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ABSTRACT: With global warming, plants often suffer damage
from high temperatures during the growth process, which inhibits
their growth. In this work, carbon dots (CDs), synthesized by
Salvia miltiorrhiza (S. miltiorrhiza) with a one-step hydrothermal
method, were selected as heat-resistant enhancement agents for
plants. Inspired by this background, this work studied Italian
lettuce grown at 25, 35, and 45 °C and treated with CD and
deionized water control (sprayed on leaves). The results showed
that the biomass, chlorophyll content, net photosynthetic rate,
activities of SOD (superoxide dismutase), POD (peroxidase), CAT
(catalase), soluble sugar, and soluble protein contents of lettuce
treated by CDs were increased while the contents of
malondialdehyde (MDA) and proline (Pro) were decreased at
35 and 45 °C. The application of CDs at 35 and 45 °C could maintain the growth of plants by reducing oxidative damage and lipid
peroxidation especially at the temperature of 35 °C, the growth status of lettuce treated by CDs was no different from that of lettuce
grown naturally at the optimal temperature of 25 °C, or even better than the latter. This finding verified that the CDs could
significantly improve the high-temperature tolerance of lettuce, thus alleviating the heat stress of plants.

1. INTRODUCTION

Plants may be stressed by various abiotic factors in nature
during their growth, such as high temperature, drought, salt
and alkali, heavy metals, ultraviolet light, and so on.1 Heat
stress hampers plant growth by affecting a multitude of
biological functions, ultimately leading to hindrance in plant
growth and yield loss.2 Due to human activities and
environmental pollution, more and more greenhouse gases
are emitted, leading to global warming.3 Abnormal high
temperatures, drought, and other severe weather problems are
occurring frequently in many places in summer.4 The response
of plants to high-temperature stress affects the stability of
various proteins and membranes, causes metabolic imbalance,
and changes the efficiency of major cellular enzyme reactions
in plants.5 High-temperature stress leads to oxidative stress and
the generation of reactive oxygen species (ROS), including
superoxide anions O2

•−, hydrogen peroxide (H2O2), hydroxyl
radicals (⊕OH), etc, which leads to cell injury symptoms
under high temperatures.6 Previous studies have shown that
rising temperatures lead to lower yields of rice,7 corn,8 and
wheat.9

Recently, the application of CDs and other nanomaterials to
plants has provided new ideas for agricultural production.10,11

Because of their low toxicity, stability, good biocompatibility,
and photoluminescence properties, CDs have become the
focus of many research studies.12 In previous works, CDs
complemented Fe2+ of Cucumis melo,13 enhanced the nitrogen
fixation activity of Azotobacter chroococcum,14 and enhanced
the photosynthesis of plant,15 etc. In recent years, CDs have
been shown to mimic the action of antioxidant enzymes and
thus protect against oxidative damage caused by abiotic
stresses; for example, to alleviate the abiotic stress of rice,16 to
reduce the toxicity of heavy metals to wheat seedlings,17 etc.
Therefore, CDs are a promising alternative to protect plants
from abiotic stresses by removing ROS.
Salvia miltiorrhiza is one of the most widely and longest-

used herbal medicines for numerous maladies throughout
Asia.18 Its main components are tanshinone and salvianolic
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acid compounds, which have a wide range of pharmacological
effects, including the treatment of cardiovascular and
cerebrovascular diseases,19 anti-inflammatory,20 antitumor,21

antioxidation,22 etc. S. miltiorrhiza and its preparations are
used clinically in combination with other drugs to treat a
variety of diseases, including cancer, gastric ulcer, and
diabetes.23 Previous studies have indicated that S. miltiorrhiza
has anti-inflammatory properties. The use of medicinal herbs
or their extracts is currently attracting attention as a promising
chemopreventive strategy.24 Inspired by Li et al.’s experiment
on reducing oxidative damage of plants,25 the application of S.

miltiorrhiza in biology, especially in plants, is greatly limited
due to its low solubility in water and the large particle size of
its extracts. In this study, we used S. miltiorrhiza as raw material
to synthesize CDs. Inspired by the above analysis, we
combined the properties of S. miltiorrhiza with the advantages
of CDs. We want to improve the heat resistance of lettuce with
the aim to provide a reference for the annual production of
cold-season vegetables under high temperatures and harsh
climates. In this work, we measured the photosynthetic indexes
of plants closely related to heat stress, which can preliminarily
reflect the physiological function of plants. In addition, the

Figure 1. (a, b) HRTEM images, (c) lattice fringe image, and (d) size distribution of the prepared CDs.

Figure 2. FTIR spectrum (a); full XPS pattern (b) and high-resolution XPS spectra of C 1s (c); UV−vis absorbance, FL excitation, and FL
emission spectra (d); FL emission spectra at different excitation wavelengths (e); and cytotoxicity assessment of different concentrations of the
prepared CDs (f).
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activities of three important antioxidant enzymes were
measured to more intuitively show the antioxidant mechanism
of the CDs.

2. RESULTS AND DISCUSSION
2.1. Synthesis and Characterization of CDs. The

synthesized CDs exhibit excellent water solubility. As shown
in the transmission electron microscopy images in Figure 1a,b,
the carbon dots prepared by S. miltiorrhiza were spherical
nanoparticles with an average diameter of 2.04 nm. The high-
resolution transmission image of S. miltiorrhiza CDs showed
obvious lattice fringes with a crystal plane spacing of 0.17 nm
(Figure 1c).26

To understand the chemical composition and surface state
of the CDs of S. miltiorrhiza, Fourier transform infrared
spectroscopy (FTIR) and X-ray photoelectron spectroscopy
(XPS) were tested. The surface of pure S. miltiorrhiza contains
abundant phenolic hydroxyl or o-phenolic dihydroxyl; there-
fore, in FTIR, the wide absorption bands observed at 3200−
3600 cm−1 are attributed to the stretching vibration of O−H,
which also proves that the CD surfaces contain S. miltiorrhiza
polymer. The peaks at 2926, 1611, 1391, and 1070 cm−1

correspond to the stretching vibrations of C−H, CC, C−O,
and C−C, respectively (Figure 2a).27−29

Further in-depth detection of the surface functional groups
of the CDs was carried out through X-ray photoelectron
spectroscopy (XPS) analysis. The survey spectrum indicates
that the CDs mainly consist of carbon (C, 70.63%), nitrogen
(N, 1.16%), oxygen (O, 26.03%), and sulfur (S, 2.18%). The
four peaks observed at 168.3, 286, 379.4, and 531.7 eV
correspond to S 2p, C 1s, N 1s, and O 1s (Figure 2b). The
strong binding energy peak at 284.7 eV (C−C) belongs to the

CD-graphitized S 2p carbon structure (Figure 2c).30

Subsequently, the optical properties of the CDs were fully
investigated.
From the fluorescence spectrum and the UV−vis spectrum

of CDs in Figure 2d we can see two absorption peaks detected
at approximately 280 and 325 nm. The peak at 280 nm is
attributed to the π → π* transitions of aromatic CC,
indicating the formation of a graphite carbon core in the CDs.
The acromial at 310−350 nm are derived from the n−π*
transition of CO.31,32 Then, the optical properties of CDs
were further explored. Under 380 nm excitation, the emission
peak of CDs is located at 470 nm. The emission spectra of
CDs at different excitation wavelengths are shown in Figure 2e,
which indicates that the fluorescence emission has an
excitation-dependent property. With the increase in the
excitation wavelength, the emission peak gradually shifts to
red, which proves the luminescence mechanism of CD surface
states.33,34

As shown in Figure 2f, compared with plant cells, animal
cells do not contain cell walls and absorb nanoparticles more
easily. Therefore, animal cells are more sensitive to CDs than
plant cells. HeLa cells were used for cytotoxicity assays of CDs.
After treatment with different concentrations of S. miltiorrhiza
CDs, the survival rate of HeLa cells in each group was higher
than 89%. These data suggest that S. miltiorrhiza CDs have
good biocompatibility and can be used in plants.

2.2. Effect of CDs on Italian Lettuce Growth. Heat
stress can lead to the depletion of carbohydrate reserves.35 As
shown in Figure 3a−c, in terms of biomass, there were
significant differences between the three groups treated with
CDs at different temperatures and those treated with deionized
water. The treatment with CDs increased the biomass and

Figure 3. Effect of different treatments on the growth of Italian lettuce (a): fresh weight (b), dry weight (c), and chlorophyll content of Italian
lettuce (d). N = 4. Average ± SD. Different letters indicate significant differences among different treatments at p < 0.05 level.
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chlorophyll content of lettuce. With the increase in temper-
ature, the biomass of the treatment group decreased in turn.
Interestingly, the fresh weight and dry weight of lettuce
seedlings treated with CDs at 35 and 45 °C were significantly
increased compared with those treated with deionized water at
the optimal temperature (25 °C). The fresh weight and dry
weight of the group treated with CDs at 35 °C increased by
54.7 and 35.2%, respectively, compared with that control group
treated with deionized water at 25 °C. Thus, even when the
lettuce seedlings were treated with high temperatures and
sprayed with CDs, they still had more biomass than the plants
grown normally without treatment. The changes in chlorophyll
content in plant leaves can reflect the physiological activity of
leaves. In general, the chlorophyll content decreases with the
increase of temperature when heat stress occurs.36 The results
showed that the chlorophyll content of the plants increased at
different temperatures after spraying with CDs. Among them,
the chlorophyll content of plants grown at 25 and 35 °C was
significantly increased after the carbon spot treatment. The
chlorophyll content in the group treated with CDs at 35 °C

was 14.5% higher than that in the group treated with deionized
water at 25 °C (Figure 3d). In conclusion, in a high-
temperature environment, the spraying of S. miltiorrhiza CDs
plays a crucial role in the effective resistance of lettuce
seedlings to heat stress.
Photosynthesis is a process in which plants absorb light

energy, perform energy conversion and electron transfer, and
eventually convert light energy into chemical energy, which is
crucial to plant growth. The change in temperature is bound to
affect photosynthesis, where the net photosynthetic rate of
leaves significantly decreases with the increase in temperature.
Heat stress results in loss and efficiency of photosynthetic
pigments, abnormalities in cystic tissue, disruption of electron
transport chains in mitochondria and chloroplasts, and reduced
production of light absorption.37−39 As shown in Figure 4a, in
this experiment, the net photosynthetic rates of leaves in the
three groups treated with CDs at different temperatures and
that in the group treated with deionized water all decreased as
the temperature increased. The group treated with deionized
water at 25 °C was used as the control group, and the net

Figure 4. Net photosynthesis of Italian lettuce (a), stomatal conductance of Italian lettuce (b), and intercellular carbon dioxide concentration (c)
of the Italian lettuce in different treatments. N = 4. Average ± SD. Different letters indicate significant differences among different treatments at p <
0.05 level.

Figure 5. MDA contents (a), proline contents (b), SOD, CAT, and POD activities (c−e) of the Italian lettuce in different treatments. N = 4.
Average ± SD. Different letters indicate significant differences among different treatments at p < 0.05 level.
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photosynthesis rates of lettuce leaves in the groups treated with
CDs at 35 and 45 °C were significantly increased, and the net
photosynthesis rates of lettuce under high-temperature treat-
ments increased by more than 43.8 and 6.5%, respectively.
Stomata control the majority of gaseous exchange between

the atmosphere and the leaf interior; in general, conditions of
high light intensity, open stomata.40 From Figure 4b,c,
corresponding to the trend of net photosynthesis rate, it can
be seen that the stomatal conductance of the three treatment
groups at different temperatures and deionized water treatment
group all increased with the increase of temperature, and the
stomatal conductance of lettuce leaves sprayed with CDs was
all lower than that of the control group without spraying. From
the above two photosynthetic indexes, S. miltiorrhiza CDs play
a decisive role in the resistance of lettuce seedlings to high
temperatures.
2.3. Antioxidant Defense System of Italian Lettuce.

MDA is a product of lipid peroxidation and is commonly used
as a biomarker for oxidative damage levels.41 Pro content in
plants reflects the stress resistance of plants to some extent.
Plants with strong stress resistance tend to accumulate more
proline. Ingredients such as proline and MDA are biochemical
parameters that indicate that a plant has been damaged;
therefore, the higher the damage, the more severe the
damage.42 Therefore, we studied the MDA content, proline
content, and antioxidant defense system of lettuce seedling
cells, including the activities of POD, SOD, and CAT. As
shown in Figure 5a, the membrane lipids of lettuce seedlings
were subjected to different degrees of oxidative damage after
high-temperature treatment. The application of CDs signifi-
cantly reduced the content of MDA by 41.9, 50.6, and 49.2% at
three temperatures, respectively.
Interestingly, the MDA level in lettuce seedlings sprayed

with CDs under 45 °C temperature stress was significantly
lower than that of seedlings not sprayed with CDs at 25 °C
optimal temperature. In Figure 5b, in the three temperature
treatments, the proline content of the plants sprayed with CDs
was lower than that of the nonsprayed group, and the proline
content at 35 and 45 °C was significantly reduced by 66.3 and
61.3%, respectively. In conclusion, spraying S. miltiorrhiza CDs
can well protect the leaves of lettuce seedlings from oxidative
damage.
ROS is not only a byproduct of plant aerobic metabolism

but an important signaling molecule involved in the regulation
of plant growth and development as well as various stress
responses. SOD is a major O2

•− scavenger, and its enzymatic

action leads to the generation of H2O2 and O2
•−; POD can

reduce hydrogen peroxide.43 CAT can act directly on H2O2,
and CAT in peroxisomes has no affinity for H2O2, so most
H2O2 can be removed. As shown in Figure 5d, at high
temperatures of 45 °C, the CAT activity of lettuce seedling
leaves treated with CDs was significantly higher than that of
the deionized water treatment group. Interestingly, compared
with that of the lettuce seedlings treated with deionized water
under 25 °C, the CAT activity level of lettuce seedling leaves
treated with carbon point under 35 °C showed no significant
difference. This indicated that CDs reduced the stimulation of
antioxidase and enhanced the tolerance of lettuce to high
temperatures. As shown in Figure 5c,e, under heat stress,
activities of SOD and POD first increased and then decreased,
and the highest activity was found at 35 °C. CDs had no
significant effect on the SOD and POD activity. Among the
three temperature treatment groups, compared with that in the
deionized water treatment group, the reactive oxygen species in
the carbon point treatment group activated the antioxidant
system of the lettuce seedling leaves by significantly increasing
the activities of CAT, decreased the contents of MDA and
proline, and made the lettuce show lower oxidative damage,
indicating that CDs mainly catalyzed the removal of ROS. The
antioxidant defense effect of lettuce leaf cells was enhanced to
alleviate the high-temperature stress of lettuce.44

2.4. Effect of CDs on the Assimilation of Nutrition by
Italian Lettuce. The synthesis of plant protein is related to
various stress factors, and the content of soluble protein
changes under high-temperature stress. After the CD treat-
ments, the contents of these permeable substances also
increased obviously under heat stress. As shown in Figure 6a,
under 45 °C, soluble protein content in the CD treatment
groups was significantly higher than that in the deionized water
treatment group. This suggests that CDs can promote plant
growth. The defense system of lettuce may be stimulated by
temperature stress and produce more antioxidant enzymes to
reduce damage, thus leading to an increase in protein content.
This is consistent with the results of the antioxidant enzyme
activity mentioned earlier.45

Endogenous soluble sugar is involved in the regeneration
process of plants, so it is of great significance to explore
whether CDs affect the content of soluble sugar. As shown in
Figure 6b, the soluble sugar contents of the CD treatment
groups were significantly higher than that of the deionized
water control group at three temperatures, an increase of 24.7,
12.34, and 32.56%, respectively. These results indicated that

Figure 6. Soluble protein content (a) and soluble sugar content (b) in the Italian lettuce in different treatments. N = 4. Average ± SD. Different
letters indicate significant differences among different treatments at p < 0.05 level.
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CDs could effectively reduce the activities of the sucrose-
degrading enzyme, acid invertase, and sucrose synthase under
heat stress, resulting in an increase in the total soluble sugar
content.46 In conclusion, CDs can effectively improve the
tolerance of lettuce seedlings to high-temperature stress and
alleviate the damage to the plant.
2.5. Growth of Lettuce Seedlings Treated by CDs

under Heat Stress. Under heat stress, the biomass,
chlorophyll, and photosynthetic system of lettuce are affected,
and the growth of the plant is delayed and the stem is fragile.
Furthermore, the degree of biofilm lipid peroxidation of lettuce
is increased after the plant is stressed, which is specifically
manifested as the increase in the malondialdehyde content.
Correspondingly, the content of proline as an osmotic
protectant is also increased, and the activity of antioxidant
enzymes is also decreased. However, the plants treated with
carbon point had a good protective effect on the plant, which
was embodied in promoting the plant to grow at a normal or
better level and increasing the content of soluble sugar and
soluble protein. The activity of antioxidant enzymes was
increased, and the scavenging effect on reactive oxygen was
enhanced. Therefore, the degree of biofilm lipid peroxidation
was weakened, and the contents of MDA and proline were
decreased. In conclusion, a series of studies have demonstrated
that CDs can improve the thermal stress resistance of Italian
lettuce by promoting growth and enhancing antioxidant
enzyme activity.

3. CONCLUSIONS

This study reveals that under a high-temperature environment,
spraying CDs on leaf surface increased the biomass,
antioxidant enzyme activity, and osmotic regulation substance
content in leaf, alleviated the damage to the plasma membrane
of lettuce cell due to high temperature, and enhanced the
tolerance of lettuce to a high-temperature environment. These
results provide a good solution for CDs in the resistance of
cold-like vegetables to high temperatures and provide a
possibility for normal and orderly agricultural production
under harsh climates.

4. EXPERIMENTAL SECTION

4.1. Synthesis of CDs. CDs were synthesized using a one-
step hydrothermal process. First, 15 g of S. miltiorrhiza powder
and 300 mL of distilled water were added to a beaker, stirred
with a glass rod, followed by treatment with ultrasonication for
30 min until the solution was well mixed. After transferring the
suspension to a 500 mL Teflon-lined stainless steel autoclave
and heating at 180 °C for 6 h, the resulting mixture was
centrifuged to remove the sediment after cooling to room
temperature. The supernatant liquid was purified with a 0.22
μm filter membrane at room temperature to remove large
particles. The resulting solution was used to remove small
molecules using a cellulose dialysis bag (300 Da), freeze-dried,
and then stored at 4 °C until needed.25

4.2. Preparation of the S. miltiorrhiza Extract. Fifteen
grams of S. miltiorrhiza powder was mixed with 300 mL of
deionized water, stirred evenly with a glass rod, and then
vibrated with ultrasonic vibration for 30 min; the supernatant
was the extract of S. miltiorrhiza.
4.3. Cytotoxicity of CDs. The cytotoxicity of CDs was

assessed via their effects on the cell viability of HeLa cells by
CCK assays. First, HeLa cells were cultured (37 °C, 5% CO2)

in a 96-well plate for 24 h. Then, the medium was discarded
and the cells were transferred to 100 mL of medium with
different concentrations of CDs (0, 0.02, 0.05, 0.1, and 0.2 mg/
mL). Next, the medium was discarded again, and the HeLa
cells were washed twice with Dulbecco’s phosphate-buffered
saline. The medium containing 10% CCK8 (100 μL) was
added to each well. After 1 h, the cell viability was measured
using a microplate reader at 450 nm.

4.4. Plant Growth and Cultivation. The plant growth
and cultivation experiments were carried out in the College of
Horticulture of South China Agricultural University (SCAU
Main Campus Teaching & Research Base). Two-week-old
Italian lettuce (Lactuca sativa L. var. ramosa Hort) seedling was
used to study the effects of CDs on plant growth. Seedings of
uniform size were selected and placed in the light incubators;
after one week of growth at a relative humidity of 60%, the
illumination intensity was controlled at 200 mmol/m−2/s−1.
Then, the temperature of the incubator was set at 25/20 °C
(14/10 h), 25/35/20 °C (10/4/10 h), and 25/45/20 °C (10/
4/10 h). The growth substrate was a mixture of peat soil and
vermiculite, and the appropriate nutrient solution was irrigated
every other day until harvest. Spraying deionized water and
CDs (2 mg/mL) small sprayer over the leaf surface. While
applying fluid on the surface of the leaf, it was made sure that
the blades were moist and the liquid did not drip. Three
replicates of six seedlings were set for each treatment. CDs and
deionized water were set for each temperature, the treatment
group sprayed with CDs solution at the high-temperature time
simulates with the high-temperature period of a natural day
25/20 °C (14/10 h) was the positive control group, the
treatment group sprayed with deionized water was the negative
control group for each temperature set, 10 days later, the
growth parameters of biomass, chlorophyll content, photosyn-
thesis, soluble sugar content, soluble protein content, MDA
content, proline content, SOD, POD, CAT were measured.

4.5. Methods and Analyses of Measured Parameters.
The fresh and dry weights of each plant were obtained from an
average of six lettuce plants. The content of chlorophyll was
measured by SPAD (spad502). A photosynthesis system (Li-
Cor 6400; Li-Cor, Inc., Nebraska) was used to monitor the net
photosynthetic rate. The SOD activity in lettuce seedlings was
determined by the NBT reduction method.47 The CAT
activity in lettuce seedlings was determined by the previously
reported methods.48 The POD activity of lettuce seedlings was
determined by the guaiacol method.49 The content of MDA
and proline in lettuce seedlings of each treatment was
determined by the MDA (malondialdehyde, MDA, Content
Assay Kit, Colorimetric Method) and Pro (proline, PRO,
Content Assay Kit, Colorimetric Method) content kit
produced by Shanghai Sangon Biological Engineering
Company. The contents of soluble sugar and soluble protein
was assessed by the anthrone colorimetry method and the
Coomassie Brilliant Blue method.50

4.6. Statistical Analyses. All data (mean ± SD, n =
biological replicates) were analyzed using SPSS 2017 (SPSS
Inc., Chicago, IL). Comparison between treatments was
performed by independent samples t-test (two tailed) or
one-way ANOVA based on Duncan’s multiple range test (two
tailed). Different lowercase letters mean the significance at p <
0.05.
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