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3′,5′-cyclic adenosine monophosphate (cAMP) is an important second messenger which
regulates heart function by acting in distinct subcellular microdomains. Recent years have
provided deeper mechanistic insights into compartmentalized cAMP signaling and its link
to cardiac disease. In this mini review, we summarize newest developments in this field
achieved by cutting-edge biochemical and biophysical techniques. We further compile
the data from different studies into a bigger picture of so far uncovered alterations in
cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy
and chronic heart failure. Finally, future research directions and translational perspectives
are briefly discussed.

Keywords: cAMP, microdomain, cardiomyocyte, hypertrophy, heart failure, FRET, biosensor

3′,5′-cyclic adenosine monophosphate (cAMP) is an important second messenger and critical
regulator of cardiac function. Stimulation of cardiac contractility by catecholamines and their
receptors, in particular β-adrenoceptors (β-ARs) which are central to the well-established
physiological fight-or-flight response, leads to generation of cAMP that acts in distinct subcellular
microdomains (Fischmeister et al., 2006; Zaccolo, 2009; Perera and Nikolaev, 2013). Such
microdomains are formed around specific scaffolding proteins (i.e., A-kinase anchoring proteins or
AKAPs)which createmultiprotein signalosomes. They contain local pools of kinases targeted to their
substrates, certain subsets of phosphodiesterases (PDEs) which are enzymes responsible for local
cAMP degradation, protein phosphatases and other molecules. All of them act together to confer
specificity of multiple substrate phosphorylation and therefore plethora of physiological responses
engaged by the same second messenger cAMP (Buxton and Brunton, 1983; Mauban et al., 2009;
Zaccolo, 2009; Diviani et al., 2011). In this mini review, we highlight most recent developments and
latest research on cardiomyocyte cAMP microdomains in healthy and diseased cardiomyocytes.

cAMP Compartmentation in Healthy Cardiomyocytes

In healthy cells, cAMP microdomains are supposed to provide specificity of A-kinase (PKA)
substrate phosphorylation at different functionally relevant locations. In terms of contractility,
several cAMP microdomains exist around calcium handling proteins such as L-type calcium
channels (LTCCs), ryanodine receptors (RyRs), and phospholamban (PLN) which regulates the
activity of the cardiac sarcoplasmic/endoplasmic reticulum (SR) calciumATPase 2a (SERCA2a; Bers,
2002; Lompre et al., 2010). Each of these microdomains contains at least one specific AKAP and
one PDE isoform (see Figure 1A). Each PDE family, e.g., PDE4, is comprised of several subfamilies
such as 4A, 4B, 4D which have slightly different catalytic domain structures. Every subfamily usually
has several isoforms (e.g., 4D3, 4D5) each having a unique N-terminal sequence responsible for
differential subcellular localization (Conti and Beavo, 2007). Functional LTCCs are localized in
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FIGURE 1 | Alterations of local cardiomyocyte cAMP signaling in
early and late disease. (A) cAMP microdomains in healthy cells formed
around major calcium cycling proteins—L-type calcium channels
(LTCCs), ryanodine receptor (RyR) and SERCA. Each microdomain
contains local pools of PKA anchored to AKAPs and specific subsets of
PDEs. β2-AR and AC5 are part of a signalosome around LTCC in the
T-tubules controlled by PDE4D5 and PDE3 activities, while AC6 is located
together with β1-AR at the outer membrane to produce far-reaching
cAMP signals which are “channeled” to subcellular microdomains (e.g.,
to SERCA) by joint action of several PDEs. (B) Alterations of local cAMP
signaling in early cardiac disease such as compensated hypertrophy.

While, the total whole-cell activities of PDEs are not yet altered, there is a
relocation of PDE2 between β1- and β2-AR, decrease of local PDE3
activity at β2-AR, and PDE3/PDE4 at SERCA. This leads to a change in
cGMP/cAMP cross-talk, favoring cGMP-mediated augmentation of the
contractile β1-AR-cAMP pool, and to disruption of the cAMP “channeling”
from β1-AR to SERCA2a. (C) In chronic cardiac disease such as heart
failure, multiple structural and functional alterations take place. They
include partial loss of the membrane-associated T-tubules, changes in
whole-cells PDE activities, delocalization of PKA, and downregulation
and/or desensitization of β1-AR, ACs, SERCA and GC-A which all impact
on receptor-microdomain coupling and functional cAMP responses.

cardiomyocyte transverse (T)-tubules, plasma membrane
invaginations rich in caveolin (Gu et al., 2002; Insel et al.,
2005). Together with AKAP15/AKAP18α (Fu et al., 2011),
AKAP79 (Nichols et al., 2010) and PDE4B (Leroy et al., 2011)
they form a signalosome which is crucial for β-AR/cAMP-
dependent regulation of LTCC current and contractility. RyRs
at the junctional SR have been claimed to be a part of mAKAP-
orchestrated signalosome which also contains PDE4D3 (Lehnart
et al., 2005). PLN forms a complex with AKAP18δ (Lygren
et al., 2007) and one of the PDE4D and PDE3A isoforms (Beca
et al., 2011, 2013) to regulate diastolic calcium uptake. Each
of these complexes should also include a local pool of type II
PKA molecules. There are two types of regulatory PKA subunits
RI and RII, together with catalytic subunits they form either
PKA type I or type II complexes. While PKA type II has been
shown to phosphorylate the above mentioned calcium handling
proteins, the exact nature of PKA type I substrates remains
unclear (Stangherlin et al., 2011). Apart from channel recordings
and substrate phosphorylation analysis, which provide only
indirect measure of the downstream PKA-mediated signaling, it
has been challenging to directly visualize cAMP levels in these
specific microdomains until novel biophysical techniques became
available.

Advent of fluorescence resonance energy transfer (FRET) based
biosensors enabled a real-time monitoring of cAMP in intact cells
(Sprenger andNikolaev, 2013). Very early experiments in neonatal
cardiomyocytes could directly visualize discrete microdomains
where cAMP increases and activates PKA upon β-AR stimulation
(Zaccolo and Pozzan, 2002). There are even different pools of
cAMP associated with type I and type II PKA responsible for
phosphorylation of different substrates and oppositely regulated
by cGMP due to its action on either cGMP-activated PDE2 or
cGMP-inhibited PDE3 (Stangherlin et al., 2011). Development

of further biosensors, adenoviruses and transgenic mice which
serve as a way to express such sensors in cells and tissues,
enabled measurements in adult myocytes which revealed tight
regulation of cAMP by various PDE families (Warrier et al.,
2005; Leroy et al., 2008) and spatial differences between β1-
and β2-AR-cAMP signals, the former having more diffuse far-
reaching and the latter highly confined nature (Nikolaev et al.,
2006).

Even deeper insights into cAMP compartmentation in relation
to membrane structure of living cardiomyocytes were provided
by scanning ion conductance microscopy (SICM) combined with
FRET. SICM is a non-optical imaging technique which utilizes
an electrolyte-filled glass nanopipette as a scanning probe fixed
on a three-axis piezo-actuator stage (Korchev et al., 1997). The
current flow through pipette is decreased whenever it approaches
cell membrane, and by keeping this current change and thereby
the distance between pipette tip and cell membrane constant,
one can scan the morphological profile of the membrane with
nanometer resolution. In general, SICM as a multimodal imaging
technique can be applied to study not only cell/tissue structure,
but also to record ion channel currents in precise membrane
locations, to analyze cell volume and contractility (Miragoli et al.,
2011). Using combination of SICM with FRET, which allows local
nanopipette-based receptor stimulation and concomitant cAMP
imaging, it was uncovered that β1-AR is localized across the whole
membrane, while, in contrast, β2-AR is located exclusively in the
T-tubules of healthy cells (Nikolaev et al., 2010). Moreover, β2AR
are strictly compartmentalized in caveolin3-rich microdomains
(Wright et al., 2014) to produce confined cAMP signals limited by
local PKA and PDE4 activities. This receptor can also switch from
stimulatory to inhibitory G-proteins to limit cAMP production
upon prolonged exposure to high agonist concentrations (Liu
et al., 2009).
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Not only AKAPs but also cAMP synthetizing enzymes adenylyl
cyclases (ACs), with the most predominantly expressed cardiac
AC5 and AC6, can center cAMP signalosomes in myocytes
and other cells (Cooper and Tabbasum, 2014). A recent elegant
electrophysiological study by Timofeyev et al. (2013) using
AC5 and AC6 knockout myocytes revealed that AC5 is mainly
localized in T-tubules where it interacts with caveolin and β2-
ARs. Together with a local PDE, caveolin is thereby involved in
compartmentation of β2-AR-cAMP signals in this microdomain.
In contrast, AC6 associated the β1-AR is localized outside the T-
tubules and is responsible for β1-AR-mediated augmentation of
LTCC current. Interestingly, yet another functional population of
β1-ARs is targeted to T-tubules and the AC5-PDE signalosome
(Timofeyev et al., 2013).

To gain more specific insights into cAMP dynamics directly
in the microdomains around calcium handling proteins, our
group has recently generated targeted FRET biosensors and
expressed them in myocardium of transgenic mice to directly
monitor local cAMP in freshly isolated adult cardiomyocytes.
First, the cAMP sensor Epac1-camps was targeted to caveolin-
rich membrane microdomains (to generate pmEpac1-camps)
where it should localize in close proximity to LTCC and β2-
AR (Perera et al., 2015). This new sensor uncovered differential
PDE-dependent regulation of β2- and β1-AR stimulated cAMP
pools at the membrane, the former one predominantly confined
by PDE3 and the latter one by balanced actions of PDE4,
3, and 2 (Perera et al., 2015). Second, a fusion of Epac1-
camps with PLN was used to target the cAMP sensor to
the SERCA2a microdomain (Sprenger et al., 2015). Here, high
basal PDE3 and PDE4 effects were detected which confine
this microdomain and prevent PLN phosphorylation by high
cytosolic cAMP levels. More interestingly, upon β-adrenergic
stimulation, local, and cytosolic PDE3 and PDE4 act in concert
to “channel” cAMP from the membrane to SERCA2a and enable
functional response in this microdomain (Sprenger et al., 2015;
Figure 1A), a phenomenonwhich has previously been observed in
HEK293 cells when measuring membrane, cytosolic and nuclear
cAMP pools (Terrin et al., 2006). However, particularly exiting
findings could be made when subjecting both FRET sensor
transgenic mouse lines to an experimental model of cardiac
disease.

Remodeling of cAMP Microdomains in
Early Cardiac Disease

While alterations in cAMP pathway have been extensively
studied in chronic disease (see below), not much is known
about changes in local cAMP signaling in early compensated
cardiac hypertrophy. To address this question, pmEpac1-camps
and Epac1-camps-PLN mice were subjected to transverse aortic
constriction which induces only a mild compensated phenotype
in the FVB/N1 mouse background. Interestingly, in this case,
no changes in total whole-cell PDE activities and no β1-AR or
guanylyl cyclase A (GC-A, membrane receptor which produces
cGMP upon natriuretic peptide stimulation) desensitization
can be detected. Instead, there was a subcellular relocation of
PDE2 between β1- and β2-AR, and local decrease of the major

PDE3-mediated control at the β2-AR (Figure 1B). This leads
to a change of cGMP/cAMP cross-talk in a way that cGMP,
which is produced by GC-A stimulated with increased levels of
natriuretic peptides in hypertrophy, leads to augmentation of the
far-reaching β1-AR-cAMP pools coupled to increase in force and
frequency of contraction (Perera et al., 2015). Thismight represent
a compensatory mechanism aimed to initially maintain cardiac
output under the conditions of increased pressure overload during
disease, before the transition to a decompensation at some
later time-point. However, the exact local mechanisms which
accompany this transition remain to be defined. It is also not clear
in which particular membrane microdomains GC-A is localized
and whether this localization is changed in disease.

The study using cAMP biosensor targeted to SERCA2a
demonstrated that cardiac hypertrophy leads to local decrease of
PDE3 and PDE4 effects which confine thismicrodomain from the
bulk cytosol. Furthermore, it causes changes in PDE composition
at various subcellular locations in a way that leads to impairment
of the above described PDE3/4-dependent “channeling” of cAMP
from β1-AR to SERCA2a (Figure 1B, Sprenger et al., 2015). In the
future, it would be exciting to dissect which individual PDE3 and
PDE4 isoforms are involved in any individual microdomain, how
they are regulated by calcium signaling and positive or negative
feedback loops, and how all these processes are affected by cardiac
disease. This can be done using PDE knockout mouse models,
as previously demonstrated for healthy neonatal mouse myocytes
using pmEpac-camps and its parential cytosolic sensor (Leroy
et al., 2011; Mika et al., 2015). Future developments should also
provide new biosensors for other microdomains, such as the one
associated with RyR, various other signalosomes and organelles.

cAMP Microdomain Alteration in Chronic
Cardiac Disease

In human and rodent failing myocytes, a series of
well-established signaling alterations occurs, including
desensitization/downregulation of β1-AR, GC-A, ACs, SERCA2a,
and impairment of PKA-dependent phosphorylation of major
contractile substrates (Lohse et al., 2003). Structurally, SICM
studies in failing human and rat cardiomyocytes revealed a loss of
cell-surface T-tubules as well as disruption of Z-groove structure
(Lyon et al., 2009). The whole-cell activities of major PDE
families were reported to be down- (for PDE3/4; Ding et al., 2005;
Abi-Gerges et al., 2009) or upregulated (PDE2;Mehel et al., 2013).
Loss of membrane T-tubules leads to redistribution of β2-AR to
detubulated areas where it gets uncoupled from its microdomain
and generates far-reaching cAMP signals (Nikolaev et al., 2010;
see Figure 1C). Altered cAMP compartmentation worsens PKA
substrate phosphorylation and calcium cycling. Several open
question still remain. Is there any PDE relocation also in chronic
disease? Are there any differences between various clinical types
of heart failure and what is the time course of deleterious events
(detubulation, receptor relocation, microdomain remodeling)
during progression of disease? Still unclear are the exactmolecular
mechanisms behind the loss of T-tubules and their link to calcium
cycling, improvement of which correlates with restoration of the
membrane structure (Lyon et al., 2012).
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Better understanding of cAMP dynamics in various
functionally relevant microdomains and especially of their
changes in disease should ultimately provide more precise ways
of therapeutic correction. To improve cAMP or cGMP flow in the
microdomains, one can imagine approaches aimed at depletion
of specific PDEs or PKA from desired signalosomes. More
specific PDE inhibition and treatments aimed at improvement
of membrane structure, receptor localization and protein
composition of the microdomains can also be considered. These
developments should enable more targeted and specific cardiac
therapeutics.
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