns in PPI networks. From the graph theory perspective,
identification of distinct patterns is differential from identifi-
cation of common patterns, in that the latter converges as the
size of modules increase, while the former diverges.

Existing algorithms, such as RNSC (Restricted Neigh-
bourhood Search Clustering), are effective in extracting
modules from networks (more details on the existing algo-
rithms are provided in Supplementary File 1) (see Supple-
mentary File 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/146365). RNSC is a local
search-based, graph-clustering algorithm that defines a näıve
cost function and a scaled cost function, resulting in the
lowest clustering cost among comparable methods [15].
Starting from an initial random clustering, RNSC moves
vertices among different clusters in order to reduce the cost.
RNSC maintains a list of moves referred to as Tabu list,
which should be avoided to speed up the process. Once
the modules are extracted, it identifies distinct modules that
exist only in one network but not in the others. Subgraph
query algorithms are used to determine whether a module
exists in a given network. Such methods require a subgraph
isomorphism test, and as a result querying is computationally
expensive. SPath is a subgraph query method [16], which
maintains a neighborhood signature (NS) consisting of a
group of node sets indexed by shortest path distance, for
each vertex. During the subgraph query, NS of the vertices
are used to generate the shortest paths of the query graph. A
few of the shortest paths are selected to represent the whole
query graph. Another approach is graph indexing, which
is frequently used as an optimization technique in graph-
mining. GraphGrep [17] is a graph indexing algorithm that
enumerates all the paths up to a certain length in a network
and indexes them as a means to later identify every graph
that contains all the paths. Yan et al. proposed a method for
quick graph indexing and pattern search known as gIndex
[18], which performs graph-based indexing instead of path-
based indexing. It uses discriminative fragments to index the
networks and is therefore suitable for complex query graphs.

In this study, we developed a new graph theory based
method to identify distinct modules between the nine PPI
networks, where each network belongs to a distinct cancer.
We divided the task into three steps: (1) We used RNSC
[15], a local search algorithm that divides networks into
nonoverlapping substructures to identify modules in net-
works. (2) We found distinct subgraphs among the identified
modules. And (3) we extracted patterns from the distinct
subgraphs and searched for these patterns in other networks.
If a pattern does not exist in other networks, we defined it as
a distinct module. Using this method, we identified distinct
modules or subgraphs that are unique to a given cancer type.
We also verified if the unique subgraphs indeed represent
PPI networks in specific cancer types using quantitative
validation methods. To our knowledge, this work represents
the first attempt to identify distinct functional modules in

cancer using large-scale PPI networks and graph theory based
algorithms.

2. Methods

Our method includes three steps: module detection using
RNSC, distinct subgraph identification, and distinct pattern
identification. We first introduce preliminary concepts and
then explain the details of each step in the methodology.

2.1. Graph Theory Preliminaries

Graph. A graph is a pair 𝐺 = (𝑉, 𝐸), where 𝑉 is the node set
and 𝐸 ⊆ 𝑉 × 𝑉 is the edge set.

Labeled Graph. A labeled graph is a triple𝐺 = (𝑉, 𝐸, 𝜇), where
𝑉 is the node set, 𝐸 ⊆ 𝑉 × 𝑉 is the edge set, and 𝜇 is the
function assigning labels to vertices.

Graph Isomorphism. Given two graphs 𝐺 = (𝑉, 𝐸) and 𝐺 =
(𝑉

, 𝐸
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Subgraph Isomorphism. Given two graphs, 𝐺 and ℎ, if there
exists a subgraph 𝑔 in𝐺 such that 𝑔 is graph isomorphic to ℎ,
then ℎ is subgraph isomorphic to 𝐺.

Graph Patterns. Given a labeled graph𝐺 = (𝑉, 𝐸, 𝜇), the graph
pattern of 𝐺 is an abstraction graph 𝑃 = (𝑇, 𝐸) such that
𝑇 = {𝜇(V) : V ∈ 𝑉}. The graph pattern is a special case of the
graph isomorphism.When the bijective function in the graph
isomorphism is defined to be the assignment of same vertex
labels, graphs that belong to the same patterns are isomorphic
to each other.

2.2. Module Detection Using RNSC. We used RNSC algo-
rithm to generate modules for each of the nine cancer
PPI networks. RNSC divides a graph into nonoverlapping
connected components, each of which is defined as amodule.
The results of RNSC clustering depend on the parameter
setting. We set up the following parameters for our RNSC
runs.

(1) Tabu list tolerance: Tabu list stores the vertex moves
that should be avoided. Tabu list tolerance is the
number of times a vertex must appear in the Tabu list
before it becomes forbidden to move the vertex. We
chose 1 for this value.

(2) Tabu length: the number of items that are stored in a
Tabu list (we set it to 50).

(3) Naive stopping tolerance: the number of steps the naive
schemewill continuewithout improving the best cost.
It determines when to stop running for the naive
scheme (we set it to 15).

(4) Scaled stopping tolerance: the number of steps the
scaled scheme will run without improving the best
cost (we set it to 15).
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Figure 1: Canonical labeling of a subgraph. The label at the bottom
of the figure includes the list of nodes sorted in a given order [in
square brackets] followed by the concatenated adjacency matrix.

(5) Diversification frequency: it represents the shuffling
diversification frequency or the destructive diversifi-
cation frequency, depending on which diversification
scheme is used (we set it to 50).

(6) Shuffling diversification length: the number of moves
for shuffling diversification. If this parameter is set,
shuffling diversification will be performed instead of
destructive diversification (we set it to 3).

2.3. Distinct Subgraph Identification. Distinct modules are
not only the unique subgraphs, but also the unique subgraph
patterns (a subgraph can have many patterns based on the
edge topology) in networks. From the modules generated
by RNSC, we searched for those that exist uniquely in each
network.We used canonical labels [8] to represent subgraphs
in order to quickly identify distinct subgraphs.

2.4. Module Labeling. In McKay’s canonical graph labeling
algorithm [19], the concept of canonical labeling for graphs
was introduced.The basic idea is to represent relational graph
data using a sequence of symbols that can uniquely identify
a graph. Conversely, a graph must be able to be converted
to the same sequence of symbols all the time. Koyuturk et
al. proposed to use the concatenation of upper triangle of
adjacency matrix as the canonical label of graphs [20]. For
a graph without edge weights, its adjacency matrix is a binary
matrix in which every row or column corresponds to a node
in the graph.The value at the row 𝑖 and column 𝑗 of thematrix
is “1” if there is an edge connecting node 𝑖 with node 𝑗, and
“0” otherwise. For an undirected graph, its adjacency matrix
is symmetric on the main diagonal.Therefore, we can use the
upper right triangle of the adjacency matrix to fully represent
a graph. An example of the subgraph labeling is shown in
Figure 1.

2.5. Distinct Subgraphs. The network modules generated by
RNSC may only contain one node. When we identified
distinct modules, we set the threshold of minimum number
of edges contained in a module as three, considering the
smaller the node or edge size the lesser the distinctness. We
built a hash table for each network that stores the mapping
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List of expanded 
patterns
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Figure 2: Data structures for distinct pattern identification. Data
structure 1 stores the mapping between subgraphs and the edge
patterns contained in the subgraphs. Data structure 2 stores the
reversed indices from edge patterns to subgraphs containing the
patterns. Data structure 3 stores expanded patterns for given
patterns.

between the canonical labeling and the actual subgraph. For
the modules in each network, we filtered out those that also
appear in other networks. We also filtered out the modules
that are subgraphs of other modules based on the edge set
enclosure.

2.6. Distinct Pattern Identification. To label the graph nodes
in a PPI network, we used a sequence alignment algorithm to
cluster protein sequences intomutually exclusive groups [21].
Proteins present in the same clusterwere deemed functionally
similar to each other and were assigned the same label. We
used stringent criteria of 90% sequence identity over 95% of
the length of each sequence and reduced the original set of
18,888 proteins to 14,838 clusters. All proteins in the given
cluster contain the same label prefix. For example, cluster 𝑎
containing 𝑛 number of proteins is labeled as 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
.

The total number of proteins is the union of all proteins from
all cancer networks, so each network contains a subset of
these proteins.

A graph pattern is the abstraction of graphs created
by maintaining the same topology and vertices. In order
to facilitate the pattern comparison, we created three data
structures as depicted in Figure 2. The first data structure
stores list of edge patterns for each subgraph. Edge patterns
are the edges in the subgraphs, with vertices replaced by
labels. Since our PPI networks are undirected graphs, the
order of vertices in edge labels was not considered when
assigning patterns. We added a number to the end of the
edge pattern to indicate how many times that edge pattern
occurred in the graph. For example, edges a1-b1 and b2-a5
belong to the same pattern, A-B [8]. If a graph has three
edges of A-B pattern, it will point to A-B (3) edge pattern.
The second data structure maintains a list of subgraphs that
contain the edge patterns. Similar to the graph indexing
technique used in GraphGrep [17], the second data structure
is a reverse index from the edge pattern to the subgraphs. It
can speed up the searching of subgraphs to a greater extent.
The third data structure stores the expanded patterns for each
edge pattern. Expanded patterns are the edge patterns with
the same gene combination but higher count; that is, for
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//construct data structure
(1) Define hash table h edgepatterncnt all
(2) for every subgraph 𝑔

𝑖
in list subgraphs

(3) define hash table h edgepattern cnt
(4) for every edge in 𝑔

𝑖

(5) store key: value pair, key is the edge pattern, value is count of pattern
(6) end for
(7) store key: value pair in h edgepatterncnt all, key is a unique ID, value is an object

which stores the concatenation of key and value pair h edgepattern cnt,
(8) end for
(9) for every subgraph 𝑔

𝑖
in list subgraphs

(10) define a list of IDs pointing to h edgepatterncnt all (data structure 1)
(11) end for
(12) for every object in h edgepatterncnt all
(13) define a list of IDs pointing to list of subgraphs (data structure 2)
(14) end for
//perform query
(15) for every subgraph 𝑔

𝑖
in list subgraphs

(16) define set of subgraphs with matching patterns s match
(17) use data structure 1 to get list of IDs
(18) expand list of IDs to include more occurrence of patterns
(19) for every id in IDs
(20) use data structure 2 to get set of subgraphs s thismatch
(21) if first id then s match = s thismatch
(22) else s match = s match ∩ s thismatch
(23) end for
(24) if s match is empty after excluding 𝑔

𝑖
itself then include 𝑔

𝑖
into distinct modules

(25) else verify matching(𝑔
𝑖
, s match)

(26) end for

Algorithm 1: Distinct pattern detection (list of subgraphs).

edge pattern A-B (2), the expanded patterns are all A-B (𝑘)
patterns, where 𝑘 > 2.

With the three data structures, we can largely reduce
the number of potential matching subgraphs for a given
subgraph. Given a subgraph, we performed some preliminary
filtering based on its number of nodes and number of
edges. Subgraphs from other networks were filtered out if
their number of nodes or edges is smaller than that of the
given query subgraph. We got the query subgraph’s edge
patterns from the first data structure and then expanded the
edge patterns by supplementing their expanded patterns. For
example, if A-B (2) is in the edge pattern, then we will include
all A-B (𝑘) patterns, where 𝑘 > 2, to the pattern list. The
purpose of the pattern expansion is to find subgraphs that
contain the query graph pattern as a subgraph.The expanded
edge patterns were used to search matching subgraphs. For
each edge pattern of the query subgraph, we got the list of
subgraphs containing the pattern based on the second data
structure and then intersected the subgraphs to obtain the list
of subgraphs that may potentially match the pattern of the
query graph. If the resulting list is empty, the query subgraph
has a distinct pattern and therefore is a distinct module. If
the resulting list is not empty, further verification is required
to examine whether the query subgraph really matches the
discovered subgraphs. The pseudocode for the algorithms is
given in Algorithms 1 and 2.

We verified whether or not the query subgraph and the
matching subgraphs contain the same edge patterns based on
node information. From the query subgraph, we selected the
node with the highest degree and looked for its counterpart
in the matching subgraphs. If the counterpart does not exist
in one matching subgraph, we filtered out the subgraph.
Otherwise, we extended the search to look for the next node
that is connected to the previous node and had the highest
degree. The process was halted whenever a node from the
query subgraph could not be matched to any node in the
other subgraph. If all nodes in the query graph were mapped
to their counterparts in the other subgraph, then we found a
truly matching subgraph of the query subgraph. For a query
subgraph, if all of its matching subgraphs were filtered out,
then this query graph was included into the distinct module
set. Since the subgraphs with less than three edges do not
contain enough interaction information, we used only those
subgraphs with three or more edges for further analysis.

The running time and resource requirements for
Algorithm 2 are very high, as it tries to match subgraphs
node by node. This is similar to a depth-first search, but
without the backtrack process. However, Algorithm 2 runs
only on a limited set of subgraphs since Algorithm 1 has
effectively filtered out all the nonmatching subgraphs, leaving
only a few potential candidates. This helps reduce the overall
running time of the method.
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(1) for every graph mg in matchingGraphs
(2) find node with the highest degree in 𝑔, denoted as 𝑛, mark as visited
(3) look for node in mg with the same label and degree as 𝑛
(4) if such node doesn’t exist
(5) skip to next loop
(6) else
(7) while there are nodes remaining unvisited in 𝑔
(8) find node connected node 𝑛 and with the highest degree
(9) or find node with the highest degree if no node is connected to 𝑛
(10) assign the node to 𝑛, mark 𝑛 as visited
(11) look for node in mg with the same label and degree as 𝑛
(12) if such node doesn’t exist
(13) Skip to next loop on line (1)
(14) else do nothing
(15) end while
(16) if all nodes in 𝑔 are visited,
(17) mg is a matching subgraph, 𝑔 is not distinct, halt
(18) end for
(19) include 𝑔 into distinct modules

Algorithm 2: Verify matching (graph 𝑔, list of matchingGraphs).

2.7. Calculation of GO Semantic Similarity. Thesemantic sim-
ilarity of GO terms between two interacting proteins was
calculated for all possible pairs of proteins in the human PPI
network. The GO terms associated with each protein were
obtained from the GO database. The GO annotation (GOA)
for a protein can be based on three concepts: biological pro-
cess (P), molecular function (F), and cellular component (C).
The best semantic similarity measure between the GO terms
of the two proteins, under each GO concept, was determined
for all pairs of proteins using the method proposed by Brown
and Jurisica [22].

The probability of minimum subsumer, 𝑃ms, was deter-
mined separately for biological process (P) and molecular
function (F) and cellular component (C) using the following
derivation: (i) Let 𝑔

𝑖
and 𝑔

𝑗
represent the set of GO terms

from proteins 𝑖 and 𝑗, respectively; (ii) let 𝑆(𝑔
𝑖
, 𝑔
𝑗
) represent

the set of shared parental GO terms of 𝑔
𝑖
and 𝑔

𝑗
; (iii) let 𝐺

𝑐

represent GO concept P, F, or C; and (iv) let 𝑔
𝑝
be a shared

parental GO term. Then, 𝑃ms is calculated as the probability
of minimum subsumer (the least frequent of all the parental
GO terms in the set), over each concept. Consider

𝑃ms (𝑔𝑖, 𝑔𝑗) = min
𝑆(𝑔𝑖 ,𝑔𝑗)|𝐺𝑐

{𝑝 (𝑔
𝑝
)} . (1)

A similaritymeasure based on this probability is then cal-
culated as the negative log probability ofminimum subsumer,
using the following equation:

Sim (𝑔
𝑖
, 𝑔
𝑗
) = − ln (𝑃ms (𝑔𝑖, 𝑔𝑗)) . (2)

The similarity score between a pair of GO terms is higher
if they share a common parent containing more specific GO
term (less frequent), and vice versa. The total similarity score
is the sum of the best similarity scores from each concept.

2.8. Validation of the Cancer-Type Specific Distinct Sub-
graph Patterns. We used the IPA (Ingenuity Systems, http://
www.ingenuity.com/) PPI data to validate the cancer-type
specificity of the distinct subgraph patterns that we generated
in this study. IPA is a system that yields a set of networks
relevant to a list of genes based on the curated records
contained in the Ingenuity PathwaysKnowledge Base (IPKB),
which were constructed by collecting experimental evidence
published in literature.When a list of genes is fed into IPA, its
core analysis toolmaps the gene list to the IPKB and generates
molecular interaction networks that are most likely relevant
to the input gene list. We input all the nodes in the distinct
subgraphs relevant to each cancer PPI network into IPA and
generated the human cancer-type specific PPI networks by
selecting appropriate parameters. These parameters include
“Human” in the “Species” options and specific-type of cancer
cell lines in the “Tissues and Cell Lines” options. We gener-
ated six PPI networks related to breast, cervical, colorectal,
melanoma, pancreatic, and prostate cancers. We could not
generate PPI networks related to bladder, esophagus, and
gastric cancers because IPA does not have these three cancer
types listed in the “Tissue and Cell Lines” options. Finally,
we mapped our distinct subgraphs to the IPA generated
networks to validate if corresponding subgraphs are indeed
cancer-type specific.

3. Results and Discussion

3.1. Cancer Protein Interaction Networks. Cancer PPI net-
works were constructed from a comprehensive, nonredun-
dant dataset of experimentally derived PPIs that were col-
lected from fivemajor databases including IntAct [10], MINT
[11], HPRD [12], DIP [13], and BIND [14]. Since PPI data
that are specific to a cancer type do not exist in the public
domain, we used all the available PPI datasets for humans
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Table 1: Number of distinct modules, distinct subgraphs, and distinct patterns generated for each cancer PPI network.

Cancer PPI
Network Protein count Edge count Node count Number of

modules
Number of

distinct subgraphs
Number of

distinct patterns
Bladder cancer 29286 47909 10726 5129 510 154
Breast cancer 26498 33558 8611 6565 508 161
Cervical cancer 22447 19332 6288 1144 167 46
Colorectal cancer 40905 58212 13273 6357 638 289
Esophagus cancer 13380 13405 4218 767 103 29
Gastric cancer 28224 41289 9707 4038 425 116
Melanoma cancer 22421 30843 7677 2204 322 99
Pancreatic cancer 37160 52125 12199 5581 500 153
Prostate cancer 27598 41658 9621 3070 396 133

from five major databases as the basis for our studies.
In our final human PPI network, there are 19,710 unique
proteins representing 95,931 unique interactions. Note that
this unique set of proteins exhibit some level of redundancy
because splice variants with minimal sequence differences
are included as unique proteins due to the fact that PPIs are
isoform-specific.

We collected differentially expressed genes (DEGs)
between tumor and normal samples frommicroarray studies
of nine different solid tumor types using the Oncomine
database [23]. Oncomine is a cancermicroarray database that
provides access to DEGs on most major types of cancer. For
each type of cancer, DEG lists are available from multiple
experiments, where the 𝑞-values (a variant of 𝑃 value) for
a gene vary from experiment to experiment. Therefore, we
chose only DEGs whose average 𝑞-values are equal to or
smaller than 0.05. The gene lists were then mapped to
protein lists using our in-house mapping tools. The number
of proteins is roughly two times the number of genes due
to the multiple mappings between genes and proteins. These
proteins were further mapped to the proteins in the human
PPI network to create nine cancer-specific PPI networks.
Table 1 summarizes the number of genes and proteins and the
corresponding network size associated with each cancer type.

3.2. Identification ofDistinctModules, Subgraphs, and Patterns
from Cancer PPI Networks. Distinct subgraphs and subgraph
patterns are those that exist in only one cancer PPI network
but not in the others. A distinct pattern may contain multiple
distinct subgraphs; that is, there is one-to-many relationship
between a distinct pattern and distinct subgraphs. To find
the distinct patterns, we first identified all distinct subgraphs
and then extracted patterns from them. In the worst case,
the number of distinct subgraphs is 𝑂(𝑑

𝑘
), where 𝑘 is

proportional to the number of edges (𝑑) in networks. Because
the computational complexity in this case is intractable, an
alternative way to make this tractable is to first identify the
modules and then find distinct modules. We obtained a large
number of modules for each of the nine cancer PPI networks
using RNSC. Table 1 shows cancer PPI network statistics, the
number of modules generated for each cancer PPI network,
and also the number of corresponding distinct subgraphs and

patterns that would be generated in the subsequent steps.
Figure S3 in Supplementary File 1 shows examples of multiple
distinct subgraphs that map to a distinct pattern.

From the network modules generated by RNSC, we
identified hundreds of distinct subgraphs for each of the nine
cancer PPI networks (Table 1) by filtering out those that also
appear in other networks, including those that are subgraphs
of other modules based on the edge set enclosure. We identi-
fied distinct subgraph patterns by comparing and filtering out
graph patterns that have the same topology and vertices (or
those with the same cluster label). Some of them, however,
have instances of the same pattern appearing in multiple
networks. For distinct pattern identification, we selected
those patterns that are only occurring in one network as
modules. We did not select those that are occurring in other
networks, either as modules or as subgraphs of modules. The
total numbers of modules, distinct subgraphs, and distinct
subgraph patterns for each cancer PPI network are shown
in Table 1. The numbers of distinct subgraphs and distinct
patterns generated in each cancer type are proportional to
the number of modules obtained in corresponding cancer
networks, suggesting that each cancer type has its own set
of functional processes that are carried out through different
number, type, and topology of interacting proteins.

Figures 3 and 4 show the size distribution of distinct
subgraphs and distinct patterns in the nine cancer PPI
networks, as a function of their edge count. The number
of distinct subgraphs declines quickly from 3- to 5-edge
subgraphs and almost flattens out beyond 5 edges for all the
nine cancer types (Figure 3). The number of distinct patterns
(Figure 4) follows a similar trend, except that they show
some variation across different cancers until the patterns
reach 9 edges. Obviously, the most frequently occurring
subgraphs and patterns are 3-edge subgraphs across all the
cancer networks.These observations indicate thatmost of the
distinct subgraphs and distinct patterns in different cancers
are formed by a smaller number of interacting partners (with
only 3–5 edges) that can be easily associated and dissociated
in the cellular environment.

3.3. Biological Relevance of Distinct Patterns. To determine if
the identified subgraph patterns are biologically meaningful
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Figure 3: Size distribution of distinct subgraphs in the nine cancer
PPI networks. The 𝑥-axis represents the size of subgraphs (number
of edges), and the 𝑦-axis represents the number of subgraphs at each
size.
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Figure 4: Size distribution of distinct patterns in the nine cancer
PPI networks. The 𝑥-axis represents the size of subgraph patterns
(number of edges), and the 𝑦-axis represents the number of
subgraph patterns at each size.

or not, we compared the semantic similarity of Gene Ontol-
ogy (GO) terms corresponding to the interactions (edges)
in the subgraph patterns against those from the randomly
generated subgraph patterns in the same 𝑛-edge group, where
𝑛 varies from 2 to 12. Semantic similarity [22] provides a
quantitative measure (with a score range of 0–10) of how
similar a pair of proteins is, based on the GO annotations.
Because the interacting proteins are more likely associated
with similar cellular processes and/or involved in similar
function, this similarity measure is higher for functionally
related proteins, and vice versa. This concept has been

Random subgraph GO score versus distinct pattern GO score
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Figure 5: Comparison of GO semantic similarity score. The GO
semantic similarity score of distinct patterns is consistently higher
than random subgraphs.
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Figure 6: Distribution of distinct subgraphs in PPI networks across
the IPA cancer-specific networks.

very effective in interpreting the functional similarities of
genes/proteins based on gene annotation information from
heterogeneous data sources [8, 24]. As shown in Figure 5,
the GO semantic similarity score of distinct patterns is
consistently higher than the randomly generated subgraphs
at all 𝑛-edge groups, suggesting that the identified subgraph
patterns are biologically relevant.

3.4. Validation of Cancer-Specific Distinct Subgraph Patterns.
In this experiment, we validated the distinct subgraph pat-
terns identified in our study against experimentally known
caner-specific PPI networks obtained from the Ingenuity
Pathway Analysis (IPA) Knowledge Base. Cancer-specific
network information was not available for bladder, esoph-
agus, and gastric cancers from IPA; therefore we used only
six cancer networks for the validation study. Figure 6 shows
the distribution of distinct subgraphs across different cancer-
specific networks based on the percentage of the distinct
subgraphs that have at least one overlapping edge with each
of the six IPA cancer networks. Because the available PPI data
is incomplete, we counted those subgraph patterns that have
at least one overlapping edge in a cancer-specific network.
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Table 2: Comparison of edge overlapping rate between two groups of distinct subgraphs.

Nine PPI networks Six IPA networks
Breast Cervical Colorectal Melanoma Pancreatic Prostate

Bladder 1.13 ∗ 10
−5 0.0026 1.0 ∗ 10

−4
2.11 ∗ 10

−6 0.048 8.47 ∗ 10
−8

Breast NA 0.0015 9.7 ∗ 10
−4

1.93 ∗ 10
−7 0.15 7.93 ∗ 10

−7

Cervical 1.71 ∗ 10
−7 NA 0.0039 9.2 ∗ 10

−8 0.173 2.84 ∗ 10
−8

Colorectal 8.6 ∗ 10
−4 0.0014 NA 2.59 ∗ 10

−7 0.033 3.07 ∗ 10
−7

Esophagus 1.72 ∗ 10
−5 0.0016 2.38 ∗ 10

−11
1.07 ∗ 10

−5 0.024 2.45 ∗ 10
−5

Gastric 6.0 ∗ 10
−4 0.0014 1.18 ∗ 10

−6
1.96 ∗ 10

−7 0.024 8.7 ∗ 10
−6

Melanoma 8 ∗ 10
−4 0.0019 1.08 ∗ 10

−6 NA 0.024 6.7 ∗ 10
−6

Pancreatic 2.7 ∗ 10
−7 0.0014 3.65 ∗ 10

−5
7.5 ∗ 10

−6 NA 2.65 ∗ 10
−7

Prostate 1.01 ∗ 10
−5 0.0015 5.08 ∗ 10

−8
7.1 ∗ 10

−4 0.046 NA
Note: for each of the six IPA networks (column), the 𝑡-test 𝑃 values are shown by comparisons of the edge overlapping rate of distinct subgraphs and the IPA
network between the group of distinct subgraphs with the same cancer type as the IPA network and each of the other groups of distinct subgraphs with different
cancer types from the IPA network.

It is expected that the group of distinct subgraphs from
a given cancer type will have more overlapping edges in
its corresponding IPA cancer network but less overlap in
the dissimilar networks. As seen in Figure 6, the distinct
subgraph patterns from all the PPI cancer networks are
highly enriched in the corresponding IPA cancer networks
compared to other cancers. It is also evident that unlike all
the other cancers, the distinct subgraphs in pancreatic cancer
are generally not highly enriched despite having one of the
highest numbers of distinct subgraphs and subgraph patterns
(Table 1) in this cancer type. The reason for this could be due
to the IPA pancreatic cancer network having much smaller
scale compared to almost all the other caner networks (there
are 921, 71, 1689, 346, 52, and 549 edges contained in the
IPA breast, cervical, colorectal, melanoma, pancreatic, and
prostate cancer networks, resp.).

As the sizes of 𝑛-edge subgraph patterns vary, we defined
the edge overlapping rate of a subgraph with an IPA network
as the ratio of the number of overlapping edges to the
total number of edges in a subgraph. We calculated the
edge overlapping rate for all the distinct subgraphs in the
six IPA networks (as shown in Supplementary File 2). For
each cancer, we carried out a one-sided 𝑡-test by comparing
the overlapping rates of subgraphs from the same cancer
versus those from all the other cancers (with the hypothesis
that the distinct subgraphs from a given cancer will have
higher edge overlapping rate in the IPA network of the same
cancer type). Table 2 lists all the 𝑡-test 𝑃 values, showing
that overlapping rates of subgraphs from dissimilar cancers
are significantly lower than those from the same cancer (𝑃
value < 0.05) with the exception of two cases in pancreatic
cancer. Again, the dismal performance of subgraph patterns
in pancreatic cancer may be attributed to the lack of sufficient
cancer-specific data for this cancer in the IPA network. Since
the IPA networks were constructed based on experimental
evidence, the significantly lower overlapping rates of edges
from distinct subgraphs of different cancer types indicate that
the distinct subgraph patterns we identified are cancer-type
specific.

Figure S4 in Supplementary File 1 shows one example
of a caner-type specific PPI module corresponding to each
of the breast, cervical, colorectal, melanoma, pancreatic, and
prostate cancers based on the IPA data. These patterns are
worthy of experimental verification in corresponding can-
cers since experimental evidence that supports the cancer-
specificity of these patterns is insufficient.

4. Conclusions

In this study, we developed the methodology to extract the
distinct functional modules from nine cancer-specific PPI
networks. In order to identify distinct modules we employed
a 3-step strategy. The first step is to search for modules in the
networks. We used RNSC, a local search algorithm, to divide
each network into nonoverlapping partitions based on the
network’s connectivity. In the second step, distinct subgraphs
that uniquely exist in single networks were identified from
the modules discovered in the first step. In the third step,
we filtered the distinct subgraphs to keep only those that
have unique patterns across the networks. We implemented
canonical labeling to expedite the identification of unique
subgraphs in the second step and graph indexing for fast
retrieving of subgraphs based on edge patterns in the third
step.

The subgraph patterns identified in this study are more
biologically significant (as measured by the GO semantic
similarity) when compared to the subgraph patterns that
are randomly generated from the cancer-specific networks
(Figure 5). Validation of distinct subgraph patterns against
cancer-specific IPA networks (experiment-based evidence)
showed high correspondence between identical cancer types,
indicating that the distinct subgraph patterns we identified
are likely to be cancer-type specific. As new PPI data emerge,
we hope to use our method to identify cancer-type specific
functional modules that may contribute to specific molec-
ular pathogenesis of different cancer types. In addition, the
methodology developed in this study can also be applied to
study the PPI networks from other diseases.
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5. Glossary

Distinct Modules. When performing comparative analysis on
multiple protein-protein interaction networks, we define dis-
tinct modules as the functional modules that exist exclusively
in a subset of protein-protein interaction networks.

Distinct Subgraphs. From the given protein-protein inter-
action networks, we identify subgraphs that are significant
according to our clustering algorithm. The subgraphs that
exist exclusively in a subset of networks are distinct sub-
graphs.

Distinct Patterns. Patterns are abstraction of graphs. In the
context of this research, subgraph patterns have the same
topology as the subgraphs but with the nodes replaced by
cluster label of the original nodes. In this way, different
subgraphs may belong to the same pattern if they share the
same topology and similar nodes. Distinct patterns refer to
a stricter concept than distinct subgraphs, because distinct
subgraphs may not belong to distinct patterns if they share
topology with other subgraphs.
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