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Abstract

 Objective—Weight loss intervention through diet modification has been widely used to 

improve obesity-related hyperglycemia; however, little is known about whether genetic variation 

modifies the intervention effect. We examined the interaction between weight-loss diets and 

genetic variation of fasting glucose on changes in glycemic traits in a dietary intervention trial.

 Research Design and Methods—The Preventing Overweight Using Novel Dietary 

Strategies (POUNDS LOST) trial is a randomized, controlled 2-year weight-loss trial. We assessed 

overall genetic variation of fasting glucose by calculating a genetic risk score (GRS) based on 14 

fasting glucose-associated single nucleotide polymorphisms, and examined the progression in 

fasting glucose and insulin levels, and insulin resistance and insulin sensitivity in 733 adults from 

this trial.

 Results—The GRS was associated with 6-month changes in fasting glucose (P<0.001), fasting 

insulin (P=0.042), homeostasis model assessment of insulin resistance (HOMA-IR, P=0.009) and 

insulin sensitivity (HOMA-S, P=0.043). We observed significant interaction between the GRS and 

dietary fat on 6-month changes in fasting glucose, HOMA-IR and HOMA-S after multivariable 

adjustment (P-interaction=0.007, 0.045, and 0.028, respectively). After further adjustment for 

weight loss, the interaction remained significant on change in fasting glucose (P=0.015). In the 

high-fat diet group, participants in the highest GRS tertile showed increased fasting glucose, 
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whereas participants in the lowest tertile showed decreased fasting glucose (P-trend<0.001); in 

contrast, the genetic association was not significant in the low-fat diet group (P-trend=0.087).

 Conclusions—Our data suggest that participants with a higher genetic risk may benefit more 

by eating a low-fat diet to improve glucose metabolism.

 INTRODUCTION

Hyperglycemia, one of the criteria of type 2 diabetes, is closely related to obesity (1). 

Weight loss intervention through diet and lifestyle modification has been widely adopted as 

a mainstream approach to improve glycemia and mitigate obesity-related metabolic risk 

factors (2,3). Blood glucose level is affected not only by diet and lifestyle, but also by 

genetic variation. In the past decade, several genome-wide association studies (GWASs) 

have identified a group of genetic variants that determine the overall variation of fasting 

glucose levels (4-8). In clinical trials, it has been noted for long time that the changes in 

glycemic measures in response to diet or lifestyle interventions exhibit considerable inter-

individual variation (9-12). We hypothesized that such diverse responses may be at least 

partly determined by the interaction between the interventions and genetic variation, 

especially which is related to blood glucose levels.

In this study, we calculated a genetic risk score, based on the 14 fasting glucose-associated 

single nucleotide polymorphisms (SNPs) identified by Meta-Analyses of Glucose and 

Insulin related traits Consortium (MAGIC) (7), and examined the interaction between the 

composition of macronutrients in weight-loss diets and genetic variation of fasting glucose 

in relation to changes in glycemic traits in the 2-year Preventing Overweight Using Novel 

Dietary Strategies (POUNDS Lost) trial.

 RESEARCH DESIGN AND METHODS

 Study participants

The POUNDS Lost trial is a 2-year randomized clinical trial to compare the effects of 

energy-reduced diets with different compositions of fat, protein and carbohydrate on 

reducing body weight (www.clinicaltrials.gov; NCT00072995). The study design and 

sample collection have been described in detail previously (10). Briefly, a total of 811 

overweight or obese subjects (25≤ body mass index ≤ 40 kg/m2) aged 30 to 70 years were 

randomly assigned to one of four diets. The targeted percentages of energy derived from fat, 

protein and carbohydrate in the 4 diets were 20%, 15%, and 65%; 20%, 25%, and 55%; 

40%, 15%, and 45%; and 40%, 25%, and 35%. Major exclusion criteria were the presence of 

diabetes or unstable cardiovascular disease, the use of medications that affect body weight, 

and insufficient motivation. After 2 years, 645 participants (80%) completed the trial. The 

study was approved by the human subjects committee at the Harvard School of Public 

Health and Brigham and Women’s Hospital, Boston, MA, by the Pennington Biomedical 

Research Center of the Louisiana State University System, Baton Rouge, LA, and by a data 

and safety monitoring board appointed by the National Heart, Lung, and Blood Institute. All 

participants provided written informed consent.
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In total, 733 participants with genotyping data available were included in the present study. 

There was no significant difference in the baseline characteristics between the participants 

with and without genotyping data.

 Measurements

Body weight and waist circumference were measured in the morning before breakfast on 2 

days at baseline, 6 months, and 2 years. Body mass index was calculated as weight by height 

squared (kg/m2). Dietary intake was assessed by a review of the 5-day diet record at 

baseline, and by 24-hour recall during a telephone interview on 3 nonconsecutive days at 6 

months and 2 years, in a random sample of 50% of the participants. Fasting blood samples, 

24-hour urine samples, and measurement of resting metabolic rate were obtained on 1 day. 

Serum glucose, insulin, and urinary nitrogen were measured at the clinical laboratory at the 

Pennington Biomedical Research Center. Homeostasis model assessment (HOMA) models 

were used to estimate insulin resistance (HOMA-IR), insulin sensitivity (HOMA-S), and β-

cell function (HOMA-B) (13,14), which were calculated by the following equations: 

HOMA-IR = [fasting insulin (μU/mL) × fasting glucose (mmol/L)] / 22.5, HOMA-S = 22.5 / 

[fasting insulin (μU/mL) × fasting glucose (mmol/L)], and HOMA-B = [20 × fasting insulin 

(μU/mL)] / [fasting glucose (mmol/L)-3.5].

 Genotyping and genetic risk score calculation

DNA was extracted from the buffy coat fraction of centrifuged blood using the QIAmp 

Blood Kit (Qiagen, Chatsworth, CA). Fourteen fasting glucose-associated SNPs identified 

by MAGIC in European ancestry were selected and were genotyped successfully in 733 of 

811 total participants using the OpenArray SNP Genotyping System (BioTrove, Woburn, 

MA). The genotype success rate was 99% in available DNA samples. Replicated quality 

control samples (10%) were included in every genotyping plate with greater than 99% 

concordance. The allele frequencies of all SNPs in total participants or in white participants 

were in Hardy-Weinberg equilibrium (all P > 0.05).

We assessed overall genetic variation of fasting glucose by calculating a genetic risk score 

(GRS). The GRS was calculated based on the 14 SNPs by summing risk allele’s numbers, 

and weighted by their effect sizes (β coefficients) derived from genome-wide association 

meta-analyses data (Supplementary Table 1). The GRS was computed using the equation: 

GRS = (β1×SNP1 + β2×SNP2 + … +β14×SNP14) × (n/sum of the β coefficients), where β is 

the β coefficient of each SNP for higher levels of fasting glucose, SNP1, SNP2 … and SNP14 

indicate the number of risk alleles (0, 1 or 2) for each SNP, and sum of the β coefficients is 

0.424 in the current analysis. The GRS ranged from 8 to 24 among the study participants, 

and a higher score indicated a higher genetic risk of higher levels of fasting glucose.

 Statistical analysis

The primary endpoints for this study were changes in glycemic traits including fasting 

glucose, fasting insulin, insulin resistance and insulin sensitivity over the intervention. 

Participants from the 4 diet groups were combined for the comparison of low-fat diet (20% 

fat) and high-fat diet (40% fat), and for the comparison of average-protein diet (15%) and 

high-protein diet (25%) in accordance to the two-factorial design of the original trial (10), 
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and such analytical strategy would have better power than analyzing the four groups. Levels 

of insulin, HOMA-IR and HOMA-S were log-transformed before analysis to improve the 

normality of their distributions. General linear models for continuous variables and chi-

square test for categorical variables were applied for the comparison according to tertiles of 

the GRS. We used general linear models to test means (standard deviations, SEs) of changes 

in glycemic traits in high-fat and low-fat diets groups according to tertiles of the GRS with 

adjustment for age, sex, ethnicity, baseline values of the respective outcomes, and weight 

loss at each intervention time. To test for interaction, we examined the GRS, dietary fat or 

protein intake, and an interaction product term of the GRS-diet intervention as independent 

predictors of changes in glycemic traits, with adjustment for age, sex, ethnicity, baseline 

values of the respective outcomes, and weight loss at each intervention time in the general 

linear models. We excluded individuals with missing measures at each time point in the 

analysis. Because our analysis is hypothesis driven and primarily focused on the genetic risk 

score (rather than individual SNPs), we did not adjust for multiple testing. As the majority of 

the participants were white (80%), we also examined the genetic effects and gene-diet 

interaction in white participants in a sensitivity analysis. We used Quanto 1.2.4 (http://

hydra.usc.edu/gxe/; University of Southern California, Los Angeles) to estimate the 

detectable effect sizes of gene-diet interactions. The study had 80% power to detect gene-

diet interaction effect sizes of 0.05 and 0.01 mmol/L for changes in fasting glucose, 0.15 and 

0.12 for log-transformed units for changes in HOMA-IR, and 0.15 and 0.12 log-transformed 

units for changes in HOMA-S at 6 months and 2 years, respectively. All reported P values 

are nominal and 2-side, and a P value less than 0.05 was considered statistically significant. 

Statistical analyses were performed with SAS version 9.1 (SAS Institute Inc, Cary, NC).

 RESULTS

 Baseline characteristics

Table 1 presents the baseline characteristics of participants according to the tertiles of the 

GRS of fasting glucose. Mean age, proportions of sex and four diet groups were similar, 

while the ethnicity proportion was different across the tertiles of the GRS. After adjustment 

for age, sex and ethnicity, a higher GRS was associated with higher fasting glucose and 

lower HOMA-B levels (both P < 0.001). The GRS was not significantly associated with 

body mass index, dietary intervention groups assignment, or other baseline characteristics.

 Dietary nutrient intake and biomarkers of adherence by tertiles of the GRS

The reported dietary intakes (total energy, fat, protein, and carbohydrate) and changes in 

biomarkers of adherence (urinary nitrogen and respiratory quotient) confirmed that 

participants modified their intake of macronutrients in the direction of the intervention goals, 

although the targets were not fully achieved (10). At 6 months, there were no significant 

differences in mean values of nutrient intake and biomarkers of adherence across the tertiles 

of GRS (all P > 0.05). At 2 years, fat intake was significantly decreased (P = 0.040), and 

urinary nitrogen was significantly increased (P = 0.027) across the tertiles of GRS. No other 

differences in nutrient intake and biomarkers of adherence at 2 years were found across the 

GRS tertiles (all P > 0.05) (Table 2).
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 The GRS and changes in glycemic traits

As shown in Supplementary Figure 1, one unit higher GRS was significantly associated 

with 0.03 mmol/L greater increase in fasting glucose (P < 0.001), 0.01 μU/mL less decrease 

in fasting insulin (P = 0.042), 0.02 less decrease in HOMA-IR (P = 0.009), and −0.01 less 

increase in HOMA-S (P = 0.042) at 6-month, independent of age, sex, ethnicity, diet groups, 

and baseline values of the respective outcomes. After further adjustment for weight loss at 6 

months, the association of the GRS with changes in fasting glucose and HOMA-IR 

remained significant, but the association with changes in fasting insulin and HOMA-S were 

attenuated.

 Genetic risk, dietary fat intervention and changes in glycemic traits

At 6 months, we also observed significant interaction between the GRS and dietary fat 

intake (high-fat v.s. low-fat) on changes in fasting glucose, HOMA-IR and HOMA-S (P for 

interaction = 0.007, 0.045, and 0.028, respectively), after adjustment for age, sex, ethnicity, 

and baseline values of the respective outcomes. After further adjustment for weight loss at 6 

months, the interaction between the GRS and change in fasting glucose remained significant 

(P = 0.015). In the high-fat diet group, participants in the highest tertile of the GRS showed 

increased fasting glucose compared to the baseline levels, whereas participants in the lowest 

tertile of the GRS showed decreased fasting glucose (P for trend < 0.001). In the low-fat diet 

group, no significant association between the GRS and changes in glucose was observed (all 

P for trend ≥ 0.087). At 2 years, the association between the GRS and the glycemic 

measures, and GRS-diet interaction were attenuated to be not significant (Table 3). No 

significant interaction between the GRS and dietary protein was observed across the 2-year 

intervention.

The results were similar in the sensitivity analyses only including white participants. At 6 

months, there was significant interaction between the GRS and dietary fat intake on changes 

in fasting glucose (P = 0.011) and HOMA-S (P = 0.043) after adjustment for age, sex, and 

baseline values of the respective outcomes. The GRS-diet interaction on change in HOMA-

IR was attenuated (P = 0.068), while the interaction on change in fasting glucose remained 

significant (P = 0.024) after further adjustment for weight loss at 6 months. At 2 years, the 

results did not remain significant (Supplementary Table 2).

 Dietary fat intervention on change in fasting glucose by GRS

We further assessed the effect of the high-fat and low-fat diets on changes in fasting glucose 

by tertiles of the GRS with multivariable adjustment (Figure 1). At 6 months, in tertile 1 

(the lowest) and tertile 2 of the GRS, no significant difference in fasting glucose was 

observed among these two diet groups. In tertile 3 (the highest) of the GRS, participants 

eating the high-fat diet had a greater increase in fasting glucose than those eating the low-fat 

diet (P = 0.014). At 2 years, fasting glucose levels rebounded, and in tertile 2 and 3 of the 

GRS, participants eating high-fat diet showed significantly higher increment in fasting 

glucose compared with those eating low-fat diet (both P < 0.05), whereas no significant 

difference was observed among the two diet groups in tertile 1 of the GRS.
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 DISCUSSIONS

In the POUNDS Lost trial, the fasting glucose GRS was significantly associated with 6-

month changes in fasting glucose, fasting insulin, HOMA-IR and HOMA-S. In addition, we 

found that the genetic variation of fasting glucose interacted with the dietary fat intake in 

relation to 6-month changes in glycemic traits, especially fasting glucose.

In the present study, a higher fasting glucose GRS was associated with greater increase in 

fasting glucose and less decrease in HOMA-IR at 6 month, independent of concurrent 

weight loss. Many of the established fasting glucose loci included in the GRS contain 

biological candidate genes with plausible causality, such as PROX1 and GLIS3 encode 

transcription factors that play crucial roles in beta-cell ontogeny, and SLC2A2 and GCK 
involve in glucose-mediated insuiln secretion cascade and beta-cell function (15-18). The 

significant association of the GRS with changes in fasting insulin and HOMA-S was 

diminished after adjustment for weight loss, suggesting that the genetic effect on changes in 

glycemic traits might be mediated by weight loss, which has been considered as a 

cornerstone for improvement of insulin resistance and insulin sensitivity (19,20).

In addition, we found significant gene-dietary fat interaction on changes in several glycemic 

measures at 6 months. Our data indicated that only the interaction on change in fasting 

glucose was independent of weight loss, whereas the interaction on changes in HOMA-IR 

and HOMA-S were likely mediated by weight change. An interesting finding is that in the 

high-fat diet group, participants with different genetic risk showed directionally opposite 

changes in fasting glucose: participants with higher genetic variation to fasting glucose 

showed increased fasting glucose, whereas those with lower genetic variation showed 

decreased fasting glucose. While no such genetic effect was observed in the low-fat diet 

group. The potential mechanisms underlying these results might be related to fatty acid-

induced glucose intolerance. Animal studies have showed compelling evidence that high-fat 

diet and increased circulating free fatty acid levels induce glucose intolerance by disrupting 

gene expression in signaling pathways of glucose metabolism (21,22), decreasing basal and 

insulin-stimulated glucose utilization (23,24), and causing adipose chronic inflammation and 

ectopic lipid deposition in the liver and brown fat (25). Moreover, it has been suggested that 

individuals with a higher genetic risk to diabetes or its risk factors may be more susceptible 

to glucose intolerance upon exposure to high-nutrient diets (26,27). These findings raise the 

possibility that dietary fat-induced fasting glucose elevation may be enhanced in participants 

with a higher genetic risk to higher levels of fating glucose. From another perspective, the 

low-fat/high-fat diets are the same as the high-carbohydrate/low-carbohydrate diets in the 

present trial, therefore possible modifications of the varying percentages of carbohydrates on 

the genetic effect should also be taken into account. That is, the genetic effect on changes in 

fasting glucose was more significant in the low-carbohydrate diet group than in the high-

carbohydrate diet group.

Similar to our previous studies, the gene-diet interaction became attenuated at 2 years. 

Between 6 months to 2 years, both body weight and glucose levels rebounded (10), partially 

due to a diminished adherence to the diet intervention, which was similar to other weight-

loss trials (28,29). These results suggest that the modification of dietary fat on the 
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association between genetic variation and changes in glycemic traits might be more 

prominent in a short-term intervention. Moreover, the rebound in glycemic traits, especially 

fasting glucose, may also partly explain the attenuated gene-diet interaction; however.

To the best of our knowledge, this is the first study assessing interaction between the overall 

genetic variation of fasting glucose and dietary interventions on changes in glycemic 

measures in a large and long-term randomized clinical trial. Several limitations also warrant 

consideration. First, we applied HOMA models rather than a gold standard such as 

hyperglycemic clamp technique or intravenous glucose tolerance test to assess insulin 

resistance and beta-cell function. Although HOMA models have been validated as robust 

and feasible epidemiological tools (30), the data need to be interpreted carefully. Second, 

even though our study is thus far the largest diet intervention weight-loss trial, the relatively 

small sample size of the subgroups may limit the power to detect very moderate interactions. 

Third, most of the participants (80%) in our trial are white, and the replications in other 

ethnic populations are warranted to verify our findings.

In conclusion, we found a significant interaction between the genetic variation of fasting 

glucose and dietary fat intervention on changes in glycemic traits, suggesting that 

overweight or obese patients with a higher genetic risk may benefit more by taking a low-fat 

weight-loss diet to improve glucose metabolism. Our findings provide supportive evidence 

for the concept of genetic risk-stratified nutrition intervention in preventing disease related 

to glucose metabolism, such as type 2 diabetes.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The effects of high-fat and low-fat diets on changes in fasting glucose by tertiles of 
fasting glucose genetic risk score over 2 years
A. 6 months, B. 2 years. Data are expressed as mean (SE) after adjustment for age, sex, 

ethnicity, and baseline values of the respective outcomes. P values are for comparisons 

between the two diet groups.
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Table 1

Baseline characteristics of study participants

Tertiles of genetic risk score to fasting glucose

1 (n=241) 2 (n=245) 3 (n=247) P

Age, years 51 ± 10 51 ± 9 51 ± 9 0.852

Sex, n (%)

Female 134 (55.6) 154 (62.9) 158 (64.0) 0.124

Male 107 (44.4) 91 (37.1) 89 (36.0)

Race or ethnicity, n (%)

White 206 (85.5) 173 (70.6) 206 (83.4) < 0.001

Black 22 (9.1) 59 (24.1) 31 (12.6)

Hispanic 10 (4.2) 10 (4.1) 5 (2.0)

Asian or other 3 (1.2) 3 (1.2) 5 (2.0)

Diet groups (%fat/ protein/
carbohydrate), n (%)

Group 1 (20/15/65) 65 (27.0) 58 (23.7) 58 (23.5) 0.827

Group 2 (20/25/55) 55 (22.8) 66 (26.9) 67 (27.1)

Group 3 (40/15/45) 59 (24.5) 56 (22.9) 64 (25.9)

Group 4 (40/25/35) 62 (25.7) 65 (26.5) 58 (23.5)

Height, cm 169 ± 9 168 ± 8 168 ± 9 0.800

Weight, kg 94 ± 16 93 ± 15 93 ± 16 0.795

Body mass index, kg/m2 32.7 ± 3.8 32.7 ± 3.8 32.6 ± 4.0 0.990

Waist circumference, cm 105 ± 13 103 ± 13 103 ± 13 0.581

Glucose, mmol/L 5.0 ± 0.6 5.1 ± 0.6 5.2 ± 0.7 <0.001

Insulin, μU/mL 10.5 (7.1-15.2) 11.1 (6.8-16.1) 10.0 (6.6-14.9) 0.649

HOMA-IR 2.31 (1.53-3.39) 2.55 (1.48-3.63) 2.24 (1.49-3.67) 0.612

HOMA-S 0.43 (0.30-0.65) 0.39 (0.28-0.68) 0.45 (0.27-0.67) 0.612

HOMA-B 145 (105-210) 134 (94-210) 123 (86-180) <0.001

Weight loss at 6 months, kg −7.4 ± 5.7 −6.0 ± 5.7 −6.6 ± 5.8 0.159

Weight loss at 2 years, kg −4.6 ± 7.8 −3.7 ± 6.9 −4.0 ± 7.5 0.585

Dietary intake per day

Energy, kcal 1993 ± 626 1903 ± 503 2007 ± 545 0.364

Carbohydrate, % 45 ± 8 45 ± 7 45 ± 8 0.748

Fat, % 37 ± 6 37 ± 6 37 ± 6 0.767

Protein, % 18 ± 4 18 ± 3 18 ± 3 0.625

Biomarkers of adherence

 Urinary nitrogen, g/day 12.3 ± 4.6 12.0 ± 4.2 12.4 ± 4.5 0.272

 Respiratory quotient 0.84 ± 0.04 0.85 ± 0.04 0.84 ± 0.05 0.312

Data are expressed as mean ± SD, median (95% CI), or % (n) as appropriate. P values were calculated by using the chi-square test for categorical 
variables and F tests in general linear models for continuous variables after adjustment for age, sex and ethnicity.
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