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Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed in many cancer types and in vivo studies 
have shown that vascular endothelial cell FAK expression and FAK-phosphorylation at tyrosine (Y) 397, and subsequently 
FAK-Y861, are important in tumour angiogenesis. Pericytes also play a vital role in regulating tumour blood vessel stabilisa-
tion, but the specific involvement of pericyte FAK-Y397 and FAK-Y861 phosphorylation in tumour blood vessels is unknown. 
Using PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice, our data demonstrate 
that Lewis lung carcinoma tumour growth, tumour blood vessel density, blood vessel perfusion and pericyte coverage 
were affected only in late stage tumours in PdgfrβCre + ;FAKY861F/Y861F but not PdgfrβCre + ;FAKY397F/Y397F mice. Further 
examination indicates a dual role for pericyte FAK-Y861 phosphorylation in the regulation of tumour vessel regression and 
also in the control of pericyte derived signals that influence apoptosis in cancer cells. Overall this study identifies the role of 
pericyte FAK-Y861 in the regulation of tumour vessel regression and tumour growth control and that non-phosphorylatable 
FAK-Y861F in pericytes reduces tumour growth and blood vessel density.
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Introduction

Angiogenesis is a complex biological process that involves 
multiple cell types, crosstalk between these cells and 
responses to different stimuli [1–3]. Interactions between 
pericytes and endothelial cells play important roles in angio-
genesis. Pericyte recruitment to newly forming blood ves-
sels is thought to promote neovessel stabilisation and is an 
essential step in neovascularisation [4, 5]. Failure to recruit 
pericytes to blood vessels can affect vascular remodelling, 
vessel regression and vessel leakage [1, 2, 6]. This has led 
to pericyte-targeted therapies being developed and a better 
understanding of the role of pericytes in tumour angiogen-
esis [7, 8].

It is well documented that focal adhesion kinase (FAK) 
plays a central role in different aspects of tumour growth 
and is overexpressed in many types of cancer [9–11]. One of 
the many roles of endothelial cell FAK, in the promotion of 
tumour growth, is in the initiation of angiogenesis [12]. FAK 
regulates growth, survival, migration and invasion through 
its dual role as a kinase and as a scaffolding protein. FAK 
kinase activity results in tyrosine (Y) 397-phosphorylation, 
which, in turn, allows proteins containing the Src-homology 
(SH2) domain to bind to FAK, e.g., Src and PI3K. FAK-Src 
complexing is thought to potentiate further FAK phospho-
rylation at other FAK domains including FAK-Y861 [13, 
14]. Most studies have pointed towards essential roles for 
phosphorylation of FAK-Y397 but much less in known about 
the requirement of FAK-Y861. We and others have shown 
previously that endothelial cell (EC) FAK is required for 
tumour growth since EC FAK loss leads to a reduction in 
tumour growth, accompanied by a reduction in tumour vas-
cular density [12]. Endothelial specific loss of FAK inhibits 
brain tumour formation and leads to normalisation of the 
vasculature [15]. Global constitutive deletion of exon 5, 
which encodes FAK-Y397, also leads to an embryonic lethal 
phenotype with vascular permeability defects [16]. More 
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recently, we have shown that non-phosphorylatable muta-
tions of tyrosines 397 and 861 (Y397 and Y861) in endothe-
lial cells have differential effects on tumour angiogenesis 
[17] and that endothelial cell FAK regulates angiocrine 

signalling in the control of doxorubicin sensitivity in malig-
nant cells [18]. Whilst FAK has been studied extensively in 
endothelial cells, the function of FAK in pericytes during 
tumour growth and angiogenesis is starting to emerge, with 
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loss of pericyte FAK enhancing tumour angiogenesis [19]. 
Given that pericytes are an important cell type in the regu-
lation of tumour growth and paracrine signalling [20–22], 
here we have examined the role of FAK point mutations in 
pericytes during pathological angiogenesis. Specifically, we 
have examined the effect of non-phosphorylatable mutations 
of tyrosines 397 and 861 (Y397F and Y861F) – FAK resi-
dues using pericyte-specific  FAKY397F/Y397F and  FAKY861F/

Y861F mice.
In this study, we show that in a subcutaneous Lewis 

Lung Carcinoma (LLC) tumour model, both angiogenesis 
and tumour growth are reduced only in mice which have 
the pericyte-specific FAK-Y861F mutation. This correlates 
with a significant increase in vessel regression. Furthermore, 
examination of the secretome and protein expression in 
FAK-Y861F pericytes highlight an altered pericyte signature 
involving cytokines and protein secretion that are involved 
in cancer cell apoptosis. Thus, pericyte FAK-Y861 plays a 
role in the control of tumour growth.

Results

Generation of pericyte‑specific FAK mutant mice

We generated a new mouse model that enables us to study 
the effect of endogenous deletion of Y397 and Y861 of 
FAK in pericytes, during pathological angiogenesis. In 
this knock-out/knockin mouse model we initially generated 

myc-tagged chicken-WT-FAK, or non-phosphorylatable 
-Y397F or -Y861F mutant FAK constructs (preceded by 
a STOP sequence flanked by loxP sites) targeted to the 
Rosa26 (R26) locus. These mice were bred with PC-specific 
PdgfrβCre;FAKfl/fl mice to generate mutant FAK-knockin 
and endogenous FAK-knockout in pericytes under Cre con-
trol (Supplementary Fig. 1a, b). These mice show no defects 
in Mendelian ratios, gender distribution or weights and had 
no obvious adverse phenotype (Fig. 1a-c). Pericytes isolated 
from PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY861F/Y861F 
and PdgfrβCre + ;FAKY397F/Y397F mice confirmed the pres-
ence of the myc-tag indicating chicken FAK-knockin and 
normal levels of total FAK (Supplementary Fig. 1c). We 
also confirmed reduced pY397 in FAK-Y397F pericytes and 
reduced pY861 in FAK-Y861F pericytes (Fig. 1d). Similarly 
to work published in endothelial cells [17], Y397F muta-
tion in pericytes correlates with reduced levels of pY861F 
(Fig. 1e). Phosphorylated Src was reduced in Y397F peri-
cytes, but not in Y861F pericytes (Fig. 1f).

Tumour growth and blood vessel density 
are reduced in PdgfrβCre + ;FAKY861F/Y861F 
but not PdgfrβCre + ;FAKY397F/Y397F mice

To examine the effects of pericyte FAK-Y397F and 
Y861F mutations on tumour growth and angio-
genesis ,  PdgfrβCre  + ;FAKWT/WT control  mice, 
PdgfrβCre + ;FAKY861F/Y861F and PdgfrβCre + ;FAKY397F/Y397F 
mice were injected subcutaneously with Lewis Lung Carci-
noma cells (LLC). In vivo tumour growth was reduced in 
PdgfrβCre + ;FAKY861F/Y861F, but not PdgfrβCre + ;FAKY397F/Y397F 
mice. Furthermore, the PdgfrβCre + ;FAKY861F/Y861F but not 
PdgfrβCre + ;FAKY397F/Y397F mice had significantly reduced 
blood vessel density (as determined by the number of 
endomucin‐positive vessels per  mm2 of age‐matched, size‐
matched tumours) compared with PdgfrβCre + ;FAKWT/WT 
control mice (Fig. 1g, h).

In addition to the above, blood vessel perfusion (deter-
mined by the percentage of endomucin-positive blood vessels 
that were also positive for PE-PECAM antibody after ante-
mortem perfusion) and pericyte coverage (determined by 
the percentage of vessels with NG2-positive mural cell asso-
ciation) were both reduced in PdgfrβCre + ;FAKY861F/Y861F 
but not PdgfrβCre + ;FAKY397F/Y397F mice (Fig.  2 a, b). 
Loss of blood vessels can result from partial or persis-
tent regression of vascular endothelial cells. Blood vessel 
regression is associated with endothelial cell loss and peri-
cyte dropout leaving behind empty collagen IV basement 
membrane sleeves [23, 24]. Thus, vessel regression can be 
determined by the presence of endothelial cell-negative, 
collagen IV-positive basement membrane blood vessel 
sleeves. Collagen IV / endomucin double-immunostaining 

Fig. 1  LLC tumour growth and angiogenesis are 
reduced in PdgfrβCre + ;FAKY861F/Y861F mice. a 
PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and 
PdgfrβCre + ;FAKY861F/Y861F mice were born at normal male;female 
ratios; b Mendelian ratios with c similar body weights. Pie 
chart in a represents percentage male:female ratio, in b repre-
sents % Cre + and Cre- mice born to each genotype (n = 60 mice/
genotype). d Western blotting of primary pericytes isolated 
from PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and 
PdgfrβCre + ;FAKY861F/Y861F mice confirmed reduced levels of 
p-Y397 and pY861-FAK in FAKY397F and FAKY861F pericytes, 
respectively. e pY861-FAK levels are significantly reduced in Y397F 
pericytes, n = 2 independent lysates/genotype. Bar chart represents 
mean pY861-FAK levels + s.e.m. *P = 0.0155. GAPDH act as load-
ing control. f pY416-Src levels are significantly reduced in Y397F-
FAK pericytes. Blots shows pY416-Src, total Src and GAPDH 
loading control. g In  vivo tumour growth was significantly reduced 
only in PdgfrβCre + ;FAKY861F/Y861F mice. Graphs represent mean 
tumour volume ± s.e.m.; n = 15 PdgfrβCre + ;FAKWT/WT mice, 14 
PdgfrβCre + ;FAKY397F/Y397F mice and 11 PdgfrβCre + ;FAKY861F/Y861F 
mice. ****P < 0.0001. Two-sided Mann–Whitney U rank sum test. 
h Tumour blood vessel density was significantly reduced only in 
PdgfrβCre + ;FAKY861F/Y861F mice. Bar charts represent mean blood 
vessel density + s.e.m. *P = 0.0498; ns, not significant; n = 6 
PdgfrβCre + ;FAKWT/WT tumours, 6 PdgfrβCre + ;FAKY397F/Y397F 
tumours and 5 PdgfrβCre + ;FAKY861F/Y861F tumours. Two-sided Stu-
dent’s t-test. Representative endomucin stained LLC tumour sections 
are shown for each genotype. Scale bar, 50 μm

◂
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of day 14–21 tumours (when the rate of tumour growth 
in PdgfrβCre + ;FAKY861F/Y861F mice slows down) from 
PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F and 
PdgfrβCre + ;FAKY861F/Y861F mice showed a significant 

increase in endomucin-negative / collagen IV-positive blood 
vessel sleeves in tumours from PdgfrβCre + ;FAKY861F/Y861F 
compared with tumours from PdgfrβCre + ;FAKWT/WT, 
PdgfrβCre + ;FAKY397F/Y397F mice (Fig. 2c). These results 
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correlate with the reduction in tumour growth and suggest 
that tumour blood vessel regression may be involved in the 
tumour growth phenotype in PdgfrβCre + ;FAKY861F/Y861F 
mice.

Increased tumour necrosis in early stage 
tumours of PdgfrβCre + ;FAKY861F/Y861F mice

Examination of early stage tumours was undertaken to deter-
mine at what stage, during growth of the tumour, angio-
genesis was being affected. In early stage tumours (day 12 
post tumour cell inoculation) LLC tumour size, blood vessel 
density and blood vessel perfusion were similar between 
PdgfrβCre + ;FAKWT/WT and PdgfrβCre + ;FAKY861F/Y861F 
mice (Fig.  3a-c), suggesting that loss of blood vessels 
occur at a later stage of tumour growth. Indeed to exam-
ine whether FAK-Y861F PCs could directly affect the 
initial stages of microvessel sprouting, aortic rings from 
PdgfrβCre + ;FAKY861F/Y861F and PdgfrβCre + ;FAKWT/WT 
mice were embedded in collagen and stimulated, or not, with 
VEGF (30 ng/ml). VEGF treatment significantly increased 
angiogenic sprouting in both genotypes to the same extent 
suggesting that mutation of FAK-Y861F in pericytes is not 
sufficient to directly affect angiogenic sprouting in a tumour-
free environment (Supplementary Fig. 2).

Examination of early stage tumours,  using 
H&E stained sections, revealed that tumours from 
PdgfrβCre + ;FAKY861F/Y861F mice had a significant increase 
in tumour necrosis compared with PdgfrβCre + ;FAKWT/WT 
control mice (Fig. 3d). These results suggest that tumour 
necrosis precedes the onset of vessel regression and the 
reduced late stage tumour blood vessel density and tumour 
growth in PdgfrβCre + ;FAKY861F/Y861F mice.

FAK‑Y861F pericyte secretome enhances LLC 
tumour cell apoptosis

Paracrine or juxtacrine signals from endothelial cells, angi-
ocrine signals, have been implicated in the control of tumour 
growth where endothelial cell derived signals directly affect 
tumour cells by altering secreted cytokine profiles [18, 25, 
26]. The role of pericytes in this type of signalling is also 
emerging [27, 28]. Thus, we turned our attention to the 
possible effects of FAK-Y861F pericytes on tumour cell 
apoptosis. Using R&D protein profiler arrays, lysates from 
FAK-Y861F pericytes showed a decrease in levels of throm-
bospondin, MCP-1, proliferin, TIMP-1 and sICAM/CD54 
together with an increase in IGFBP-2, endostatin, TNF-
alpha, SDF1 and ADAMTS-1 compared with lysates from 
control WT pericytes. Similar effects on these cytokines 
were not observed in FAK-Y397F pericytes compared with 
WT pericytes and SDF-1/CXCL12 was apparently reduced 
(Fig. 4a). We focused on the role of MCP-1 in the apoptotic 
phenotype in tumours from PdgfrβCre + ;FAKY861F/Y861F 
mice since, in vitro, MCP-1 promotes mural cell recruit-
ment [29] and in vivo pharmacological inhibition of MCP-1 
reduces tumour growth and macrophage recruitment result-
ing in increased tumour necrosis [30], whilst loss of MCP-1 
delays mammary tumourigenesis [31]. Therefore, we treated 
LLC with MCP-1, after exposure to Y861F conditioned 
medium (CM), and asked if MCP-1 could be involved in con-
trolling tumour cell apoptosis. CM from FAK-WT and FAK-
Y861F pericytes were incubated with cultured LLC cells and 
apoptosis quantified by TUNEL staining. Y861F CM caused 
a significant increase in LLC apoptosis compared with LLCs 
incubated with WT CM. Indeed the pro-apoptotic phenotype 
of Y861F CM was reduced by the addition of exogenous 
recombinant MCP-1 to the pericyte CM (Fig. 4b), suggesting 
that the reduction of MCP-1 in Y861F pericytes is at least 
partially involved in the pro-apoptotic phenotype in tumours 
grown in PdgfrβCre + ;FAKY861F/Y861F (Y861F) mice. This 
pro-apoptotic tumour cell phenotype was confirmed, in vivo, 
where tumours from PdgfrβCre + ;FAKY861F/Y861F mice 
displayed significantly increased levels of apoptosis com-
pared with tumours from either PdgfrβCre + ;FAKWT/WT or 
PdgfrβCre + ;FAKY397F/Y397F mice (Fig. 4c).

Fig. 2  Blood vessel perfusion and pericyte coverage are reduced 
in PdgfrβCre + ;FAKY861F/Y861F mice. a PE-PECAM anti-
body perfused LLC tumours grown in PdgfrβCre + ;FAKWT/WT, 
PdgfrβCre + ;FAKY397F/Y397F and PdgfrβCre + ;FAKY861F/Y861F mice 
showed a significant reduction in functional tumour blood vessels 
in PdgfrβCre + ;FAKY861F/Y861F mice. Bar charts represent mean 
blood vessel perfusion + s.e.m. *P = 0.032; ns, not significant; n = 6 
PdgfrβCre + ;FAKWT/WT tumours, 5 PdgfrβCre + ;FAKY397F/Y397F 
tumours and 4 PdgfrβCre + ;FAKY861F/Y861F tumours. Two-sided Stu-
dent’s t-test. Representative endomucin stained and PE-PECAM 
antibody perfused LLC tumour sections are shown for each geno-
type. asterisks, non-perfused blood vessels. b Pericyte coverage of 
tumour blood vessels was also reduced in these mice. Bar charts rep-
resent mean pericyte coverage + s.e.m. *P = 0.03, ns, not significant; 
n = 6 PdgfrβCre + ;FAKWT/WT tumours, 5 PdgfrβCre + ;FAKY397F/Y397F 
tumours and 4 PdgfrβCre + ;FAKY861F/Y861F tumours. Two-sided 
Student’s t-test. Representative double stained endomucin and 
NG2 LLC tumour sections are shown for each genotype. Arrows, 
NG2 + endomucin + blood vessels; asterisks, NG2- endomu-
cin + blood vessels. Scale bar in a and b, 50  μm. c Day 14–21 
tumours from PdgfrβCre + ;FAKWT/WT, PdgfrβCre + ;FAKY397F/Y397F 
and PdgfrβCre + ;FAKY861F/Y861F mice were immunostained with 
Collagen IV and endomucin to identify empty basement membrane 
sheaths. Bar chart shows vessel regression (% of Coll IV + vessels 
that are endomucin -ve) + s.e.m.; ****P < 0.0001; ns, not significant; 
n = 6 PdgfrβCre + ;FAKWT/WT mice, 8 PdgfrβCre + ;FAKY397F/Y397F 
mice and 6 PdgfrβCre + ;FAKY861F/Y861F mice. Two-way ANOVA. 
Representative images show Collagen IV and endomucin stained 
blood vessels from tumours from all genotypes. arrows, Collagen 
IV + endomucin –ve blood vessels. Scale bar, 50 μm

◂
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FAK kinase activity leads to phosphorylation of Y397-
FAK which, in turn, allows protein containing the Src-
homology (SH2) domain to bind to FAK, including Src. 
FAK-Src complexing are thought to potentiate further 
FAK phosphorylation at other FAK domains includ-
ing Y861. Since phosphorylated Src was not reduced in 
Y861F pericytes, we wanted to determine if the phenotype 
observed in Y861F pericytes was dependent on Src. To 
address this, Src levels were depleted in FAK-WT, FAK-
Y397F and FAK-Y861F pericytes followed by examination 
of the effect of CM from these cells on LLC cell death. 

CM from Src-depleted FAK-WT and FAK-Y397F peri-
cytes significantly increased LLC apoptosis. Conversely, 
CM from FAK-Y861 Src-depleted pericytes (Supplemen-
tary Fig. 3) had no additional effect on LLC apoptosis 
above LLC exposed to non-treated CM (Fig. 4d).

These results imply a direct regulation of tumour cells 
through pericyte paracrine signalling—a direct effect on 
vascular disruption and ultimately tumour growth that is 
regulated by FAK-Y861 phosphorylation, and indepen-
dently of Src.

Fig. 3  Early stage tumour 
growth is similar between 
PdgfrβCre + ;FAKWT/WT and 
PdgfrβCre + ;FAKY861F/Y861F 
mice. Early (day 12): a 
Tumour size, b Blood vessel 
density, and c Blood vessel 
perfusion were similar between 
PdgfrβCre + ;FAKWT/WT and 
PdgfrβCre + ;FAKY861F/Y861F 
mice. Bar charts rep-
resent mean + s.e.m.; 
ns, not significant. Stu-
dent’s t-test. For a, n = 8 
PdgfrβCre + ;FAKWT/WT mice, 
5 PdgfrβCre + ;FAKY861F/Y861F 
mice. For b and c n = 8 
PdgfrβCre + ;FAKWT/WT tumours, 
5 PdgfrβCre + ;FAKY861F/Y861F 
tumours. Representative images 
showing blood vessel perfu-
sion in LLC tumours from 
PdgfrβCre + ;FAKWT/WT and 
PdgfrβCre + ;FAKY861F/Y861F 
mice. Scale bar, 50 μm. 
Asterisks, non-perfused blood 
vessels. d Tumour necrosis was 
increased in PdgfrβCre + ;FAK 
Y861F/Y861F. Bar chart shows 
% necrotic area in tumours 
from PdgfrβCre + ;FAKWT/WT 
and PdgfrβCre + ;FAK 
Y861F/Y861Fmice.*P < 0.05 
Wilcoxon test; n = 6 tumours 
from PdgfrβCre + ;FAKWT/WT 
mice and 7 tumours from 
PdgfrβCre + ;FAK Y861F/Y861F 
mice
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Discussion

Our data demonstrate that FAK-Y861F pericytes decrease 
tumour burden, at least in part, by directly affecting tumour 
cell apoptosis, and call for further consideration of the role 
of tumour pericytes in the direct control of tumour growth, 
in addition to their effects on vessel stabilisation. Indeed, 
we have recently shown that pericytes play a central role in 
the control of primary tumour growth, through cross-talk 
with multiple cell types in the tumour microenvironment 
[19, 20].

FAK is upregulated in many cancer types and is cur-
rently being targeted as a potential anti-cancer agent 
because of its essential roles in tumour growth and angio-
genesis [12, 32–34]. Our previous work identified distinct 
roles for FAK-Y397 and FAK-Y861 phosphorylation in 
tumour endothelial cells where endothelial cell FAK-Y397 
but not FAK-Y861 reduced tumour growth and angiogen-
esis, and linking these tyrosine domains to specific sign-
aling pathways downstream of FAK and regulation of an 
inside out signal affecting endothelial cells surface recep-
tor expression [17, 35]. Pericytes are thought to be essen-
tial in stabilising the tumour vasculature and thus attention 
has been given to the potential of targeting pericytes to 
induce vascular disruption in cancer control [36]. How-
ever, recent conflicting studies have emerged challenging 
this idea [37] and suggest possible additional roles for 
pericytes in regulating tumour growth. In contrast to the 
effect of FAK-Y397F mutation in endothelial cells [17], 
our mouse models show that phosphorylation of FAK-
Y397 in pericytes is not a prerequisite for the control of 
LLC tumour growth or angiogenesis. The reason for this 
apparent discrepancy likely reflect a different requirement 
for FAK-Y397-phosphorylation in these two cells types 
in tumour blood vessels. Additionally, complete loss of 
pericyte FAK is compensated by an increase in pericyte 
p-Pyk2, which is sufficient to drive a downstream signaling 
cascade to promote tumour growth, through effects on both 
malignant cells and angiogenesis [19]. Importantly, one 
cannot directly compare pericyte FAK-KO with pericyte 
FAK- Y397F, since phosphorylation of Src is not affected 
in pericyte FAK-KO mice, whereas in FAK-Y397F mice, 
the kinase domain is not affected (as it acts upstream of 
Y397 in the signaling cascade of FAK activation).

FAK-Y861F mutation in pericytes is associated with 
reduced tumour growth and angiogenesis that is preceded 
by an increased tendency for tumour cell necrosis and sub-
sequent blood vessel regression. Since tumour necrosis 
has been demonstrated to have vascular disrupting effects 
[38, 39] it is tempting to speculate that the early stage 
enhanced tumour necrosis may initiate vascular disrup-
tion. Additionally, given that the Y861F mutation reduces 

pericyte association with tumour blood vessels, it is likely 
that vessel stability and maturation is compromised and 
this reduced pericyte coverage is also likely to be respon-
sible for the decrease in the numbers of functional blood 
vessels and reduced tumour growth.

Studies have shown that vascular endothelial cells can con-
trol tumour growth via angiocrine signals, including cytokines 
and chemokines [18, 40]. In our study, the protein signature of 
FAK-Y861F pericytes is a combination of reduced levels of 
TSP-2, MCP-1, proliferin, TIMP-1 and sICAM/CD54 together 
with an increase in IGFBP-2, endostatin, TNF-alpha, SDF1 
and ADAMTS-1. This molecular signature associates with 
pro-apoptotic effects on tumour cells but apparently has lit-
tle effect on VEGF-stimulated angiogenic sprouting in aortic 
ring assays in a tumour-free context. The lack of an effect on 
VEGF-induced aortic ring sprouting suggests that the effect of 
FAK-Y861F pericyte enhancement on tumour cell apoptosis 
may be a contributing factor to subsequent vessel regression 
in a tumour environment. The anti-angiogenic effect of TSP-2 
is blocked by VEGF thus providing a possible explanation 
of why VEGF-stimulated angiogenesis is not affected in aor-
tic ring assays from PdgfrβCre + ;FAKY861F/Y861F mice where 
the decrease in TSP-2 might otherwise have increased angio-
genesis [41]. The pro-tumoural effects of MCP-1, proliferin, 
TIMP-1 and soluble ICAM-1 [42–45] whilst the anti-cancer 
effects of IGFBP-2, endostatin and ADAMTS-1 [46–48] have 
been published and suggest that this secretome signature may 
well provide a combination of effects on cancer growth. Indeed 
MCP-1 addition to conditioned medium from FAK-Y861F 
pericytes was able to rescue the pro-apoptotic effect of this 
cocktail on tumour cells.

Furthermore, we have shown here that loss of pericyte FAK-
Y861 phosphorylation intrinsically regulates a paracrine signal 
that controls apoptosis of tumour cells, independent of Src and 
does not affect phosphorylation of Y416-Src. We and others 
have previously shown that loss of FAK, or a non-phosphoryl-
atable Y397F mutation in endothelial cells, disrupts active Src-
FAK interactions, driving Src degradation, possibly activating 
other FAK-Src independent signalling pathways [17, 49–51].

The molecular mechanism by which FAK-Y861 affects 
this secretome signature is the subject of the future study. 
Our data support the notion that pericytes are not simply 
vessel supporting cells, but that via FAK-Y861, can regulate 
tumour growth via pericyte derived signals directly affecting 
tumour cell apoptosis.

Methods

Mice

To examine the effect of pericyte-specific FAK muta-
tions in  vivo, we developed PdgfrβCre;FAKW/WT mice 
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(FAK-WT), PdgfrβCre;FAKY397F/Y397F (Y397F) mice and 
PdgfrβCre;FAKY861F/Y861F (Y861F) mice [52]. All experi-
ments were approved by United Kingdom Home Office 
Regulations. For animals bred in-house, health screens 
(quarterly) were conducted in accordance with FELASA 
guidelines for health monitoring of rodent colonies, to con-
firm their free status of known pathogens in accordance 

with FELASA screens. No clinical signs were detected. 
Animals were housed in groups of 4–6 mice per individu-
ally ventilated cage in a 12 h light dark cycle (06:30–18:30 
light; 18:30–06:30 dark), with controlled room temperature 
(21 ± 1 °C) and relative humidity (40–60%). The cages con-
tained 1–1.5 cm layer of animal bedding, and with envi-
ronmental enrichment including cardboard Box-tunnel and 
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crinkled paper nesting material. Animals had access to food 
and water ad libitum.

Tumour growth

Male and female mice aged 12–16 weeks were injected sub-
cutaneously with 0.5 ×  106 Lewis lung carcinoma cells (LLC, 
ATCC) into the flanks. Tumour dimensions were measured 
over time and tumour growth was determined using the for-
mula: length x  width2 × 0.52. When tumours reached the 
maximum legal size allowed, mice were killed, tumour sizes 
measured and tumour samples were either snap-frozen, fixed 
in 4% paraformaldehyde (PFA) or fixed in 4% PFA/sucrose 
for histological analysis. For early tumour growth studies, 
tumours were harvested at day 12 post tumour cell injection.

Blood vessel density

Five µm frozen tumour sections were air-dried for 10 min, 
washed once in PBS, fixed in acetone for 10 min at -20 °C, 
washed in PBS three times and then blocked with 5% normal 
goat serum for 30 min at room temperature. After block-
ing, sections were incubated with primary antibodies over-
night at 4 °C. Primary antibodies used were directed against 
endomucin (clone V.7C7; Santa Cruz; sc-65495, 1:100). 

Sections were then washed with PBS and incubated with 
Alexa-Fluor®-conjugated secondary antibody (1:100, Inv-
itrogen) for 45 min at room temperature before mounting 
the slides with Prolong® Gold anti-fade reagent (Invitrogen, 
P36934). Tumour blood vessels were counted across entire 
midline sections, and the numbers were expressed as vessels/
mm2. For examination of blood vessel regression, tumours 
were fixed with 4% PFA/sucrose then frozen in OCT.

Blood vessel perfusion

For analysis of the % of functional tumour vessels, 100 μl 
PE-PECAM antibody (clone 390, neat; Biolegend, 102,407) 
was injected via the tail vein 10 min prior to culling mice. 
Tumours were dissected immediately, snap-frozen and 
sectioned. Frozen sections were then immunostained for 
endomucin, as described above. To calculate the % number 
of functional vessels, the number of PE-PECAM-positive 
blood vessels was divided by the total number of endomu-
cin-positive blood vessels.

Pericyte coverage

Frozen tumour sections were double immunostained as 
described in “Blood vessel density” using the pericyte-
specific antibody NG2 (AB5320; Millipore, 1:100) and 
endomucin. The percentage of endomucin-positive vessels 
with NG2-positive cells associated was calculated.

Blood vessel regression/Collagen IV staining

Frozen tumour sections were air-dried for 30 min at room 
temperature, permeabilised for 3 min with PBS + 0.5% Tri-
tonX-10 then blocked with 5% BSA/PBS for 1 h at room 
temperature. Sections were then incubated overnight at 
4 °C with Collagen IV (Abcam; 1:100 dilution, ab6586) 
and endomucin (clone V.7C7, Santa Cruz; 1:100) antibodies. 
The following day, sections were washed three times with 
PBS and incubated for 1 h at room temperature with Alex-
aFluor conjugated secondary antibodies (1:100). Finally, 
sections were washed twice in PBS and once in distilled 
water then mounted (Prolong Gold with DAPI) with a glass 
slide and images were acquired using a confocal spinning 
disk microscope and sCMOS confocal camera (Nikon). 
Image analysis was performed using ImageJ software by 
making maximum intensity projections of z stacks and the 
numbers of vessels counted manually.

Tumour necrosis

Early stage LLC tumours were fixed in 4% formaldehyde and 
bisected. Tumour sections were H&E stained, scanned using 
a Panoramic scanner and the area of necrosis (as identified 

Fig. 4  FAK-Y861F pericytes induce apoptosis in LLC tumour 
cells. a R&D proteome  profiler  array using lysates from FAK-WT, 
FAK-Y397F and FAK-Y861F pericytes. Representative dots of dif-
ferentially expressed proteins are given. Bar charts show mean 
fold change in protein expression relative to levels in WT. N = 2 
dots from 1 experiment. b Lewis lung carcinoma (LLC) cells incu-
bated with conditioned medium (CM) from pericytes plus or minus 
recombinant MCP-1. Treatment with FAK-Y861F pericyte CM 
increased LLC apoptosis, compared with CM from FAK-WT peri-
cytes. This effect was rescued upon treatment with MCP-1 (10 and 
50  ng/ml). Bar chart represents % TUNEL-positive cells + s.e.m. 
Representative images show effect of CM and MCP-1 on LLC 
cells. Arrows, TUNEL-positive cells. *P < 0.05. One-way ANOVA. 
N = 5–11 fields of view/genotype. Scale bar, 500  μm. c Early and 
late stage tumours from PdgfrβCre + ;FAKY861F/Y861F mice had 
significantly larger TUNEL-positive areas than tumours from 
PdgfrβCre + ;FAKWT/WT and PdgfrβCre + ;FAKY397F/Y397F mice. Bar 
chart shows % TUNEL-positive area/tumour + s.e.m. **P = 0.0012, 
*P = 0.0464; ns, not significant; n = 6 PdgfrβCre + ;FAKWT/WT mice, 8 
PdgfrβCre + ;FAKY397F/Y397F mice and 6 PdgfrβCre + ;FAKY861F/Y861F 
mice. Two-way ANOVA. Representative images show TUNEL-pos-
itive staining in tumours. Scale bar, 2.5 mm. d LLC cells incubated 
with CM from pericytes treated with Src siRNA, non-specific scram-
bled siRNA (Scr) or transfection reagent (NT). CM from non-treated 
(NT) Y861F had a significantly higher effect on LLC apoptosis com-
pared with CM from either WT or Y397F pericytes. Knockdown of 
Src in both WT and Y397F pericytes significantly increased LLC 
apoptosis. Src knockdown in Y861F pericytes did not increase LLC 
apoptosis above control levels. Bar chart represents % TUNEL-pos-
itive cells ± s.e.m. ***P = 0.0006, *P = 0.0196 One -way ANOVA. 
***P = 0.0006 WT NT vs. 861F NT, *P = 0.03 (Y397F NT vs. 
Y861F NT). Two-sided students t test. N = 10–23 fields of view. Scale 
bar, 500 μm; arrows in b and d indicate TUNEL-positive cells

◂
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by acellular regions of tumour tissue) quantified with ImageJ 
software.

TUNEL staining

Tumour cell apoptosis was examined in frozen tumour sec-
tions using the In Situ Cell Death Detection Kit, TMR red 
(Roche, 12156792910) following the manufacturer’s instruc-
tions. Stained sections were scanned using a Panoramic 
scanner and the TUNEL-positive area was calculated as the 
percentage of TUNEL-positive area/ tumour area.

LLC and pericyte conditioned medium experiments

LLC were plated on coverslips at a density 5 ×  104 cells in 
DMEM + 10% FCS. At the same time WT and 861F peri-
cytes were grown to 50–60% confluency and conditioned 
medium (CM) removed. CM was centrifuged to remove 
cell debris and added to LLCs after removal of DMEM and 
two PBS washes. Recombinant mouse MCP-1 (Biotechne, 
MAB479) was added to the CM at either 10 or 50 ng/ml. 
Cells were incubated with CM for 24 or 48 h after which 
cells were stained to detect DNA fragmentation in apop-
tosis using the BrdU-Red DNA (TUNEL) kit (Abcam, 
ab66110) following the manufacturer’s instructions. Within 
3 h of staining the cells were analysed for BrdU using a 
Zeiss microscope and Axiovision software. The percentage 
of TUNEL-positive cells was calculated by counting the 
total number of cell nuclei and the number of nuclei that 
were TUNEL positive. For Src siRNA experiments, WT, 
Y397F and Y861F pericytes were transfected for 48 hr with 
SMARTpool Src siRNA or non-targeted siRNA (both 10uM 
final concentration) as a control. After 48 hr cells were lysed 
for protein extraction to measure Src levels by Western blot 
analysis. Conditioned medium was also removed and added 
to LLCs as described above, prior to TUNEL staining.

Primary cell cultures

Primary mouse brain pericytes were isolated from the mice, 
cultured and characterised as previously described [53, 54]. 
Briefly, brains were removed from mice, minced, digested 
for 1 h in 0.1% collagenase, centrifuged in the presence of 
22% BSA, and cultured in endothelial cell growth media 
(pMLEC) with the medium changed every 3 days. On reach-
ing confluency, cultures were harvested with trypsin and 
passaged. During the first two passages, pericyte cultures 
were grown in pMLEC, and on the third passage they were 
grown in pericyte medium (PM; ScienCell Research Labo-
ratories) containing 2% FBS and antibiotics. Tissue culture 
plates for all experiments were coated with a mixture of col-
lagen (30 µg/ml), gelatin (0.1%) and fibronectin (10 µg/ml).

Aortic ring assay

Aortic rings were isolated from all mouse genotypes as 
previously described [55].

Angiogenesis and cytokine arrays

Pericyte angiogenesis and cytokine profiles were compared 
using the angiogenesis array (ARY015, R&D Biosystems) 
and cytokine array (ARY006, R&D Biosystems). Briefly, 
cell lysates were prepared as follows: sample buffer was 
added to the cell culture, the cells were scraped and trans-
ferred into a 1.5 ml Eppendorf tube. After sonication, sam-
ples were adjusted to the array conditions and mixed with 
a Detection Antibody Cocktail as indicated by the manu-
facturer’s instructions. Lysates were incubated overnight 
at 4 °C on dot-blot membranes. Membranes were washed, 
incubated with streptavidin-HRP for 30 min at RT, washed 
again and ECL was applied to the membrane to reveal the 
dots. Quantification of dot intensity was performed using 
ImageJ™ software.

Western blot analysis

Primary brain pericytes were grown to 70–80% conflu-
ency then lysed in RIPA buffer. 15–30 μg protein was run 
on 8% polyacrylamide gels then transferred to nitrocel-
lulose membranes. Membranes were probed with primary 
antibody overnight at 4  °C. Myc-tag (Cell Signaling, 
clone 9B11, 2276, 1:1000), total FAK (Cell Signaling, 
3258, 1:1000), phospho-397 FAK (Invitrogen, 44-624G, 
1:1000), phospho-861 FAK (Invitrogen, 44-626G, 
1:1000), PDGFRβ (Cell Signaling, clone 28E10, 3169, 
1:1000), endomucin (V7.C7, Santa Cruz, 1:1000), Src 
(Cell Signaling, 2108, 1:1000), pSrc (Cell Signaling, 2101, 
1:1000). The anti-HSC70 (Santa Cruz, clone B-6, sc-7298) 
or GAPDH (Millipore, MAB374) antibody, for loading 
controls, were used at 1:5000 dilution. Densitometric read-
ings of band intensities were obtained using the ImageJ™ 
software.

Statistical analysis

Statistical significance was calculated using Prism 8 soft-
ware and P < 0.05 was considered statistically significant, 
unless otherwise indicated. For tumour growth statistics, 
non-parametric two-sided Mann–Whitney U rank sum test 
was performed to compare tumour volumes each day. One-
way ANOVA was performed for the in vitro TUNEL and 
aortic ring assay, two-way ANOVA for the blood vessel 
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regression and in vivo TUNEL study. Wilcoxon test was 
performed for tumour necrosis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10456- 021- 09776-8.
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