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Throughout the COVID-19 pandemic, policymakers have proposed risk
metrics, such as the CDC Community Levels, to guide local and state
decision-making. However, risk metrics have not reliably predicted
key outcomes and often lack transparency in terms of prioritization of
false positive versus false negative signals. They have also struggled
to maintain relevance over time due to slow and infrequent updates
addressing new variants and shifts in vaccine- and infection-induced
immunity. We make two contributions to address these weaknesses
of risk metrics. We first present a framework to evaluate predictive
accuracy based on policy targets related to severe disease and mor-
tality, allowing for explicit preferences toward false negative versus
false positive signals. This approach allows policymakers to opti-
mize metrics for specific preferences and interventions. Second, we
propose a novel method to update risk thresholds in real-time. We
show that this adaptive approach to designating areas as “high risk”
improves performance over static metrics in predicting 3-week-ahead
mortality and intensive care usage at both state and county levels. We
also demonstrate that with our approach, using only new hospital ad-
missions to predict 3-week-ahead mortality and intensive care usage
has performed consistently as well as metrics that also include cases
and inpatient bed usage. Our results highlight that a key challenge
for COVID-19 risk prediction is the changing relationship between in-
dicators and outcomes of policy interest. Adaptive metrics therefore
have a unique advantage in a rapidly evolving pandemic context.
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Understanding the evolution of infectious disease risk1

is critical for individuals making decisions about per-2

sonal precautions, policymakers recommending mitigation3

measures, and health care institutions planning for future4

surges. Throughout the COVID-19 pandemic, indicators such5

as reported cases and percent of PCR tests positive for SARS-6

CoV-2 have been used to guide pandemic response (1–4). Cur-7

rently, the Center for Disease Control and Prevention (CDC)’s8

Community Levels designate areas as low, medium, or high9

risk based on reported cases, new COVID-19 hospital admis-10

sions, and percentage of inpatient beds occupied by COVID-1911

patients (2).12

However, COVID-19 risk metrics have had several weak-13

nesses. First, policymakers have struggled to identify leading14

indicators of key health outcomes. For example, PCR test15

positivity was abandoned as a trigger for school closures be-16

cause it did not reliably predict in-school transmission (5).17

Community metrics have focused on predicting severe disease18

and mortality (2, 6). For example, the indicators used in CDC19

Community Levels were selected because they correlated with20

ICU rates and mortality 3 weeks in the future (2). However,21

the thresholds for low, medium, and high did not correspond 22

to specific future mortality rates (7), thus complicating the 23

understanding of a “high risk” designation. 24

Second, many metrics fail to distinguish different error 25

types. Falsely classifying an area as high risk may prompt un- 26

necessary or harmful interventions, while a false negative may 27

fail to activate needed public health measures (8). Individuals 28

and policymakers may vary in their preferences for avoiding 29

these two types of errors, but current methods fail even to 30

make these preferences explicit (9). 31

Finally, changes in available data, COVID-19 variants, and 32

levels of immunity can render metrics obsolete as the pandemic 33

evolves (10). For instance, with the omicron variant, cases 34

and hospital admissions have corresponded to lower levels of 35

mortality than in earlier waves. Shifts from PCR to at-home 36

testing and changes in case reporting have also made case data 37

less reliable and available over time (11, 12). Ad hoc updates 38

to risk designations are insufficient to ensure that the metrics 39

remain relevant. Moreover, transparency in the process is key 40

to alleviating concerns about “moving the goalposts” (13). 41

This paper makes two contributions to address these weak- 42

nesses in the context of COVID-19 community risk metrics. 43

First, we propose a framework for predictive accuracy that 44

incorporates preferences over false negatives versus false posi- 45

tives, using weights to optimize the metrics for specific policy 46

objectives. Second, we present a novel method to update risk 47
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thresholds over time and show that this adaptive approach48

outperforms static metrics. With our approach, we demon-49

strate that metrics using only new hospital admissions perform50

as well in prediction as metrics that also include cases and51

inpatient bed usage.52

Materials and Methods53

The CDC used indicators available nationwide (cases, hospital-54

izations, and occupancy of staffed inpatient beds) to develop55

Community Levels (2). In this research, we used the same56

indicators to define alternative state and county metrics, then57

compared these metrics based on ability to predict future58

health outcomes.59

Outcomes. The primary evaluation criterion was predictive60

power for high mortality. We defined “high mortality” as61

>1 death per 100,000 per week and “very high mortality” as62

>2 deaths per 100,000 per week. The lower threshold was63

defined in reference to peak mortality of other respiratory64

viruses (influenza and respiratory syncytial virus) during a65

severe season (7, 14). Let TM ∈ 1, 2 denote these mortality66

thresholds. The true outcome was a binary variable equal67

to 1 if mortality three weeks from the current week (i.e., at68

time w + 3) in location i exceeded the threshold; formally,69

Yi,w+3 = I(mortality at w + 3 > TM ) ∈ 0, 1. In secondary70

analyses, we evaluated predictive power for ICU admissions,71

for which we defined “high” as >2 prevalent ICU admissions72

per 100,000 population per week.73

We used a 3-week prediction window because previous CDC74

analyses indicated that this maximized the correlation between75

indicators and outcomes (2). This also reflects the necessary76

lead-time for interventions to have an impact on severe out-77

comes; a metric that predicts severe mortality tomorrow will78

come too late for effective action. We used binary outcomes to79

mirror CDC risk categories and to reflect the common practice80

of adopting pandemic response interventions in response to81

threshold crossing.82

Indicators. Indicators are the observed quantities that enter83

our prediction models. We used the same three indicators84

as the CDC’s Community Levels: new COVID-19 cases per85

100,000 (weekly total), new COVID-19 hospital admissions per86

100,000 (weekly total), and the occupancy of staffed inpatient87

hospital beds by COVID-19 patients (7-day average). Let88

XC,i,w, XH,i,w, and XO,i,w denote the levels of these three89

indicators respectively, in location i during week w. In our risk90

prediction models, we used these indicators in 5 combinations:91

1) new cases only (C), 2) new hospital admissions only (H),92

3) cases and hospital admissions (CH), 4) hospital admissions93

and bed occupancy (HO) and 5) all three indicators (CHO).94

Data. We obtained data on indicators and outcomes at both95

state and county levels and conducted separate analyses for96

each geographic level. For cases and deaths, we used aggre-97

gated counts compiled by state and local health agencies (15).98

For new COVID-19 admissions and bed occupancy, we used99

data reported to the U.S. Department of Health and Human100

Services Unified Hospital Data Surveillance System (16, 17).101

Consistent with CDC Community Level calculations, we cal-102

culated county-level hospitalizations at the Health Service103

Area-level to account for care-seeking across counties and com-104

puted measures at the midpoint of each week (2). (HSAs were105

defined by the National Center for Health Statistics to be one 106

or more contiguous counties with self-contained hospital care 107

(18).) In sensitivity analyses, we also present analyses with all 108

inputs and outcomes calculated at the HSA-level. 109

Metrics. Metrics take indicators as inputs and produce a binary 110

high risk classification for a geographic area as output. Our 111

metrics used data available at week w to predict mortality 112

above the pre-specified threshold for mortality, TM three weeks 113

in the future and then classify a locality as high risk, Ŷw+3 = 1, 114

or not high-risk Ŷw+3 = 0. (For readability, we omit location 115

subscripts i when referring to a single observation in this 116

section.) 117

Objective. We used weighted classification accuracy to compare 118

metrics on their ability to predict future high mortality, where 119

the weights reflect preferences for avoiding different types of 120

errors. 121

We assumed a simple underlying decision-analytic frame- 122

work: a decision maker receives a prediction of mortality three 123

weeks hence, Ŷw+3, and takes action in response to that pre- 124

diction. If the metric predicts high mortality (Ŷw+3 = 1), 125

she will take one action; if the model does not predict high 126

mortality (Ŷw+3 = 0), she will take a different action. Each 127

action has benefits and costs that depend on the true outcome. 128

For example, a true negative conserves public health resources, 129

while a false negative may have costs such as failing to prevent 130

a hospital from becoming overburdened. By contrast, a false 131

positive may have costs such as wasted resources and harming 132

public trust due to unnecessary policy actions. 133

We consider costs in terms of disease burden and public 134

health resources. We anchor costs at 0 in the scenario in which 135

the model correctly predicts low mortality (Ŷw+3 = Yw+3 = 0). 136

If the model incorrectly predicts high mortality (Ŷw+3 = 1, 137

Yw+3 = 0), we denote costs R0, of public health resources 138

spent and social costs. By contrast, if a model incorrectly 139

predicts low mortality (Ŷw+3 = 0, Yw+3 = 1), policymakers 140

incur a cost of D, of disease. Last, if a model correctly predicts 141

high mortality (Ŷw+3 = Yw+3 = 1), we assume policymakers 142

implement an intervention that reduces disease by a factor of 143

α, but pay resource costs, for a total cost of (1 − α)D + R1. 144

The total cost associated with a particular metric (omitting
subscripts for parsimony) is:

C(M) = P r(Ŷ = 1, Y = 0)R0 + P r(Ŷ = 0, Y = 1)D+

P r(Ŷ = 1, Y = 1) ((1 − α)D + R1)

= P r(Ŷ = 1, Y = 0)R0+

P r(Ŷ = 0, Y = 1)(αD − R1)+
P r(Y = 1)((1 − α)D + R1)

Because the last term is constant across all metrics (which
cannot affect prevalence of high risk states), this cost is pro-
portional to the weighted misclassification rate:

C(M) ∝ pF P R0 + pF N (αD − R1)
∝ pF P + pF N wt

We can therefore rank metrics based only on performance (i.e., 145

their probabilities of making each error type) and the decision 146

maker’s relative preference for false positives compared to 147

false negatives (wt). As the above expression indicates, we can 148
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conceptualize weight wt as the ratio of the net benefit from149

taking action on a true positive (αD − R1) to costs incurred150

by unnecessary action in the case of a false positive (R0).151

In our primary analyses, we considered three values of this152

weight: “neutral” weighted false negatives and false positives153

equally (wt = 1, equivalent to unweighted accuracy), “don’t154

cry wolf” down-weighted false negatives as half the cost of155

false positives (wt = 0.5), and “better safe than sorry” down-156

weighted false positives as half the cost of false negatives157

(wt = 2).158

We estimated the weighted accuracy rate for each metric
as 1 minus the weighted misclassification rate:

δwt(M) = 1 − pF P wP − pF N wN

While any wN and wP such that wP
wN

= wt would produce the159

same ranking of metrics, the absolute value of δwt depends160

on these wN and wP , which compare the cost of errors to the161

benefits of a correct classification. We set wN and wP such that162

both error weights are shifted equally in magnitude to achieve163

the desired ratio, with an increase in one and corresponding164

decrease in the other. That is, we set wN and wP using the165

value a such that wN /wP = (1−a)/(1+a) = wt. With neutral166

weighting, wN = wP = 1.167

We used weighted accuracy as our primary measure of168

performance, with higher weighted accuracy indicating better169

performance. We further weighted δwt by population to reflect170

the total proportion of individuals living in a location with an171

accurate classification (SI Text A).172

Static metrics. We considered two types of metrics, static and173

adaptive. Static metrics used the same procedure in each174

period to classify a locality as high risk. They differed in175

their input indicators (the sets C, H, CH, HO, and CHO176

described above) and the corresponding thresholds used to177

classify a locality as high risk. We varied the threshold on178

cases from 0 to 300 per 100,000 (in increments of 50), on179

new hospitalizations from 0 to 25 per 100,000 (in increments180

of 5), and on occupancy from 0 to 20% (in increments of181

5). In what follows, let TC ∈ [0, 300], TH ∈ [0, 25], and182

TO ∈ [0, 20] denote the thresholds for cases, hospitalizations,183

and occupancy, respectively. We designated the area as high184

risk if all the indicators in a given indicator set are above their185

specified thresholds.186

We also replicated the CDC’s Community Levels, designat-
ing an area as high-risk if

[XC,i,w < 200 AND (XH,i,w ≥ 20 OR XO,i,w ≥ 15%)] OR
[XC,i,w ≥ 200 AND (XH,i,w ≥ 10 OR XO,i,w ≥ 10%)]

Last, we considered a metric (Z) that designates an area187

as “high risk” if the outcome is currently above the threshold188

of interest, i.e. Ŷi,w+3 = I (Yi,w = 1).189

Adaptive metrics. Adaptive metrics changed thresholds over time190

based on their ability to predict mortality during the recent191

past (Figure 1). At time w, we used as training data recent192

weeks of past indicator data with complete information on193

outcomes 3 weeks in the future. To these training data, we fit194

logistic regression models with outcomes on the left-hand side195

and indicators from three weeks previous on the right-hand196

side. For example, in the model corresponding to the CHO197

indicator set, we fit 198

logit(P r(Yi,v = 1)) = β0+β1XC,i,v−3+β2XH,i,v−3+β3XO,i,v−3
[1] 199

for v ∈ [w − 3, w]. From this model, we obtained β̂0, β̂1, β̂2, 200

and β̂3, which we then used to produce fitted probabilities for 201

each locality’s mortality three weeks ahead using: 202

P̂ r(Yi,w+3 = 1) = logit−1 (β0 + β1XC,i,v−3 + β2XH,i,v−3 + β3XO,i,v−3)
[2] 203

Logistic regression smoothed over noise in the small training 204

data and reduced the dimension of multiple indicators by 205

converting to a probability scale. 206

With predictions on a probability scale, we specified a 207

probability cutoff above which we classified a location as high 208

risk. We selected this cutoff based on the relative weighting 209

of different error types (wt). We classified a locality as high 210

risk whenever the probability was above 1/(1 + wt) (see SI 211

Text B for optimal cutoff derivation). For our three weights 212

(neutral, don’t cry wolf, and better safe than sorry), the cutoff 213

values were 1
2 , 2

3 , and 1
3 , respectively. With a single predictor, 214

this process would be equivalent to identifying the optimal 215

threshold for the indicator over the training period, accounting 216

for user preferences. 217

We specified analogous models based on CHOZ and HZ 218

indicator sets to assess sensitivity to different functional forms. 219

We also included a simplified version that was updated less 220

frequently, only re-fitting to the training data each quarter, 221

rather than each week. We varied the number of training 222

weeks from 3 to 12 (i.e., fitting Eq. 1 to training data sets as 223

large as v ∈ [w − 11, w]). 224

Head-to-head comparison. We compared the performance of 225

the metrics during a training period. To define the training 226

period, we began with the period the CDC used to fit Com- 227

munity Levels (March 1, 2021 through January 24, 2022). We 228

further allowed the month of March for model fitting and 229

including 3 weeks of future mortality data. Thus, our training 230

period covered April 1, 2021 through December 31, 2021, that 231

is, 2021 Q3 and Q4, with outcomes extending through January 232

21, 2022. 233

We compared performance across metrics separately for 234

each outcome (> 1 or > 2 deaths/100k/week and >2 ICU 235

admissions/100k/week), preference weight (wt = 0.5, 1, or 2), 236

and geographic area (state or county). Within each combi- 237

nation of these, we chose the best-performing static metric 238

during the training period from among the 7, 6, 42, 24, or 239

168 possibilities within the C, H, CH, HO, and CHO indicator 240

sets and for adaptive metrics, we selected the best perform- 241

ing number of training weeks. The CDC Community Levels 242

and current outcome (Z) metrics were fixed, so there was no 243

selection within this metric type. 244

Performance evaluation. We present weighted accuracy of each 245

selected metric in the training quarters (during which the 246

best performer of each type was selected) and a test period 247

of January 1, 2022 through September 30, 2022 (i.e., 2022 248

Q1-Q3). As a sensitivity analysis, we used December 15, 2021 249

through February 15, 2022 as a training period, to include 250

only omicron-specific training data, and data from February 251

16 through September 20, 2022 as test data. 252

In addition to presenting overall weighted accuracy, we sum-
marize variation in performance across quarters with maximum
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Fig. 1. Adaptive metrics. We used input data from time w to predict mortality at time w + 3. The diagram shows the model-fitting process using 4 weeks of training data.
We trained a model using the 4 most recent weeks with complete outcome data, including inputs from w − 6 to w − 3 and outputs from w − 3 to w. We then used this
model, with input data from w, to estimate the probability of “high” or “very high” future mortality at w + 3 and designated a binary prediction based on whether this probability
exceeded the user’s cutoff. (When a single indicator is used as the only input, this process is equivalent to identifying the optimal threshold for the indicator over the training
period, accounting for user preferences.)

quarterly regret, the difference between a metric’s predictive
accuracy and the best performing metric (19). We calculate
regret for each selected metric in each quarter and take the
maximum across quarters:

MRM = max
q∈Q

(
max
m∈M

δwt,q(m)
)

− δwt,q(M),

where M is a metric of interest, Q is a set of quarters, M is a253

set of metrics, and δwt,q is weighted accuracy during quarter254

q.255

Last, to decompose variation between metrics into differ-256

ences in predictive power and differences in error preferences,257

we computed sensitivity (P r(Ŷi,w+3 = 1|Yi,w+3 = 1)) and258

specificity (P r(Ŷi,w+3 = 0|Yi,w+3 = 0)) across different wt259

values for adaptive metrics and compared these to sensitivity260

and specificity for static metrics.261

Simulations. To generalize our approach beyond the specific262

pandemic periods considered, we developed simple simulations,263

varying the change in relationship between indicators and264

outcomes over time and indicator distribution/prevalence of265

“high” outcomes (SI Text C). We then estimated predictive266

accuracy across different scenarios.267

Results268

Indicator levels and lagged mortality varied substantially over269

the course of the study period (Figure 2), which included two270

major waves of high mortality (delta and omicron BA.1) and271

a smaller wave in summer 2022 (omicron BA.5) (See Figures272

S2-S3 for detailed dynamics of indicators by outcome over the273

study period.) The percentage of population-weighted state-274

weeks with high lagged mortality ranged from 94% during Q4275

2021 to a low of 17% during Q2 2021. For very high mortality,276

this ranged from 61% (Q1 2022) to 3% (Q2 2022). We ob-277

served similar variation in counties, with less extreme swings278

(e.g, from 25% to 75% for high mortality). The relationship279

between indicators and outcomes shifted substantially over280

the period studied. In particular, in the third quarter of 2022,281

cases, hospitalizations, and bed occupancy all increased, but282

mortality remained lower than in previous waves (Figure 2).283

Static metrics. In Figure 3, we present the performance of the 284

best-performing static metrics from different indicator sets (C, 285

H, CH, HO, and CHO) during the training and test periods. 286

During the training period, there were only minor differences in 287

training accuracy between metrics that used different indicator 288

sets (e.g., 83-87% in predicting high mortality for states with 289

neutral weighting, 73%-75% for counties). However, for nearly 290

all static metrics and outcomes, test accuracy was lower and 291

more variable than training accuracy (e.g., 45-68% and 54-72% 292

for high mortality in states and counties respectively). 293

Some of this variation is due to the shifting relationship 294

between indicators and lagged outcomes over time. We illus- 295

trate this in Figure 4, where gray lines show the performance 296

of metrics based on different hospitalization cutoffs. No single 297

cutoff dominated during the full study period. For example, 298

the cutoff of 5 per 100,000 performed best for high mortality 299

during the first 3 quarters of the study period, with accuracy 300

above 90% in states and 74% in counties, but was the worst 301

performing in Q2-Q3 2022, with less than 50% accuracy. The 302

accuracy of the single best-performing metric also varied across 303

quarters (e.g., from 68-81% for high mortality and 79-91% for 304

very high mortality in counties). 305

Other static metrics similarly reflected the evolving rela- 306

tionship between indicators and mortality. While prediction 307

based on current outcome (Z) was the second-worst performing 308

static indicator during the training period (after Community 309

Levels), it performed best during the test period, when waves 310

of infection were less extreme and variable. CDC Community 311

Levels performed relatively worse compared to other static 312

metrics at predicting high mortality during the training period, 313

but similar or better during the test period; the converse was 314

true for predicting very high mortality (Figure 3). Overall, 315

metrics that used hospitalizations and bed occupancy per- 316

formed most consistently across training and test periods, but 317

we would have been unable to discern this with only train- 318

ing data. Across static metrics, training accuracy was an 319

unreliable signal of test accuracy. 320

Adaptive metrics. Adaptive metrics consistently outperformed 321

static metrics for both outcomes in training and test periods 322

(Figure 3). For example, when predicting high mortality in 323
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Fig. 2. State-level lagged mortality vs. indicator levels by quarter. Columns indicate different indicators (weekly cases per 100,000 population, new hospital admissions per
100,000, and percentage of inpatient beds occupied by COVID-19 patients), and rows indicate quarters. The x-axis displays indicator values on a log scale and y-axis displays
3-week ahead mortality per 100,000 population on a log scale. Each point on the scatterplot is a state-week. Colors show mortality outcome level. The vertical gray dotted lines
indicate thresholds from CDC Community Levels for each indicator (≥ 200 cases/100K/week and ≥ 10 new admissions/100K/week or ≥ 10% COVID-19 bed occupancy.)
See Figure S1 for a county-level plot.
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Fig. 3. Head-to-head comparison results. The top plots display results from state-level analyses and the bottom plots display results from county-level analyses, both weighted
for population. Metrics are displayed on the left, with training data from Q2-Q4 2021 and test data from Q1-Q3 2022. Cells report weighted accuracy and maximum regret
(MR) over training and test periods. Rows vary outcomes, and columns vary preferences for false positive versus false negatives, with "neutral" corresponding to unweighted
accuracy. Prevalence indicates the proportion of high location-weeks in a given time period. A version including HSA-level analyses can be found in Figure S4. Weighted
accuracy by quarter, including for intensive care usage, is presented in Figures S5-S7.
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Fig. 4. Weighted accuracy by metric. The top plot displays states, and the bottom plot displays counties. Columns indicate different outcomes. The x-axis indicates quarter,
and the y-axis predictive accuracy (neutral weighting). Grey lines depict metrics based on new hospital admissions exceeding the row threshold. The red line indicates CDC
Community Level and the blue line an adaptive metric (HZ). A version with HSA-level results can be found in Figure S8.
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states with neutral weighting, adaptive metrics had overall ac-324

curacy of 86-89% in the training period and 80-83% in the test325

period; for very high mortality, this was 87-90% and 92-94% re-326

spectively. While all adaptive functional forms performed well,327

metrics corresponding to CHOZ and HZ slightly outperformed328

CHO and the simplified version with less frequent updating.329

Importantly, while adaptive metrics performed similarly to330

static metrics during some quarters, they rarely underper-331

formed by a substantial margin and often achieved substantial332

gains (Figure 4). This was reflected in regret, which was mini-333

mized by CHOZ and HZ adaptive metrics for both outcomes.334

CHOZ and HZ adaptive metrics also weakly dominated static335

indicator-based metrics and Community Levels in the sense336

that they could achieve at least equal (and often higher) sen-337

sitivity and specificity for at least one value of wt (Figure338

S9).339

Alternative preferences, secondary outcomes, and sensitivity340

analyses. Adaptive metrics similarly outperformed static met-341

rics for across preference weights (Figure 3) and for a secondary342

outcome of ICU bed usage over 2 per 100,000 (Figure 4). The343

gain in weighted accuracy for adaptive metrics was higher344

when estimated at the HSA level rather than at the county345

level (about 2 percentage points for both mortality outcomes346

with neutral weighting). Running the training period from De-347

cember 15 to February 15 to capture the omicron variant did348

not substantially alter the relative benefit of adaptive metrics,349

with a 14 percentage point increase in weighted accuracy in350

states for high mortality compared to Community Levels with351

a neutral weighting (compared to 11% in the base case) and352

7% in counties (compared to 6%).353

Simulations. In simulations, adaptive methods outperformed354

static methods when the relationship between indicators and355

outcomes was changing over time, regardless of whether out-356

come prevalence was constant or wave-driven. There was no357

gain when the relationship between indicators and outcomes358

was static; adaptive metrics performed worse than static met-359

rics when indicator prevalence was highly variable, and there360

could be insufficient training data near the threshold to esti-361

mate the optimal cutoff.362

Discussion363

We proposed an adaptive approach to estimating local risk364

which continually updates metrics to ensure they predict out-365

comes of policy interest. We showed that this would have366

outperformed static approaches, including CDC Community367

Levels over the past year. Our metrics have a unique advan-368

tage in a rapidly evolving pandemic context. They quickly369

pick up new information as the relationship between indicators370

and lagged mortality shifts, allowing us refine the threshold371

for “high risk” and improve discrimination.372

Previous papers have proposed adaptive policies for COVID-373

19 management, in which policymakers shift responses depend-374

ing on observed indicators like cases and deaths (20–22). We375

extend this work by allowing the trigger thresholds for indi-376

cators to also vary over time. Such an approach could be377

particularly advantageous for maintaining public trust when378

the relationship between indicators and outcomes is not yet379

well-understood or is changing over time (23).380

Our approach draws on ideas that have been applied in381

the online calibration literature and in forecasting, but have382

not yet been widely applied for population risk metrics (6, 24– 383

26). In contrast to some other applications, we particularly 384

emphasize parsimony for policy metrics, demonstrating that 385

policymakers can obtain equal predictive performance with 386

fewer input indicators, potentially reducing the burden of 387

data collection on state and local public health departments. 388

Similar to other authors, we find hospitalizations to be a 389

particularly powerful predictor of future mortality (6). We 390

further emphasize that it is valuable to collect real-time data 391

on outcomes of policy interest, like mortality. (In the case of 392

COVID-19, while state mortality is still collected and reported 393

weekly, many counties have reduced reporting frequency (15).) 394

Our method can also reflect a policymaker’s preferences 395

for the trade-off between avoiding false negative and false 396

positives, filling a previously-identified gap between models 397

and decision theory (27). In practice, different indicators could 398

be used to guide different policies. For the most burdensome 399

policies (e.g., business closures), policymakers might prefer a 400

low risk of false negatives, while less burdensome policies (e.g., 401

distribution of rapid tests) might have a higher tolerance for 402

false positives. 403

There are several limitations to this study. First, we model 404

only outcomes related to severe disease and death from COVID- 405

19, as national policymakers have designated these priority 406

outcomes. Nevertheless, metrics to track illness are also impor- 407

tant for understanding the full burden of COVID-19, which can 408

also include disruptions from illness as well as Long COVID, 409

as is work to predict surges with longer lead time (26, 28). 410

In addition, no adaptive framework can automatically incor- 411

porate all possible variation. Manual tuning may be needed, 412

for example, if the frequency of reporting of hospitalization 413

changes over time. Furthermore, in high-risk situations, such 414

as an unusually lethal new variant identified in one country, it 415

may be preferable to implement preventative measures even 416

prior to observing a changing relationship between indicators 417

and severe outcomes. More broadly, metrics could be refined 418

to upweight performance during critical periods such as the 419

start of a surge or consider dynamic decision-making. Finally, 420

future work could also expand these results to other contexts, 421

such as prediction of combined respiratory disease outcomes 422

(including influenza and RSV) and consider other models for 423

risk prediction. Overall, adaptive metrics may be a powerful 424

tool for designing trustworthy, transparent metrics to guide 425

infectious disease policy. 426
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