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Abstract

The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper
ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is
known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing
proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme
scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here,
we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic
mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are
copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the
mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from
the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-
ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional
pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between
copper deficiency and iron metabolism.
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Introduction

Copper and iron are essential biometals, both existing in two

main oxidation states, i.e. Cu(I)/Cu(II) and Fe(II)/Fe(III). The

extensive range of redox potential available to both metals by

varying their interactions with coordinating ligands, as well as their

capacity to participate in one-electron transfer reactions, are the

reasons why copper and iron are essential for almost all living

organisms. Both metals serve as cofactors for enzymes that

catalyze diverse redox reactions underlying fundamental metabolic

processes, including respiratory oxidation, DNA, microRNA and

neurotransmitter synthesis, oxygen radical scavenging and con-

nective tissue formation [1,2].

In mammals, iron is much more abundant than copper [3],

mainly because it is an essential component of haem in the

oxygen-carrying molecules haemoglobin and myoglobin. On the

other hand, the biological activities of copper and iron also have a

toxic aspect, since both cuprous [Cu(I)] and ferrous [Fe(II)] ions

are able to react with hydrogen peroxide in the Fenton cycle,

yielding the highly destructive hydroxyl radical, the most reactive

free radical species known. It is therefore vital that copper and iron

are carefully sequestered and transported to their intracellular

destinations. Regulatory systems have evolved to maintain iron [1]

and copper [2] homeostasis. Interestingly, some pathways of iron

homeostasis largely depend on the activity of copper-containing

ferroxidases such as caeruloplasmin (Cp) and hephaestin. The

former is mainly synthesized in hepatocytes in the form of apo-Cp.

Incorporation of copper into apo-Cp results in the formation of the

redox-active holoenzyme and is mediated by the P-type ATPase,

ATP7B during transit through the trans-Golgi network. Cp is then

secreted to the circulation where it functions to deliver copper to

other tissues. Although Cp-bound copper accounts for about 90%

of the total serum copper, it is not indispensable for efficient

copper distribution in the body [3,4,5]. It has been shown that an

alternative spliced glycosylphosphatidylinositol (GPI) variant of Cp

(Cp-GPI) originally characterized in the brain [6] is of particular

importance for iron metabolism [3,5]. Cp-GPI cooperates with

ferroportin (Fpn), the sole cellular iron exporter known in
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mammals [7], to facilitate the movement of iron out of cells. First,

ferrous ions transported into the circulation by ferroportin are

oxidized by Cp-GP1 and ferric ions are then bound by transferrin.

Second, Cp-GPI is required for the stability of cell surface

ferroportin [8].

Copper deficiency has not been reported to significantly and

directly influence ferroportin gene expression [9,10], but on the

other hand, treatment of J774 macrophage cells with copper has

been shown to induce ferroportin and to increase iron efflux from

these cells [11]. The cooperation Cp-GPI and ferroportin is crucial

for iron recycling by reticuloendothelial cells and iron release by

hepatocytes [3]. The role of Cp in iron metabolism has been

reported in the congenital human disease acaeruloplasminemia, in

which mutations in the caeruloplasmin gene lead to hypoferraemia

and iron loading in the liver [12,13]. Hepatic iron overload also

occurs in acquired copper deficiency and is likely mediated by

hypocaeruloplasminemia [14]. Furthermore, iron overload was

reported in Wilson disease, a genetic disorder caused by the

mutation in ATP7B gene. The lack of ATP7B activity in patients

with Wilson disease results in impaired copper loading to apo-Cp

and in consequence in decreased Cp ferroxidase activity [15].

Hephaestin shares 50% homology with Cp and is a ferroxidase

required for the egress of iron from intestinal enterocytes into the

circulation. Sex-linked anaemia (sla) mice, carrying mutations in

the gene encoding hephaeastin develop moderate to severe

microcytic hypochromic anaemia [16]. Systemic iron deficiency

has been also reported in copper-deficient mice displaying

decreased hephaestin ferroxidase activity in the intestine [17].

Evidence of the nutritional requirement for copper in maintaining

iron homeostasis dates back to the study of Hart et al. in 1928, in

which copper was found to be necessary for haemoglobin

formation in rats fed on a copper-deficient milk-based diet [18].

Numerous examples of the correlation between copper deficiency

and poor iron status have been provided by studies on rapidly

growing suckling piglets [19,20].

In mammals, dietary copper is transferred across the apical

membrane into enterocytes in its reduced (cuprous) form by

copper transporter 1. Transport through the enterocyte basolat-

eral membrane is mediated by ATP7A, a P-type ATPase copper

transporter. In the blood copper is bound to albumin or a2-

macroglobulin and is delivered to the liver via the portal

circulation [21,22]. Copper deficiency is associated with Menkes

disease, a life-threatening pathology in man, which is due to

mutations in the ATP7A gene, resulting in defective functioning of

ATP7A [21,23]. The general pattern of copper content in the

organs of patients with Menkes disease indicates that copper is

scarce in the brain, liver and heart, while it accumulates in the

small intestine and kidneys [23]. This is consistent with the role of

ATP7A as a membrane protein transporting copper out of

duodenal enterocytes [21]. In other cells, under physiological

conditions, this protein is primarily localized to the trans-Golgi

network, but it is also detected in some other post Golgi

compartments [21]. However, when cells are exposed to increased

copper concentrations, ATP7A is trafficked to the plasma

membrane and its main role is to prevent toxic intracellular

accumulation of copper by expelling copper ions from the cell’s

interior [24,25].

Mouse Atp7a mutants closely mimicking patients with Menkes

disease serve as animal models of this inherited disorder and have

recently been extensively used to explore metabolic copper-iron

interactions [26,27]. The mosaic mutation (Atp7amo-ms) belongs to

the group of mottled mutations, which severely affect copper

metabolism, and is caused by mutation of the X-linked Atp7a
gene. In mosaic mutants, a G to C nucleotide exchange in exon 15

of the Atp7a gene results in an arginine to proline substitution in

the highly conserved 6th transmembrane domain of the ATP7A

protein. The mutated protein is mislocalized and is not

translocated to the plasma membrane [28]. Hemizygous mutant

males exhibit a severe phenotype including defects in pigmentation

and hair structure, decreased body weight, and neurological

problems such as ataxia, tremor and progressive paresis of the hind

limbs. The mosaic mutation is usually lethal by day 17 of life [28].

Here, we analyzed potential changes in iron metabolism in

copper-deficient 14-day old male mosaic mutant mice. The

conception of our study was based on the assumption that copper

deficiency may decrease the activity of Cu,Zn-superoxide dis-

mutase (SOD1), an enzyme playing a crucial role in erythrocyte

antioxidant defense, and thus may sensitize these cells to

haemolysis, a pathological condition in which systemic iron

metabolism is seriously affected [29]. Accordingly, we and others

have previously demonstrated that mice with a disrupted Sod1
gene are prone to haemolytic insult [30,31]. Our results show that

mosaic mutant mice exhibit some perturbations in systemic iron

metabolism that are characteristic of moderate haemolysis.

Materials and Methods

Animals
Mice used in these experiments were bred in the Department of

Genetics and Evolution, Jagiellonian University, and derived from

a closed outbred colony. The animals were obtained by mating

heterozygous ms/+ females with normal (+/2) males. The

experimental material consisted of two groups of 14-day-old

control (+/2) and mosaic mutant (ms/2) males. All mice were

housed at constant temperature (22uC) under artificial light (12-

hour photoperiod) and fed a standard Murigran diet (Motycz,

Poland). Experiments were performed in accordance with Polish

legal requirements under the licence of the First Local Ethical

Committee on Animal Testing at the Jagiellonian University in

Krakow (permission number: 85/2012). The animals were

sacrificed by cervical dislocation.

Blood and tissue collection
Blood samples were collected from a neck vein to EDTA-coated

tubes. The EDTA-treated whole blood was used for the immediate

preparation of smears. Blood samples were incubated at 4uC for

2 hours, and then serum and erythrocyte fractions were obtained

by centrifugation at 20006g for 10 min. The liver and kidneys

were excised from mice following laparotomy. Tissue, serum and

red blood cell (RBC) samples were immediately frozen in liquid

nitrogen and stored at 280uC prior to molecular analysis.

Measurement of erythrocyte copper content
The level of copper in erythrocytes from ms/2 and +/2 male

mice was measured by atomic absorption spectrophotometry.

Erythrocyte samples were weighed and digested in 2 ml of boiling

Suprapur-grade nitric acid (Merck). After cooling to room

temperature (RT), each sample was suspended in 10 ml of

deionized water. Reference material samples were prepared in a

similar manner. The copper concentration was measured using

the graphite furnace AAS technique (AAnalyst 800, Perkin-Elmer).

Three samples of nitric acid were used as blanks. In addition, three

samples of a standard reference material, Cu = 18964 mg/kg,

were analyzed for normalization of the obtained data.

Measurement of superoxide dismutase activity
SOD activity in erythrocyte total extracts was measured by gel

electrophoresis using the Nitroblue Tetrazolium (NBT)/riboflavin
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method as described previously [32]. Briefly, 15 mg samples of the

erythrocyte extracts were resolved by electrophoresis on 12%

polyacrylamide gels under non-denaturing and non-reducing

conditions. After electrophoresis, the activity of SOD was

visualized by immersion of the gels in staining buffer [50 mM

potassium phosphate (pH 7.8), 0.1 mM EDTA, 28 mM TEMED,

3 mM riboflavin, 0.25 mM NBT] for 30 min in the dark at RT.

Gels were then exposed to light until the SOD activity bands

became visible as bright bands on a dark blue background. The

reaction was stopped by rinsing the gels with water and they were

scanned and quantified immediately using a Molecular Imager

with Quantity One software (Bio-Rad). The activities of Cu,Zn-

SOD and Mn-SOD were distinguished by selective inhibition of

the former activity by incubation of the gels in a buffer containing

3 mM KCN prior to staining, as described by Salin and Bridges

[33].

Immunoblot analysis
SOD1 was detected in total extracts (15 mg) obtained from

peripheral erythrocytes using rabbit polyclonal anti-superoxide

dismutase 1 antibody (Abcam; ab16831). To determine plasma

haptoglobin (Hp) levels, 7 ml samples of 20-fold diluted mouse

serum were used. Hp was detected with a chicken antibody raised

against human Hp (US Biological). Its cross-reactivity with the

mouse protein was demonstrated previously [31]. Ferritin levels in

cytosolic extracts (20 mg) of mouse liver were analyzed using

purified rabbit mouse liver ferritin antiserum (kindly provided by

Dr. J. Brock, Glasgow University, Glasgow, UK) [34]. Haem

oxygenase 1 (HO1) was detected in hepatic and renal crude

membrane extracts (80 mg) using a rabbit polyclonal antibody

raised against rat liver HO1 (StressGen). Actin, the loading control

for serum and tissue extracts, was detected using an anti-human

goat polyclonal antibody (Sigma; sc1615). Immunoreactive bands

were disclosed using the ECL Plus Western blotting detection

system (Amersham Life Sciences). Reactive bands were quantified

relative to actin using a Molecular Imager with Quantity One

software (Bio-Rad).

Real-time Quantitative RT-PCR
HO1 and hepcidin (Hepc) hepatic mRNAs were measured by

real-time quantitative RT-PCR as described previously [31].

Specific cDNA fragments were amplified using the following pairs

of oligonucleotide primers: HO1, 59-GTCGTGGTCAGTCAA-

CATGG-39 (forward) and 59-TCTTGCCTGGCTCTCTTCTC-

39 (reverse); Hepc, 59-CAATGTCTGCCCTGCTTTCT-39 (for-

ward) and 59-TCTCCTGCTTCTCCTTG-39 (reverse). The

reactions were performed in a Light Cycler (Roche Diagnostics)

and Light Cycler 3.5 Software was used for data analysis.

Expression was quantified relative to that of a control transcript

encoding glyceraldehyde-3-phosphate dehydrogenase [GAPDH;

59-GACCACAGTCCATGCCATCAC-39 (forward) and 59-

TCCACCACCCTGTTGCTGTAG-39 (reverse)].

Quantitative hepatic non-haem iron measurement
The non-haem iron content of liver fragments (100 mg) was

determined by acid digestion of the samples at 100uC for 10 h,

followed by colorimetric measurement of the absorbance of the

iron-ferrozine complex at 560 nm as described previously [35].

Immunofluorescence (IF) and confocal analysis of liver
and kidney sections

After the sacrifice of mice, the liver and kidneys were

immediately excised and fixed in 4% paraformaldehyde (Sigma)

in phosphate-buffered saline (PBS) (Sigma) at 4uC for 24 h. After

washing 3 times for 30 min in PBS, both tissues were successively

soaked in 12.5 and 25% sucrose (Merck) for 1.5 and 12 h,

respectively at 4uC. The tissues were then embedded in Tissue-

Tek compound, frozen in liquid nitrogen and sectioned into 20-

mm slices using a cryostat (Leica). The sections were washed in

PBS and permeabilized by bathing in PBS/0.1% Triton X-100

(Sigma) for 10 min. Non-specific antibody binding was blocked by

incubation of the tissue sections in PBS/3% BSA (Merck) for

1.5 h. For ferroportin (Fpn) detection in the liver, sections were

incubated at RT with primary rabbit polyclonal anti-Fpn antibody

(Alpha Diagnostic) diluted 1:250 in PBS/3% BSA. The sections

were then washed 3 times with PBS and incubated with Cy3

(indocarbocyanine)-conjugated goat anti-rabbit antibody (Jackson

Immunoresearch) diluted 1:500 in PBS/3% BSA. For haem

oxygenase 1 (HO1) detection, liver and kidney sections were

prepared as described above and incubated overnight at RT with

primary rabbit polyclonal anti-HO1 antibody (StressGen) diluted

1:250 in PBS/3% BSA. The sections were washed 3 times with

PBS and then incubated with Cy3-conjugated goat anti-rabbit

antibody diluted 1:500 in PBS/3% BSA. In the liver we also

performed co-labeling of HO1 and Fpn with F4/80, a membrane

macrophage marker [36]. Liver sections were incubated overnight

with either anti-Fpn or with anti-HO-1 antibody and rat anti-

mouse F4/80 monoclonal antibody (Serotec) diluted 1:500 in

PBS/3% BSA. The sections were then incubated with a mixture of

Cy3-conjugated goat anti-rabbit antibody and Alexa 488 goat

anti-rat antibody (Jackson Immunoresearch) in PBS/3% BSA for

1 h. Finally, the sections were washed 3 times for 10 min in PBS at

RT and mounted using Vectashield with 49,6-diamidine-2-

phenylindole (DAPI; Vector Labs). As a negative control, some

sections were prepared without incubating with primary antibody.

IF was analyzed with a Zeiss LSM 510 Meta confocal microscope

(Carl Zeiss, Jena, Germany) using the 60x objective.

Statistical Analysis
Statistical analysis was performed using a two-tailed Student’s t

test, with p values of ,0.05 and ,0.01 being considered

statistically significant and highly significant, respectively.

Results

Copper deficiency and decreased SOD1 activity and
expression in erythrocytes of mutant ms/2 mice

14-day-old mosaic mutant mouse males exhibit a tissue copper

concentration pattern typical of Menkes disease, i.e. reduced levels

in both liver and brain and increased levels in both kidney and

duodenum [37,38]. Here, we analyzed for the first time the copper

content in circulating RBCs of such mutants and found that it was

nearly 60% lower compared to wild-type animals (Figure 1A).

Bearing in mind that the bioavailability of copper is crucial for

maintaining SOD1 activity at the required level [39], we then

assessed the activity of this key antioxidant enzyme in erythrocytes

of both mutant and wild-type males. Similarly to the copper

concentration, SOD1 activity in erythrocytes measured by the

NBT/riboflavin method [32] was substantially reduced in ms/2
mice as shown by densitometry of SOD1 bands (Figure 1B).

Moreover, we found that this decrease was at least partly due to

the reduced SOD1 protein level in mosaic erythrocytes, detected

by western immunoblotting (Figure 1C).

Haemolysis and Menkes Disease
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Haemolysis and haemoglobin (Hb)-scavenging systems
in mutant ms/2 mice

We and others have shown that in SOD1 knock-out (KO) mice,

erythrocytes become sensitive to rupture due to oxidative stress

and, in consequence, KO SOD1 mice display clear signs of

haemolysis [30,31]. Therefore, in the present study we attempted

to identify hallmarks of intravascular haemolysis in ms/2 mice. It

was immediately noticeable that serum obtained from the blood of

ms/2 mice, centrifuged immediately after neck vein puncture, was

a reddish color (Figure 2A). Wright staining of blood smears from

ms/2 mice revealed a large percentage of irregularly-shaped

RBCs, the morphology of which strongly resembled that of

acanthocytes (Figure 2B). We then examined the serum level of

haptoglobin (Hp), an acute phase protein that traps free Hb

released from ruptured erythrocytes and eliminates it from the

circulation [40,41]. In contrast to free Hp, the stable Hp-Hb

complex binds the CD163 receptor with high affinity and is

rapidly delivered mainly to the reticulo-endothelial system by

endocytosis [40,41]. Therefore, a decrease in the Hp concentra-

tion in the serum is generally considered a marker of accelerated

haemolysis [40,41]. Western blot analysis showed that Hp was

completely depleted in the plasma of ms/2 mice (Figure 2C),

suggesting intensive plasma clearance of free Hb.

Increase in hepatic and renal haem oxygenase 1 (HO1)
expression in mutant ms/2 mice

Hb produced by haemolysis is recovered from the circulation by

the liver in a process that entails the transcriptional induction of

HO1 expression [42], which represents the most important

protective system against haem toxicity. A comprehensive

assessment of HO1 expression and localization in the liver clearly

showed significant induction of the Hmox1 gene (coding HO1) at

both the mRNA (Figure 3A) and protein levels (Figure 3B, 3C and

3D) in mosaic mutants. Co-localization studies demonstrated that

Figure 1. Decreased copper content and activity/expression of SOD1 in circulating erythrocytes from ms/2 mice. (A) Decreased
copper content in erythrocytes of ms/2 mice. Values are expressed as the means 6 S.D. for erythrocyte samples obtained from 15 control (+/2) and
15 mutant (ms/2) males. (B) left-hand panel, the activity of SOD was measured after resolution by gel electrophoresis using the Nitroblue Tetrazolium
(NBT)/riboflavin method as described in the Experimental section. The analyses were performed using erythrocyte total extracts obtained from ms/2
and +/2 males and representative results are shown. (C) left-hand panel, SOD1 levels in erythrocytes were analyzed by western blotting as described
in the Experimental section. The analyses were performed using erythrocyte total extracts obtained from ms/2 and control (+/2) males, and
representative results are shown. The blot was reprobed with monoclonal anti-actin antibody as a loading control. (B,C) right-hand panels, the
intensity of the SOD bands was quantified with a molecular Imager using Quantity One software (Bio-Rad) and is plotted in arbitrary units to present
activity (B) and protein level (C). Results are expressed as the mean 6 S.D. for 5 mice of both the ms/2 and +/2 genotypes. Significant differences are
indicated (* – P,0.05; ** – P,0.01).
doi:10.1371/journal.pone.0107641.g001
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HO1 was mainly located in Kupffer cells in both control and

mutant males (identified by staining with the anti-F4/80 antibody

specific for a macrophage membrane marker [36]) (Figure 3D).

Quantitative RT-PCR (Figure 4A) and western blotting (Fig-

ure 4B) analyses showed that HO1 expression was also increased

in the kidney of ms/2 mice. Microscopic analysis of immunoflu-

orescent (IF) staining and transmitted light images indicated that

expression of HO1 in the renal cortex of control males expression

of HO1 occurred mainly in the renal glomeruli (Figure 4 C, upper

panel), whereas in the mutant males, HO1 expression was strongly

up-regulated in the cells of renal tubules (Figure 4C, bottom

panel).

Decreased ferroportin (Fpn) and increased hepcidin
(Hepc) expression in the liver of ms/2 mice

Assessment of the functioning of the Hepc-Fpn axis is an

indispensable element in the analysis of iron metabolism. It has

been reported that Fpn, the sole cellular iron exporter known in

mammalian cells [7], is up-regulated in the liver in various mouse

models of haemolysis [29,31]. Using IF detection we found

substantial hepatic Fpn down-regulation in ms/2 males compared

with control animals (Figure 5A). Confocal analysis of dual

staining with antibodies specific for Fpn and the plasma

membrane macrophage marker F4/80, indicated strong co-

localization, suggesting that Fpn is located in liver macrophages

(Kupffer cells) in both wild-type and mosaic mutant males

(Figure 5B). Detailed analysis of the microscopic images revealed

strong cell membrane localization of Fpn in control animals (Fpn

staining precisely overlaps that of F4/80), whereas membrane

expression of Fpn on Kupffer cells appeared much weaker in the

mutants (Figure 5B, bottom panel). Quantitative RT-PCR anal-

ysis showed an increase in the Hepc mRNA level of about 10-fold

in the livers of ms/2 mice compared with those of +/2 animals.

Assuming that systemic inflammation may be responsible for the

transcriptional induction of Hamp gene expression, it is notewor-

thy that the kidneys of ms/2 males showed clear signs of

inflammation including cellular vacuolization, necrosis of the

renal tubule epithelial cells, lymphocyte infiltration, and damage to

renal glomeruli structures [43,44].

Hepatic and renal iron status in ms/2 mice
In the context of accelerated Hb clearance and the enhanced

capacity to degrade excess haem in the liver and kidneys of ms/2
males, we investigated the consequences of these activities on the

iron status in both organs. Although our data showed a tendency

for hepatic and renal iron accumulation in ms/2 males compared

with +/2 animals (Figure 6A and 6C), the differences in non-haem

iron content between these mice were not significant (P values .

0.05). In general, the ferritin level serves as a marker of iron

loading in cells and tissues [45]. Moreover, it is usually elevated in

Figure 2. Haemolysis and acanthocytosis in ms/2 mice. (A) Serum of control (+/2) and mutant (ms/2) males obtained by centrifugation. (B)
Peripheral blood smears of ms/2 mice showing increased numbers of acanthocytes. High magnification images of a normal and an abnormally-
shaped erythrocyte are shown (insets). Six animals from both the control and ms/2 male groups were examined and one typical sample of each is
shown. Bars correspond to 5 mm. (C) Plasma levels of haptoglobin (Hp) were assessed by western blotting as described in the Experimental section.
The blot was reprobed with monoclonal anti-actin antibody as a loading control.
doi:10.1371/journal.pone.0107641.g002
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Figure 3. Increased expression of haem oxygenase 1 (HO1) in Kupffer cells of ms/2 mice. (A) Real-time quantitative PCR analysis of
hepatic HO1 mRNA expression. The histogram displays HO1 mRNA levels in arbitrary units (means 6 S.D., n = 6). (B) left-hand panel Western blot
analysis of HO1 protein levels in hepatic membrane fractions prepared from +/2 and ms/2 males. The blot was reprobed with polyclonal anti-human
actin antibody as a loading control. right-hand panel Immunolabelled HO1 bands from six mice were quantified using a Molecular Imager and HO1
protein levels (means 6 S.D.) are plotted in arbitrary units. * – P,0.05. (C) top panel Immunofluorescent staining of HO1 in +/2 and ms/2 livers
analyzed by confocal microscopy. middle panel Tissue morphology observed in transmitted light. bottom panel To confirm the specificity of Fpn
detection, liver sections of +/2 and ms/2 males were incubated with only the secondary antibody. No HO1 staining was detected in these negative
controls. Nuclei were counterstained with DAPI. Bars correspond to 50 mm. (D) Colocalization (bottom panel) of HO1 (red channel) and F4/80, a
macrophage marker (green channel) in the livers of +/2 and ms/2 males analyzed by confocal microscopy. Nuclei were counterstained with DAPI.
Bars correspond to 50 mm.
doi:10.1371/journal.pone.0107641.g003
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Figure 4. Increased expression of haem oxygenase 1 (HO1) in kidneys of ms/2 mice. (A) Real-time quantitative PCR analysis of renal HO1
mRNA expression. The histogram displays HO1 mRNA levels in arbitrary units (means 6 S.D., n = 6). (B) left-hand panel Western blot analysis of HO1
protein levels in hepatic membrane fractions prepared from +/2 and ms/2 males. The blot was reprobed with polyclonal anti-human actin antibody
as a loading control. right-hand panel Immunolabelled HO1 bands from six mice were quantified using a Molecular Imager and HO1 protein levels
(means 6 S.D.) are plotted in arbitrary units. ** – P,0.01. (C) left-hand panel Immunofluorescent staining of HO1 in +/2 and ms/2 kidneys analyzed
by confocal microscopy. RN – renal tubules; RG – renal glomeruli. middle panel Transmitted light image shows the structure of glomeruli and tubules
as well as the presence of a large lesion (asterisk) in the kidney of a mutant. right-hand panel To confirm the specificity of HO1 detection, kidney
sections of +/2 and ms/2 males were incubated with only the secondary antibody. No HO1 staining was detected in these negative controls. Nuclei
were counterstained with DAPI. Bars correspond to 50 mm.
doi:10.1371/journal.pone.0107641.g004
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the kidneys and liver under conditions of haemolysis [29,46].

Analysis of liver and kidney cytosolic extracts by western blotting

revealed significantly higher ferritin expression in ms/2 males

compared with the control animals (Figure 6B and 6D).

Discussion

The interaction between the multi-copper ferroxidases caer-

uloplasmin and hepheastin, and ferroportin in the egress of iron

from cells is a major biological link between copper and iron, and

the best characterized at the molecular level [3]. It is assumed that

mutation of genes encoding caeruloplasmin and hephaestin as well

as copper deficiency, which decreases the ferroxidase activity of

both enzymes, reduces the amount of iron available for

erythropoiesis and contributes to the accumulation of iron in the

liver, intestine and brain [3]. Another important interaction

between these two biometals is copper-dependent iron utilization

for haemoglobin synthesis by erythroid cells [18], but the

molecular nature of this process is poorly understood [47].

Recently, an additional copper-iron relationship was identified in

mice under conditions of nutritional copper deficiency [48]. This

involves a series of consecutive events such as iron-deficiency

anaemia, hypoxia, stabilization of HIF2-a in duodenal enterocytes

and subsequent transcriptional up-regulation of genes responsible

for enhanced iron absorption [48].

In the present study, we examined the adaptive response of

systemic iron regulation to copper deficiency, which causes altered

activity of the first-line defence antioxidant cuproenzyme, super-

Figure 5. Correlation between decreased ferroportin (Fpn) protein level and increased hepcidin (Hepc) mRNA expression in the
liver of ms/2 males. (A) Immunofluorescent staining of Fpn in +/2 and ms/2 males. top panel Livers analyzed by confocal microscopy. middle
panel Tissue morphology observed in transmitted light. bottom panel To confirm the specificity of Fpn detection, liver sections of +/2 and ms/2
males were incubated with only the secondary antibody. No Fpn staining was detected in these negative controls. Nuclei were counterstained with
DAPI. Bars correspond to 50 mm. (B) Colocalization (bottom panel) of Fpn (red channel) and F4/80, a macrophage marker (green channel) in liver from
+/2 and ms/2 males analyzed by confocal microscopy. Nuclei were counterstained with DAPI. Bars correspond to 50 mm. (C) Real-time quantitative
PCR analysis of hepatic Hepc mRNA expression in +/2 and ms/2 males. The histogram displays Hepc mRNA levels in arbitrary units (means 6 S.D.,
n = 6). Significant difference is indicated (** – P,0.01).
doi:10.1371/journal.pone.0107641.g005
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oxide dismutase 1 (SOD1, Cu,Zn-SOD), a scavenger of the

superoxide anion radical (O2
.2) [49]. Previous study performed on

10 and 11-day-old mice showed that both dietary copper

deficiency in wild-type mice and copper insufficiency in brindled
mutant mice (Atp7amo-br) lead to the decrease in SOD1 activity in

many organs such as liver, spleen, brain, heart, thymus and bone

marrow [50]. Decrease in SOD1 activity was also described in

organs of 13-day old brindled and blotchy (Atp7amo-blo) mutant

males [51]. This study was designed to test whether copper

deficiency is responsible for decreased SOD1 activity in erythro-

cytes, resulting in membrane damage, haemolysis and subsequent

changes in systemic iron metabolism. This hypothesis was

formulated in the light of the following information: 1) SOD1-

associated copper accounts for more than half of the total copper

content in circulating erythrocytes [52]; 2) nutritional copper

deficiency has been shown to decrease both the expression and

activity of SOD1 in erythrocytes [39]; 3) we [31] and others [30]

have demonstrated the occurrence of haemolysis in mice lacking

Cu,Zn-SOD; and 4) haemolysis entails substantial changes in iron

metabolism [29].

In our experiments we used a well characterized mosaic mouse

line, representing a model of Menkes disease, which carries a

mutation in the Atp7a gene and therefore lacks the ATP7A

copper-transporting P-type ATPase [28]. When untreated with

copper, mosaic mutant hemizygous males die by day 17 of life [28]

and so we used 14-day-old animals in our study. Their pattern of

body copper content and distribution is typical for Menkes disease,

i.e. increased copper accumulation in the small intestine and

kidneys, and severe copper deficiency in the brain, liver and heart

[37,38]. To our knowledge, erythrocyte copper content has never

been described in patients with Menkes disease or in mouse

models of this condition. Considering that the duodenal ATP7A

transporter plays a crucial role in copper uptake to the organism

[21], it is plausible that its dysfunction in ms/2 male mice may

result in impaired copper delivery to erythroid precursors and in

consequence, low copper levels in peripheral erythrocytes. Indeed,

measurement of the copper concentration in circulating ms/2
erythrocytes showed a decrease of about 60% compared with that

of healthy controls. This decrease correlated strongly with the

down-regulation of both SOD1 expression (30%) and activity

(70%). A reduction in erythrocyte SOD1 activity in response to

dietary copper deficiency has been described in various mamma-

lian species [53–55] including mice [39]. Obviously, altered

functioning of Cu,Zn-SOD increases the risk of oxidative stress.

With regard to erythrocytes, this phenomenon is well documented

in SOD1 null mice, in which the lack of Cu,Zn-SOD activity is

responsible for increased oxidative stress in circulating erythro-

cytes [30,56] and the production of autoantibodies against

erythrocytes [30]. These events were found to be causally

connected with the increased sensitivity of erythrocytes to

Figure 6. Hepatic and renal iron status in control (+/2) and mutant (ms/2) mice. Non-haem hepatic (A) and renal (C) iron content was
measured as described in the Experimental section. Values are expressed as the means 6 S.D. for both liver and kidney samples obtained from 15
mice of each genotype. L-ferritin levels in hepatic (B) and renal (D) cytosolic protein extracts (50 mg/lane) were assessed by western blot analysis left-
hand panels. The blots were reprobed with polyclonal anti-human actin antibody as a loading control. (B) and (D) right-hand panels Immunolabelled
ferritin bands from four mice were quantified using a Molecular Imager and ferritin protein levels (means 6 S.D.) are plotted in arbitrary units. ** – P,
0.01.
doi:10.1371/journal.pone.0107641.g006
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oxidative injury and haemolysis [30,31]. Although ms/2 erythro-

cytes still display about 30% of normal SOD1 activity, the serum

obtained from these animals clearly has a haemolytic appearance.

The threshold level of SOD1 activity required to protect

erythrocytes against oxidative stress is unknown, although it was

previously shown that a decrease in SOD1 activity in Sod1+/2

erythrocytes to half of the value in Sod1+/+ cells is still sufficient to

ensure the protective activity of the enzyme [56]. Interestingly, ms/
2 male mice have a large number of acanthocytes (about 40%) in

the peripheral blood. Acanthocytosis may occur due to alteration

of the lipid composition and fluidity of the red cell membrane, but

can also be caused by dehydration in a subpopulation of

acanthocytic erythrocytes. Indeed, mosaic suckling males show

macroscopic signs of dehydration such as low body weight, loss of

liquids due to diarrhea, and increased density of the plasma. It is

worth noting that mild to moderate haemolysis was reported to be

associated with acanthocytosis [57]. One of the valuable hallmarks

of intravascular haemolysis is the disappearance of haptoglobin

(Hp) from the serum [40,41]. Hp is an acute-phase protein

involved in the clearance of haemoglobin (Hb) from the

bloodstream to prevent its toxicity [40,41]. When Hb is released

from ruptured erythrocytes, it is instantly bound by Hp and forms

a stable Hp-Hb complex [40,41], which is then rapidly removed

from the circulation by binding to the CD163 receptor, present

mainly on tissue macrophages including Kupffer cells [58]. Since

free Hp does not bind to CD163, specific recognition of the Hp-

Hb complex by this receptor explains the decrease in Hp

concentration in the plasma during accelerated haemolysis

[40,41]. However, in contrast to humans, the mouse CD163

may also directly bind Hb that is not complexed with Hp [59].

Nevertheless, we found that the serum of ms/2 mice was

completely depleted of Hp, suggesting that the Hb scavenging

mechanism functions very efficiently in these mutant males. The

next steps of Hb inactivation are its lysosomal degradation

followed by haem breakdown catalyzed by haem oxygenase 1

(HO1) [reviewed in 42]. Besides functioning as a substrate of

HO1, haem is known to be the most potent transcriptional inducer

of the Hmox1 gene [60]. Unsurprisingly, increases in the level of

both the HO1 transcript and protein were detected in the liver of

ms/2 mutants. Significantly, we previously found that the

expression of HO1 was also strongly induced in the liver of

Sod12/2 mice displaying moderate haemolytic anaemia [31].

Furthermore, transcriptional induction of hepatic HO1 was

observed under conditions of intravascular haemolysis in b-

thalassemic and sickle mice [29] as well as during malaria [61].

The identification of Kupffer cells as a site of hepatic HO1

expression in ms/2 mice strongly suggests that these cells are

mostly charged with the detoxification of haem derived from Hb

taken up from the bloodstream. HO1 also appears to be largely

responsible for haem catabolism during erythrophagocytosis [62].

Therefore, it is noteworthy that in agreement with the subcellular

localization of HO1 found in mouse bone marrow-derived

macrophages during erythrophagocytosis [62], immunostaining

of this enzyme was predominantly intracytosolic in the Kupffer

cells of ms/2 mice.

Studies on Hp-null mice showed that even under conditions of

physiological haemolysis, Hb is filtered by the kidneys [63]. Renal

filtration of Hb also occurs in normal subjects (mice and humans)

when the buffering capacity of Hp is overwhelmed in acute

haemolysis [40,41]. Studies in disease models demonstrated that

the kidney can adapt to increased amounts of Hb by inducing

HO1 [63]. Such a situation seems to occur in ms/2 mice. Indeed,

in the kidneys of these animals we showed a marked induction of

HO1 in cells of the renal tubules, very possibly as a consequence of

glomerular filtration of Hb. However, it is also possible that the

Hmox1 gene is induced in ms/2 mouse kidney in response to an

inflammatory reaction, the occurrence of which has been well

documented in the kidneys of 14-day-old mosaic males [43,44]. It

has recently been claimed that the protective antioxidant effect of

HO1 depends, at least in part, on co-induction of ferritin, a

cytosolic protein that binds, stores and thus detoxifies reactive iron

released by haem breakdown [64]. Accordingly, in both the liver

and kidneys of ms/2 males, ferritin was elevated at the protein

level compared to their healthy littermates. However, the Hmox1
gene might also be induced in the kidneys of ms/2 mice in

response to the inflammatory reaction caused by excessive copper

accumulation. Available data suggest a likely mechanism for this

copper overload. In the kidneys of healthy animals, copper

reabsorption from the urine occurs via the proximal renal tubules

[65,66]. Most of copper ions are then transferred back to the

circulation via ATP7A located in the basolateral membranes of

epithelial cells of these tubules [67]. This explains why dysfunction

of ATP7A protein in Atp7a mutants results in toxic copper

accumulation at the renal-proximal epithelium, a phenomenon

detected in various mouse models of Menkes disease [65,66],

including mosaic mice [43,44].

Apart from the induction of the Hp-CD163-HO1 pathway [42],

the adaptive changes in the iron metabolism under haemolytic

conditions also involve the redistribution of iron from macro-

phages back to the circulation. This process is mediated by

ferroportin (Fpn), the sole cellular exporter of ionic iron known in

mammalian cells [7]. We previously demonstrated that enhanced

expression of hepatic Fpn in haemolytic anemia in KO SOD1

mice ensures the iron supply required for erythropoiesis [31].

Surprisingly, in ms/2 mice, Fpn was down-regulated in Kupffer

cells, the principal cell type expressing Fpn in the liver. According

to the consensus of the hepcidin-ferroportin regulatory axis [7],

such down-regulation of Fpn expression strongly suggested the

concomitant up-regulation of hepatic hepcidin. Indeed, hepcidin

was elevated at the mRNA level by more than 10-fold in ms/2
mutants compared with control males. We hypothesize that the

renal inflammation induced in mosaic mice by heavy copper

overload [38,43,44] diffuses throughout the organism of ms/2
mice and mediates transcriptional activation of the Hamp gene in

the liver. Accordingly, it is well established that plasma hepcidin

levels remain persistently high in patients with chronic kidney

disease [68]. Furthermore, inflammatory mediators such as

interleukin-6 and -1 participate in the iron-independent induction

of the Hamp gene [69]. Despite increased and decreased

expression of HO1 and Fpn, respectively, we observed only a

tendency in both liver and kidney of ms/2 mice to accumulate

non-haem iron, although the elevated level of ferritin in both

organs seems to support some retention of iron in these tissues. It is

possible that the extent of iron loading in the two examined organs

is quite limited. A similar lack of global hepatic iron loading has

also been reported in haemolytic mice lacking Cu,Zn-SOD1 [31].

In summary, we have identified a new indirect relationship

between copper deficiency in the mouse model of Menkes disease

and systemic iron metabolism. The key point in this interconnec-

tion is decreased activity of the erythrocyte antioxidant cuproen-

zyme Cu,Zn-SOD, resulting in oxidative stress, increased perme-

ability of erythrocyte membranes and haemolysis. Hb released

from damaged erythrocytes causes the mobilization of a protective

system neutralizing Hb toxicity, including Hp-dependent elimina-

tion of Hb from the circulation as well as the degradation of haem

derived from Hb by HO1 in the liver and kidneys. Importantly,

our results show for the first time that suckling mice adapt their

iron metabolism to haemolytic insult in a similar manner to adult
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animals. Finally, haemolysis has been identified as an additional

pathological symptom in a mouse model of Menkes diseases.

It is largely known that similarly to mosaic mutants [44], Menkes

patients suffer from kidney and urinary tract dysfunctions and

develop chronic renal inflammation [70]. Increased hepcidin

synthesis under these pathological conditions may reduce avail-

ability of iron for erythropoiesis and in combination with

haemolysis may contribute for the development of anemia. Taking

together, our results point out a need to monitor iron status in

Menkes patients.
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Mutation in the CPC motif-containing 6th transmembrane domain affects

intracellular localization, trafficking and copper transport efficiency of ATP7A

protein in mosaic mutant mice-an animal model of Menkes disease. Metallomics
4: 197–204.

29. Vinchi F, De Franceschi L, Ghigo A, Townes T, Cimino J, et al. (2013)
Hemopexin therapy improves cardiovascular function by preventing heme-

induced endothelial toxicity in mouse models of hemolytic diseases. Circulation

127: 1317–1329.
30. Iuchi Y, Okada F, Onuma K, Onoda T, Asao H, et al. (2007) Elevated oxidative

stress in erythrocytes due to an SOD1 deficiency causes and triggers

autoantibody production. Biochem J 402: 219–227.
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37. Lenartowicz M, Starzyński R, Wieczerzak K, Krzeptowski W, Lipiński P, et al.
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