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THE BIGGER PICTURE Studying the expression of genes within tissue samples is a common method of
exploring the biology and behavior of that tissue. Comparing differences in gene expression between
two biological groups can identify distinctions that drive biological behavior. In the context of medicine,
such analysis can reveal biomarkers for different disease states and even suggest treatment targets.
Such differential gene expression analysis, however, can lack both sensitivity and accuracy when low
numbers of samples are available for RNA sequencing. The tool presented in this paper, GAiN, can enhance
the ability of researchers to accurately identify true-positive gene expression differences and pathways be-
tween phenotypic groups by leveraging machine learning to uncover the structural gene expression pat-
terns of even small numbers of biological samples.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Big genomic data and artificial intelligence (AI) are ushering in an era of precision medicine, providing oppor-
tunities to study previously under-represented subtypes and rare diseases rather than categorize them as
variances. However, clinical researchers face challenges in accessing such novel technologies as well as reli-
able methods to study small datasets or subcohorts with unique phenotypes. To address this need, we
developed an integrative approach, GAiN, to capture patterns of gene expression from small datasets on
the basis of an ensemble of generative adversarial networks (GANs) while leveraging big population data.
Where conventional biostatistical methods fail, GAiN reliably discovers differentially expressed genes
(DEGs) and enriched pathways between two cohorts with limited numbers of samples (n = 10) when bench-
marked against a gold standard. GAiN is freely available at GitHub. Thus, GAiN may serve as a crucial tool for
gene expression analysis in scenarios with limited samples, as in the context of rare diseases, under-repre-
sented populations, or limited investigator resources.
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INTRODUCTION

The combination of big genomic data and novel artificial intelli-

gence (AI) technologies is ushering in an era of precision medi-

cine, providing new opportunities for and posing new challenges

to the study of previously under- or un-represented subtypes

and rare diseases.1 The majority of clinical researchers can still

only rely on conventional biostatistical methods to study small

datasets with unique phenotypes that may or may not be repre-

sented in large public datasets. Alarmingly, low sample numbers

and small effect sizes have recently been identified as leading

threats to research validity and reproducibility.2,3 Among the

most fundamental and widely applicable research needs are

gene expression and pathway analyses for clinically relevant bio-

logical phenotypes.4,5 However, gene expression patterns are

complex and governed via nonlinear interactions of thousands

of gene products.6–8 This complexity stands as a major hurdle

to generating robust mechanistic conclusions using existing

methods when samples are limited.9,10 To put this in perspec-

tive, using the National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) database as an

example, the overwhelmingmajority (approximately 75%) of pre-

viously published datasets include fewer than 20 samples per

dataset (Figure S1).11 Given this, the aggregate impact of

improving gene expression and pathways analysis in the context

of small sample cohorts is extremely significant.

In this study, we apply cutting-edge AI technologies to

address the challenges of robust gene expression pattern recog-

nition from a small dataset, while also leveraging the existing

resource of big public genomics data. The burgeoning field of

data augmentation using deep learning techniques has shown

the ability to increase the number and diversity of observations

while preserving the underlying data structure, including

nonlinear relationships between data features.12 A recently

developed generative modeling technique, generative adversa-

rial networks (GANs), has achieved remarkable results in the

fields of computer vision, natural language processing, and

medical image analysis.12,13

Considering this, we developed GAiN, a tool leveraging GANs

and existing public data to augment gene expression analysis of

datasets with limited sample numbers.14 To our knowledge, this

is the first tool which uses GAN deep learning data augmentation

for supervised downstream differential expression (DE) and

pathway analysis. We established the ability of GAiN, which in-

cludes an ensemble of 20 GANs and a random forest model,

trained on small numbers (i.e., n = 10) of samples for each pheno-

type, to discover gene expression differences and enriched path-

wayswhich onewould observe if they collected hundreds or thou-

sands of biological samples. To test this, we downloaded >4,000

samples from The Cancer Genome Atlas (TCGA), covering 4 large

cohorts of samples to establish gold-standard benchmarks for

subtype phenotypes.15 Our benchmarking results showed that,

while traditional biostatistical methods struggled to robustly pre-

dictpatternsofdifferential geneexpressiondemonstratedbyanal-

ysis of a gold-standard comparison when applied to cohorts of

small samples, GAiN reliably discovered differentially expressed

genes (DEGs) using only small datasets. Furthermore, we show

in a variety of scenarios that downstream pathway enrichment

analysis (PEA) is greatly enhanced by using GAiN.
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As GAN models are intrinsically hard to train, we provide an

automated tool for researchers studying any disease or pheno-

type. Our tool is very efficient, and can be executed on a stan-

dard laptop, with a typical runtime of several hours. The GAiN

tool is free and open source software and can be downloaded

at https://github.com/jin-wash-u/GAiN.

RESULTS

Overview of the GAiN tool
The goal of the GAiN tool is to generate a large synthetic

population of gene expression profiles that model a particular

biological phenotype by using GANs trained on a small number

of samples and fine-tuned using existing large, public genomic

data. Next, these large cohorts of synthetic gene expression pro-

files are used for differential gene expression testing, with the re-

sults available for downstream PEA and additional genomic

exploration. We hypothesize that GAiN augmented analysis sub-

stantially improves upon classical biostatistical techniques,

especially in the context of limited samples. To this end, we im-

plemented our data augmentation tool, GAiN, and trained it on

small numbers of samples from two separate phenotypes of in-

terest. GAiN is designed to train an ensemble of GANs (a cus-

tomizable hyperparameter; n = 5 by default) on normalized

expression data from two phenotypes of interest (Figure 1A;

also see experimental procedures). Each network consists of

two sub-models, a generative model (i.e., a denoising autoen-

coder [DAE]) and a discriminative model (i.e., a multilayer per-

ceptron), for each phenotypic group (Figure 1B). GAiN uses the

generators trained on the real samples to generate a large num-

ber (500 by default) of Z-normalized synthetic samples for the

corresponding phenotype, and restores scale to this expression

data using population data (Figure 1C; also see experimental

procedures). Last, downstream DE testing (via edgeR) and

PEA (via enrichR) is performed between the two GAiN generated

cohorts to identify gene expression patterns and enriched path-

ways which one would expect to observe only if they collected

hundreds or thousands of biological samples using traditional

gene expression analysis methods16,17 (Figure 1D). The GAiN

augmentation tool for integrative and supervised gene expres-

sion analysis is freely available at https://github.com/jin-wash-

u/GAiN.

Comparison with gold-standard benchmarks
Although GAiN can be applied to any dataset, here we used

TCGA data to build reliable gold-standard benchmarks

leveraging TCGA’s large sample sizes and well-defined cancer

phenotypes. Altogether, we downloaded >4,000 samples

covering 4 large cancer cohorts in order to benchmark DEGs

and altered pathways among 10 cancer-related phenotypes

(Table S1). For each analysis, 50% of all samples were randomly

reserved as a population cohort (PC), with the other 50% as a

test cohort (TC) (Figure 1D). Gold-standard benchmarks for

DEGs and enriched pathways were generated comparing the

two phenotypes of the TC data, using several hundred samples

per phenotype in each comparison. Additionally, for each pheno-

type, 10 samples (denoted as ‘‘small’’ or ‘‘sparse’’ in this study)

from the PC were provided to GAiN to generate an augmented

dataset. The two augmented datasets were then analyzed for

https://github.com/jin-wash-u/GAiN
https://github.com/jin-wash-u/GAiN
https://github.com/jin-wash-u/GAiN
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Figure 1. Overview of the GAiN tool

(A) GAiN accepts normalized gene expression data from a number of samples (typically small) of two phenotypes of interest and from a large population cohort

chosen from public data that matches the biology of the phenotypes of interest as closely as possible (it may contain samples of other phenotypes). From these

inputs, GAiN uses an ensemble of generative adversarial networks (GANs) and a random forest classifier to produce a series of gene expression datasets with

large numbers of synthetic samples that encode the gene expression of each phenotype.

(B) Each GAN within the ensemble consists of two sub-models: a generator that learns from Z-normalized gene expression data of a single phenotype and

attempts to generate synthetic outputs indistinguishable from its training data; and a discriminator that accepts both real training data and the synthetic data from

the generator as input and attempts to correctly label each sample as real or synthetic. The generator and discriminator are trained in alternating fashion for 500

epochs, at which point the generator output is indistinguishable from the real training data and a large set of synthetic samples of the desired phenotype is output.

(C) The gene expression data for the synthetic samples output by the GAN is Z-normalized, so in order to restore scale to the individual genes, GAiN uses

normalized gene expression values from public data. A random forest classifier is trained on the real expression data from each of the two phenotypes, then used

to label each sample in the public data as more similar to phenotype 1 or phenotype 2. The means and SDs of each gene in the public samples assigned to each

phenotype are then used to restore absolute gene expression values to the Z-normalized synthetic data.

(D) In order to evaluateGAiN’s ability to reveal true differences in gene expression, large gene expression cohorts for pairs of phenotypes of interest were obtained

from TCGA. These samples were stratified by phenotype and randomly divided into a population cohort (PC) and a test cohort (TC). DE gene analysis between the

phenotypes in the TC provided gold-standard DE gene and enriched pathway lists against which to benchmark GAiN’s results. A small cohort of 20 samples, 10

from each phenotype, was randomly selected from the PC, and the small cohort was submitted to GAiN as training data with the full PC as population data. DE

gene and enriched pathway results from GAiN and from the un-augmented small cohort were then compared with those of the TC.
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DEGs and enriched pathways, and the results were compared

with the gold-standard benchmarks. To measure improvements

gained by the GAN data augmentation approach, we compared

the results from differential gene expression analysis and

pathway analysis using the gold-standard TC, the GAiN

augmented analysis, and the un-augmented small datasets. Re-

sults from gold-standard TC data are labeled ‘‘TC,’’ results from
the un-augmented small data are labeled ‘‘small,’’ and results

from the GAiN augmented data are labeled ‘‘GAiN’’ (Figure 1D).

Augmentation of gene expression analysis using small
sample numbers
We assessed whether GAiN augmentation of two cohorts of

limited sample size, and downstream DE testing between the
Patterns 5, 100910, February 9, 2024 3
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two augmented cohorts, improves DE analysis compared with

using limited sample numbers alone. To test this hypothesis,

we initially evaluated GAiN augmentation of two phenotypes

from the same disease site: we downloaded TCGA gene expres-

sion data of lung adenocarcinoma (LUAD; n = 533) and lung

squamous cell carcinoma (LUSC; n = 502) to serve as our two

cohorts. As stated previously, 50% of the LUAD and LUSC

cohort was randomly reserved as a PC, with the other 50% as

a TC. The samples for each ‘‘small’’ dataset (n = 10 each pheno-

type) were randomly selected from the PC. Thus, we provided

GAiN with only �2% of the original TCGA-LUAD (n = 10 of 533)

and TCGA-LUSC (n = 10 of 502) data. Five hundred synthetic

LUAD and 500 synthetic LUSC samples were generated using

these sparse samples by training 20 GANs in the GAiN tool.

Given the large size of the synthetic and TC datasets, a large

fraction of the total genes tested were deemed significant by

multiple hypothesis testing. For useful discrimination, we used

a rank-based method and compared the top 1,000 DEGs, as

determined by edgeR false discovery rate (FDR)-adjusted p

value, from DE testing between the GAiN synthetic cohorts,

the TCs, and the non-augmented small samples (Data S1). First,

we observed that the synthetic gene expression profiles gener-

ated by GAiN, using only sparse sets from the PC data, closely

mirrored the expression profiles of both cancer types of genes

in the TC data (Data S2). Principal-component analysis (PCA)

of samples from the TC and GAiN cohorts (Figure S2) and Bhat-

tacharyya distances calculated between the resulting distribu-

tions (Table S2) confirm the GAiN-generated samples from

each phenotype have a very similar expression profile to the cor-

responding TC samples. For illustration, Figures 2A and 2B

demonstrate GAiN augmented and TC expression values for

the top 3 most and least DEGs by p value in the TC data. In all

cases, synthetic data captures not only whether these genes

are reliably expressed in the phenotype of interest, but also reli-

ably mirrors real data expression levels. This also holds true for

expression of genes known to be markers for biological differ-

ences between adeno and squamous cell carcinomas (Fig-

ure S3). Next, we found that the top 1,000 genes identified

from DE analysis of the GAiN augmented datasets rediscovered

800 of 1,000 of the true-positive DEGs from the TC (F1 = 0.8;

Figures 2C, 3, and S4). By comparison, the un-augmented small

dataset predicted 602 of 1,000 genes (F1 = 0.6), and F1 score fell

farther when only using genes significant by multiple hypothesis

using edgeR, as is the approach in conventional biostatistical

analysis (F1 = 0.56; Figures 2C and 3). The strong performance

of GAiN synthetic samples in recapitulating true phenotypic dif-

ferences in patterns of gene expression from the TC across

different DEG thresholds (comparing the top n genes; e.g., n =

1,000 in Figure 2C) was demonstrated using receiver operating

characteristic (ROC) curve analysis (Figure S5, lung), in which

GAiN achieved an area under the curve (AUC) of 0.91. This per-

formance is further illustrated by rank-rank comparison of genes

ranked by DE between phenotypes in the TC and GAiN cohorts,

with a high correlation of 0.89 between the lists (Figures S6

and S7).

GAiN applicability to a broad range of phenotypes
Using limited sample numbers and GAiN augmentation, we

found that we were able to largely reproduce a DEG list one
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would observe if they collected thousands of biological sam-

ples in a comparison of LUAD and LUSC. Additionally, we

found that using GAiN substantially improves upon a conven-

tional biostatistical approach to analyzing a limited number of

samples. We next assessed the generalizability of the GAiN

workflow by repeating a comparison of DEGs from analysis

of TC data, GAiN augmented data, and small data in other bio-

logical scenarios. First, GAiN performed similarly well, with

improved F1 in discovery of gold-standard DEGs over a com-

parison of non-augmented small data from TCGA datasets of

kidney renal papillary carcinoma (TCGA-KIRP), and kidney

clear cell carcinoma (TCGA-KIRC), in which GAiN achieved

an F1 score of 0.72 for the top 1,000 genes. In comparison, us-

ing an edgeR workflow on the un-augmented small dataset, the

F1 score for re-discovering the gold-standard TC DEGs was

0.64 (Figure 3). When the gene threshold is varied, GAiN

achieves AUC = 0.89 (Figure S5). We next assessed GAiN’s ac-

curacy in detecting gene expression differences between can-

cers of similar histology but different pathological stage by

comparing low-grade glioma (TCGA-LGG) and glioblastoma

(TCGA-GBM). Although GAiN achieved an F1 score of 0.72,

edgeR only had F1 = 0.64 when comparing the top 1,000 genes

with the TC (Figure 3); varying the gene threshold, AUC = 0.92

(Figure S5). Furthermore, we tested GAiN’s workflow when

comparing tumors of differing molecular subtypes by

comparing triple negative and luminal B breast cancer sub-

types from TCGA breast invasive carcinoma (TCGA-BRCA) da-

taset (Figure 3). The F1 scores for GAiN and edgeR comparing

1,000 genes with the TC are 0.75 and 0.57, respectively (Fig-

ure 3); varying the threshold, GAiN’s AUC = 0.89 (Figure S5).

Importantly, we demonstrated that GAiN is effective when us-

ing a heterogeneous PC by repeating the breast cancer anal-

ysis using the entire TCGA-BRCA as the PC (containing luminal

A, luminal B, HER2, triple-negative, and adjacent normal breast

samples; Figure S8). In total, these results demonstrated

GAiN’s generalizable ability to augment datasets of small sam-

ple size for improved DE analysis.

Augmented data for accurate pathway analysis
To assess the biological relevance of GAiN augmentation by as-

sessing pathway dynamics between phenotypes, we performed

PEA using the Gene Ontology (GO) pathway database on the

foregoing DEG results from GAiN and edgeR comparing 10

TCGA-LUAD and 10 TCGA-LUSC samples.18 To generate a

gold-standard list of enriched pathways, we performed DE anal-

ysis and enrichR PEA between LUAD and LUSC in the TC. We

next performed PEA on DEGs obtained through GAiN analysis

and edgeR analysis of the small sample set and compared the

top enriched pathways for the three workflows. Strikingly, 7 of

the top 10 enriched GO pathways from the GAiN gene list

matched the gold-standard list, while only 2 of 10 of the PEA re-

sults from the non-augmented DEGs matched (Figure 4). Similar

improvements were observed when analyzing the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) and Reactome data-

bases and when analyzing all statistically enriched pathways

as opposed to the top 10 pathways19,20 (Figure S9; Data S3–

S5). Given these findings, we concluded that using GAiN greatly

improves the ability of pathway level analysis to discover the

most relevant biological signals when using limited sample
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Figure 2. Application of GAiN to TCGA lung cancer phenotypes

Weassessed GAiN’s performance using TMM-normalized gene expression data from two TCGA lung cancer phenotypes, lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC). As in Figure 1D, the combined data from the phenotypes was split into a population cohort (PC) and a test cohort (TC), with a

small cohort of 20 samples, 10 from each phenotype, randomly selected from the PC. GAiN was then run with the small cohort samples as input.

(A) Comparison of the TMM-normalized expression of the top 3 genes DE between phenotypes in the TC shows their expression in synthetic samples of theGAiN-

generated cohort (synthetic) closely match that of real samples in the TC (real).

(B) Comparison of the 3 least DE genes from the TC shows similar agreement.

(C) Comparison of the TC’s true-positive DE genes (red) with DE genes identified by comparison of GAiN augmented cohorts and of the un-augmented small

cohort (blue).

ll
OPEN ACCESSArticle
numbers, whereas using traditional biostatistical methods can

lead to misleading conclusions or false negatives.

Discovery of pathways reflective of known differences
between phenotypes
Last, we wished to highlight the ability of GAiN to identify more

granular biological pathways when analyzing samples where

classical DE and PEA return minimal results. To this end, we
separated TCGA-LUSC samples into high (top 25% of the

cohort) and low expressers (bottom 25% of the cohort) of the

T cell tolerance modulator PDL1 (CD274). Using 5 samples per

condition, we repeated our analysis using GAiN and classical

DE and PEA. Classical PEA identified a single pathway as signif-

icant (Figures 5A and 5D), whereasGAiN augmentation identified

approximately 100 enriched pathways, many of which involve

immune modulation and immune tolerance, as is the putative
Patterns 5, 100910, February 9, 2024 5
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DE genes

The ability of samples generated by GAiN after

training on small cohorts with only 10 samples in

each phenotype to recapitulate gold-standard DE

gene lists obtained from large test cohorts (TCs)

(Figure 1D) is quantified by F1 scores. The perfor-

mance of DE gene analysis on the un-augmented

small cohort (‘‘small’’) and on a cohort created by

naive duplication of each sample 50 times (‘‘dupli-

cated’’) when compared with the TC was also as-

sessed. The purpose of this additional comparison

of a ‘‘duplicated’’ version of the small cohort to the

TC is to demonstrate that simply reducing the alpha

for calling DE genes from the small cohort, equiva-

lent to artificially increasing power by duplicating all

samples, provides inferior ability to detect true-

positive DEGs from small data compared with

GAiN’s generative modeling approach. Compari-

sons were conducted between lung cancer phe-

notypes (lung adenocarcinoma [LUAD] and lung

squamous cell carcinoma [LUSC], ‘‘lung’’), between

renal cancer phenotypes (renal papillary carcinoma

[KIRP] and kidney clear cell carcinoma [KIRC],

‘‘kidney’’), between brain cancers of similar histol-

ogy but different pathological stage (low-grade

glioma [LGG] and glioblastoma [GBM], ‘‘brain’’), and

between triple negative and luminal B subtypes of

breast cancer (BRCA, ‘‘breast’’). In each case, GAiN

outperforms the alternatives.
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function of PDL1. Other pathways identified by GAiN as signifi-

cantly enriched between the groups highlight specific cytokine

pathways, signaling pathways, and antigen presentation path-

ways that were not discoverable using a classical workflow on

this small sample set (Figures 5B and 5D). These results highlight

the utility of GAiN augmentation in downstream analysis of co-

horts with limited samples.

DISCUSSION

Reliable analyses of gene expression data using conventional

methods are limited when sample numbers are small.2,9 Low

sample numbers hinder the validity and reproducibility of exper-

iments using high-throughput sequencing data. Investigators

studying rare disease or rare subtypes of disease often have to

wait years to obtain the necessary number of samples for a

robust analysis, and in some contexts, this is not an option at

all. As a result, investigators studying unique clinical scenarios

can lack for study power. Several illustrating examples include

patients with HPV+ head and neck cancer (a good prognostic

sign, which often makes a patient a candidate for treatment

de-escalation) who have a poor response to chemoradiation

therapy (which occurs in approximately 10% of HPV+ head

and neck squamous cell carcinoma [HNSCC] patients).21

Another example is studying the increasingly iterative and

combinatorial approach to locally advanced non-small-cell

lung cancer.22 Current standard of care includes many combina-

tions and sequences of chemotherapy, radiation therapy, sur-

gery, and immunotherapy—in this case and in similar clinical

scenarios, finding homogeneously treated cohorts for a robust

molecular analysis of the individual effects of each treatment

combination is extraordinarily challenging. Additionally, espe-
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cially in the context of human samples, new treatments (as in

phase I clinical trials) are tested which represent a novel clinical

context. By definition, novel treatment strategies start with a

limited number of samples, and using AI techniques to study

emerging technologies allows us to move the field forward

more rapidly.

Recent strides in the field of generative modeling, particularly

with respect to deep learning GANs, have made it possible to

build large augmented synthetic RNA expression datasets for

downstream analysis from sparse training data.23 Herein, we

report the design and implementation of an analysis tool,

GAiN, that is able to use sparse training data to uncover struc-

tural gene expression patterns of phenotypic groups. To our

knowledge, this is the first study to use a supervised strategy

of separately trained GANs to generate synthetic gene expres-

sion profiles for downstream analysis of differential gene

expression and pathway enrichment. We demonstrated that

GAiN’s architecture and hyperparameters were able to repro-

duce lists of DEGs using less than 2% (i.e., n = 10) of original

robust comparisons of cancers of the same organ, cancers of

similar origin but different pathological stage, and tumors of

similar histology but different subtype. These validation exper-

iments demonstrated that the GAiN workflow is generalizable

and its conclusions are not specific to TCGA lung cancer

data that the algorithm was trained on, but are also able to pre-

dict gene changes in a wide range of scenarios. Although GAN

models are usually extremely hard to train, our GAiN frame-

work, tuned on gene expression data, can be easily adopted

by researchers even without a background in AI technologies.

Our GAiN tool is freely available under the MIT license, and

AI researchers can potentially expand its workflow to additional

biomedical research applications.
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Figure 4. Performance of GAiN in identifying

enriched pathways

Top 10 enriched GO terms when performing

pathway enrichment analysis (PEA) on the top 1,000

DE genes from the TC (top), GAiN augmented

cohort (middle), and small cohort (bottom) when

comparing LUAD and LUSC phenotypes. The x axis

represents the Benjamini-Hochberg corrected p

value from Fisher’s exact test as reported by En-

richR for each gene set. Pathways from the top 10 in

the gold-standard TC are highlighted in red; 7 of the

top 10 enriched GO pathways from the GAiN gene

list match the gold-standard TC list, while only 2 of

10 of the PEA results from the non-augmented DE

genes match.
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To evaluate the ability of GAiN to capture structural gene

expression patterns of phenotypic groups, we used TCGA con-

sortium datasets, where large cohorts of hundreds of samples

are available for each phenotypic group. However, in contrast

to several publicly available sets of large consortium data

(e.g., TCGA), the majority of institutional datasets generated

in the research community (e.g., GEO, database of Genotypes

and Phenotypes [dbGaP]) are usually small, typically with 10–20

samples or fewer in each group (see Figure S1). In addition,

because of a commitment to protect participants’ information,

associated rich clinical data are usually not shared, so the

translational aspects of such experiments could be carried

out using only a single-institution small sample set. Not surpris-

ingly, conventional biostatistics methods and data analysis ap-

proaches (e.g., t test, edgeR, and enrichR) perform poorly when

applied directly to such datasets because of the noise con-

tained in small numbers of samples. This can be exemplified

by the result that the gene list which passed stringent multiple

hypothesis standards in a sparse comparison of LUAD and

LUSC data poorly reflected that of the gold standard cohort

(Figure 2C) and that enrichR pathway analysis of sparse data

discovered none of the top 6 true-positive enriched pathways

discovered in the TC (Figure 4). Conversely, using GAiN on

the same 10 pairs of lung cancer data, we achieved >93%

overall accuracy in discovering DEGs and identified the 5 of

the top 6 true-positive enriched pathways in subsequent

pathway analysis, all while the individual gene level expression

profiles representative of each TC phenotype were largely

(although not entirely) preserved (Figures 2A, 2B, S2, S3, and

S7). Our benchmarking results demonstrated that GAiN anal-

ysis greatly improves on classical analysis of gene expression

in a variety of contexts when sample sizes are limited. This

finding has broad implications, from empowering research

groups with limited resources to more robustly contribute to

biological questions using high-throughput informatics, to mak-

ing subgroup analysis possible in poorly sampled conditions or
populations, performing more granular

studies on subcohorts (which may be

small) of large data, or simply increasing

the validity of previous studies which use

RNA sequencing (RNA-seq) data with

limited sample sizes.

GAiN’s ability to robustly analyze small

data necessitates inquiry into the reason

why the GAN models are effective at
predicting true-positive gene expression. Although repeated

biological samples are of unquestionable value, technical vari-

ability exists in procuring expression measurements.12,13,24,25

Additionally, computational analysis workflows have differing

strengths and biases in quantification of RNA-seq gene

counts.12,26 These measurements additionally do not take into

account operator error or marginal variations in sample procure-

ment.27,28 It follows that in the setting ofmodest resources, noise

inherent in generating an RNA-seq dataset can skew conclu-

sions, especially when observations are sparse. Interestingly,

the generator arm of the GAN has the architecture of a DAE.

The concept of denoising was conventionally used to delineate

signal from noise in image processing, and DAEs have recently

shown promise as scalable methods for reducing error in sin-

gle-cell RNA-seq (scRNA-seq) datasets.12,23 Although some

have postulated the need for additional algorithms to control

for technical variation in single cell RNA-seq data where cell

types can be sparse, less attention is focused on classical bulk

RNA-seq datasets where observations are limited.13,23,29

Although it was usually assumed in conventional analyses that

RNA-seq datasets represent a noiseless representation of the

condition they seek to measure, in reality datasets contain a cor-

rupted representation of biology due to errors in the procuring

technology. The dense network of the generator arm in GAN ar-

chitecture relies on the correlational structure of gene expression

data to infer ‘‘corrected gene expression values.’’ Furthermore,

given the architecture of the neural network, DAE architectures

are far more scalable and not reliant on linear modelingmethods,

as are other gene expression imputation techniques.23 To further

increase robustness, our GAiN tool includes a default of 5 GANs,

each with a different nodal architecture from the others, and

genes are ranked by assembling the outputs from all the GANs

(see experimental procedures). Overall, downstream analysis

of synthetic RNA-seq data generated using our GAiN tool is

therefore not subject to the noise from individual measurements

likely experienced in the analysis of a small cohort of RNA-seq
Patterns 5, 100910, February 9, 2024 7
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Figure 5. Detection of relevant enriched pathways between high and low PDL1 expressors

A small cohort was constructed by randomly selecting 5 samples from the top 25% of PDL1 expressors and 5 samples from the bottom 25% of PDL1 expressors

in the TCGA-LUSC cohort.

(A) Small cohort: uniform manifold approximation and projection (UMAP) of GO pathways with the single pathway identified by EnrichR as enriched with FDR%

0.05 between the high and low PDL1 groups highlighted; it falls within the cluster of pathways related to regulation of inflammatory cell behavior (blue).

(B) GAiN cohort: UMAP of GO pathways with the 19 biologically important pathways identified by EnrichR as enriched with FDR% 0.05 between the high and low

PDL1 groups highlighted; they fall within the clusters related to regulation of inflammatory cell behavior (blue), cytokine production and cell signaling (green), and

antigen presentation (orange).

(C) Volcano plots of enriched pathway p value and odds ratio for the small and GAiN cohorts; pathways with FDR% 0.05 are highlighted using the same colors as

in (B).

(D) Table of the GO pathways enriched with FDR % 0.05 in the small and GAiN cohorts. Much more of the biological differences resulting from differential

expression of PDL1 become discoverable under GAiN analysis than can be found working with un-augmented small data.
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samples with solely biological replicates. To connect GAN

output to standard downstream analysis, we converted the stan-

dardized values used in the models into trimmed mean of M

(TMM) values, which is a gene expression normalization method

broadly adopted by the community.30 Additionally, population

data, not necessarily of the same phenotype in one’s study,

can be used to better estimate mean and SD values using a

random forest model (see experimental procedures), rather

than using the noisier values from the small training cohort itself.

If other normalization methods are needed (e.g., relative log

expression [RLE], median ratio normalization [MRN]), the code

of our GAiN tool can be easily adapted to incorporate them. In

addition, we expect that the original standardized values could

potentially be used directly in future applications, especially in

the area of AI related approaches.

Taken together, we developed an accurate deep learning tool,

GAiN, that robustly augments gene expression differences be-

tween known phenotypes of limited sample size. We have also

demonstrated that phenotypic subgroups have structural gene

expression differences which can be uncovered using GAiN

analysis. Our publicly available and user-friendly tool can easily

be adopted by researchers in the community and applied to their

existing datasets or new datasets. Use of GAiN augmented data

can be accompanied by classical molecular techniques to

confirm patterns one would observe when they collected hun-

dreds or thousands of biological samples. Through our analysis,

we demonstrated that our innovative deep learning tool, GAiN,

can be applied in a wide array of contexts, and thus has the po-

tential to broadly affect both medical and basic research

initiatives.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Jin Zhang (jin.zhang@wustl.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data from the Genomic Data

Commons (GDC). The TCGA cohorts are TCGA-LUAD, TCGA-LUSC, TCGA-

KIRP, TCGA-KIRC, TCGA-LGG, TCGA-GBM, and TCGA-BRCA.

All original code is available at GitHub (https://github.com/jin-wash-u/GAiN),

has been deposited at Zenodo under the document object identifier (DOI)

https://doi.org/10.5281/zenodo.10027883, and is publicly available as of the

date of publication.

Any additional information required to reanalyze the data reported in this pa-

per is available from the lead contact upon request.

Overview of the GAiN tool

We implemented our data augmentation tool, GAiN, and trained it on small

numbers of samples from two separate phenotypes (i.e., LUAD [n = 10] and

LUSC [n = 10]) to identify gene expression differences which one would expect

to observe only if they collected hundreds or thousands of biological samples

using a traditional analysis. To achieve this, GAiN is designed to train two sub-

models, a generative model and a discriminative model, for each phenotypic

group (Figure 1). Our tool was implemented using the Python programming

language, with the sub-models defined using the Keras package sequential

application programming interface (API).31 The generative model includes a

DAE architecture that captures the data distribution of the training data. The

discriminative model includes a multilayer perceptron architecture that esti-

mates the probability that the sample is drawn from the training data rather
than the generative model. Following training of the generators, each gener-

ator was used to generate 500 Z-normalized synthetic samples for their corre-

sponding phenotype. Scale was restored to gene expression values by esti-

mating the mean and SD of each gene using population data. This PC

should ideally match the biology of the phenotypes of interest as closely as

possible, but is able to be heterogeneous, containing samples of other pheno-

types. A random forest classifier was trained using the small training data and

then used to classify the ‘‘population data cohort’’ samples as more like

phenotype 1 or phenotype 2. The Z-normalized synthetic gene expression

values were restored to TMM values normalized values using the gene mean

and SD of population samples assigned to the corresponding phenotype.30

The augmented datasets were then analyzed for DEGs, altered pathways,

and other downstream analyses (Figure 1D). The GAiN tool for supervised

gene expression analysis is freely available at https://github.com/jin-wash-

u/GAiN.

Datasets and preprocessing

TCGA RNA-seq data of solid tumor samples were obtained from the GDC and

TMM normalized. To compare cancers from the same organ with different his-

tology, we downloaded transcript abundance estimates for TCGA-LUAD (n =

533), TCGA-LUSC (n = 502), TCGA-KIRP (n = 288), and TCGA-KIRC (n = 538).

To compare cancer subtypes, we downloaded gene expression data from

TCGA-BRCA cohort, including the most numerous subtype, luminal B (n =

207), and the triple-negative (n = 194) subtype. To compare cancer grades,

we downloaded gene expression data from TCGA-GBM (n = 156) and

TCGA-LGG (n = 511). Additionally, to show pathway effects of single gene al-

terations high and low expressors of CD274 (PDL1) in TCGA-LUSC were

binned and compared (n = 125). In each study genes were retained for further

analysis if they met an average minimum expression and average deviation

cutoff of 10.

Training of GAiN sub-models

The two sub-models of GAiN are simultaneously trained via an adversarial

process as has been described previously.32–35 As GAN optimization is noto-

riously difficult to achieve, we adopted Wasserstein GANs (WGAN) for our

strategy, which train the generator model to more closely mirror the training

data distribution.32,36 Briefly, WGANs seek to optimize critic scores which

minimize the distance between the distributions of the real and synthetic

gene expression data. In order to increase the robustness and stability of

the GAiN tool, the final output of GAiN was the average gene rank of 20

separately trained generator-discriminator networks all with different nodal

architecture. The latent space of the generator was 128 input nodes with

subsequent nodal numbers of hidden layers being (10 + i 3 100), (10 +

i 3 100) 3 2, (10 + i 3 100) 3 3, and gene vector length, for all networks i

from 1 to 20. Similarly, the discriminator nodal densely connected hidden

layer architecture for the ith network was (10 + i 3 100) 3 3, (10 + i 3

100) 3 2, and (10 + i 3 100). For every layer of the generator and discrimi-

nator network, a Leaky ReLU activation function was used in an effort to pre-

vent dead gradients. Dropout was used at multiple levels of the discriminator

and the generator to prevent overfitting (for full model architecture the Python

code has been made publicly available as indicated above). The generator

and the discriminator were trained in an alternating fashion as described in

the original GAN manuscript.32 Performance metrics for training GAiN are

presented in Table S3.

Network compilation and fit

Additional WGAN hyperparameters, including the optimization algorithm,

learning rate, and critic clipping, were set as recommended in previous

WGAN studies.33,34 The RMSProp optimization algorithm was used with a

learning rate of 5.0 3 10�6. The Wasserstein loss function served as the loss

function to be minimized, critic clipping was set at 0.01. Each network was

trained for 500 epochs (empirically determined to result in convergence for

most nodal architectures).

Restoration of gene expression values using population data

In order to restore scale to Z-normalized synthetic samples, gene mean and

SD were estimated from population data. Population data were separated

from the test dataset used as the gold-standard comparison by a train-test
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split of 50%, stratified by phenotype, prior to running GAiN. Sparse training

data (n = 10) for each phenotype X and Y were used to train a random forest

classifier with 1,000 estimators. Random forest classification was imple-

mented using the scikit-learn Python package. Samples in the PC were clas-

sified as phenotype X or Y. Z-normalized synthetic gene expression values

were restored using the genemean and SD, estimated from the corresponding

population samples, assigned to the phenotype by the random forest

classifier.

DE analysis

When using a cohort of large sample size (e.g., n = 500–1,000), a large fraction

of the total genes tested were deemed significant by multiple hypothesis

testing. For useful discrimination, we used a rank-based method, and tested

the top 1,000 DEGs from the GAiN augmented synthetic cohort, true positive

TC, and non-augmented small cohort, as determined by the edgeR R pack-

age.16 To illustrate performance when different DEG thresholds are used for

comparison, ROC curves were plotted of the true-positive rate (TPR) and

false-positive rate (FPR) of GAiN cohort genes compared with TC genes as

the number of genes compared varies between 1 and the total number of

genes in the dataset.

PEA and comparison

Genes among the top 1,000DE list in each analysis were passed to the enrichR

package.17 The reference database used in enrichment analysis was the GO

database.18 The top 10 pathways were selected and presented from each

enrichment analysis.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100910.
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